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Abstract 

Consider a finite set whose elements are associated with vectors of common dimen- 
sion. A partition of such a set is associated with a matrix whose columns are the sums of 
the vectors corresponding to each part. The partition polytope associated with a class of 
partitions (that share the number of parts) is then the convex hull of the corresponding 
matrices. We derive representations and characterizations of these polytopes and their 
vertices. 0 1998 Elsevier Science Inc. All rights reserved. 
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1. Introduction 

Following Barnes et al. (1992), hereafter referred to as BHR, we study par- 
titions where each element of the partitioned set is associated with a (fixed) 
number of numerical attributes. So, vectors A], . ,A” are given, say of 
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dimension k, and we consider (ordered) partitions TX = (~1,. ,np) of 
N E { 1,. . , n}. Given a partition 7~ = (71,). . . , n,), we refer to the integer p 
as the size of rc and to the integer vector (17~~ 1, . . . , jn,/) as the shape of 71. Also, 
7~ is associated with the k x p matrix A” E (C_, A’, . , )& A’). The partition 
polytope associated with a set I7 of partitions sharing a common size p is de- 
fined as the convex hull of all k x p matrices A” corresponding to partitions 
‘/t in Ii’. Of particular interest are constrained-shupe partition polytopes where 
n is determined by constraints over shapes; if such constraints are in terms 
of lower and upper bounds, we refer to bounded-shape partition polytopes. 

In this paper we explore vertices of partition polytopes. A motivation for 
one’s interest in the vertices of convex hulls of finite sets is the following stan- 
dard result. 

Proposition 1.1. Let Y be a finite set of vectors of common size and P E conv Y. 
Then Y contains all vertices of P. Further, if/z(.) is a convex function on P, u 
maximum of h(.) over P is attained at a vertex of P and such a vertex maximizes 
h(.) over Y. 3 

Proposition 1.1 is relevant to the study of maximization problems over sets 
of partitions where the objective F(n) associated with a partition 71 has the rep- 
resentation F(Z) = h(A”) with h(.) as a real-valued convex function on the con- 
vex hulls of the A”‘s; see Hwang and Rothblum (in progress), Gao et al. (1998) 
and references therein for specific applications of such partitioning problems in 
diverse fields that include clustering, statistics, scheduling, reliability, inventory 
and system assembly. Specifically, Proposition 1.1 suggests that these partition- 
ing problems be embedded in the problem of maximizing h(.) over the corre- 
sponding partition polytope, or restricted to optimization over partitions 
corresponding to vertices of that polytope. Our study of the vertices of parti- 
tion polytopes is motivated by the second approach. 

We mention that the above embedding and restriction of partitioning problems 
correspond to the two fundamental approaches used in the study of polytopes 
and optimization problems thereupon ~ one focusing on facets, that is, on de- 
fining systems for linear inequalities, while the other focusing on vertices. Nei- 
ther approach necessarily dominates the other, and moving from one to the 
other is generally nontrivial computationally. The solution of optimization 
problems over partitions is explicitly addressed in Hwang et al. (unpublished 
manuscript). 

3 It is well-known that the conclusions of Proposition 1.1 extend to functions which arc yuasi- 
convex, that is, functions h(.) satisfying h[cta + (1 - c()b] < max{h(a), h(b)} for vectors a and b in 
their domain and 0 < z < 1. Further, these results were recently extended to an even larger class of 
functions called edge-quasi-convex; see Hwang and Rothblum (1996). 
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BHR explored partitioning problems and partitioning polytopes under a 
nondegeneracy assumption asserting that the columns of the underlying matrix 
A are nonzero and distinct. Some of their results were extended in Hwang et al. 
(submitted) our goal herein is to extend the results of BHR with full general- 
ization to degenerate cases. 

One issue of interest concerns uniqueness of the representation of vertices. 
For non-degenerate bounded-shape partition polytopes the issue was settled 
in Theorem 5 of BHR as follows: 

Proposition 1.2. Let P he a hounded-shupe partition pol>~tope 11here the colun~m 

of’ the Lmderl~~ing rnatris A are nonzero ad distinct md let V he II rertrs of’ P. 
Then V 1~1s II unique representation NS A’ Ipith TI LI prrr-tition in the underlining .wt 

of’purtitions. 

Obviously. the unique representation of vertices does not hold in generate 
cases where A’s columns include repeated vectors and/or zero vectors. For ex- 
ample, if all the columns of A coincide and are all nonzero. there is a one-to- 
one correspondence between the potential shapes of partitions and the associ- 
ated vectors, but, with p > 2 and II > p there will be multiple partitions with 
any given shape. More generally, we have that switches of indices with identical 
corresponding vectors between the parts as well as shifts of zero vectors be- 
tween the parts will not change the associated vector. In Section 3 (Theorem 
3.5) we demonstrate that the above are the only degrees of freedom in multiple 
representations of vertices of bounded-shape partition polytopes. We also dem- 
onstrate that Proposition 1.2 cannot be extended to constrained-shape parti- 
tion polytopes. 

A (geometric) necessary condition and an (algebraic) necessary and suffi- 
cient condition for vertices of bounded-shape partition polytope were obtained 
in BHR. The necessary condition was generalized to degenerate cases and to 
constrained-shape polytopes in Hwang et al. (submitted). The extended result 
is given in Proposition 1.3. 

Proposition 1.3. Let P he a constrained-shupe partition polj*tope uYth wrtc.y .1” 

inhere T = (~1. . rep) is a corresponding partition. For t = 1. .p. let 
CT, 5 conv {A;: ,j E z,}. Then ji)r each pair of’ distinct intk.v I’..! 
E { I. %p} ~ CT,. n CJ$ is either empty, or contains u singk point \~%icii is ci 
conmon wrtes of CT,. and 0,; sucl~ N conmon rertc.v i.v rw~e.s.sari!)~ one qf’ A ‘.Y 
columns. 

The sufficient condition for vertices given in Proposition 1.3 is appealing 
because of its geometric expression. Further, the condition is used in Hwang 
et al. (submitted) to enumerate, in polynomial time, the vertices of con- 
strained-shape polytopes. Still, an example in BHR demonstrates that, even 
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in nondegenerate cases, the condition is not necessary. A condition which is 
both necessary and sufficient for vertices of nondegenerate bounded-shape par- 
tition polytopes in terms of solvability of linear systems was developed in BHR 
(it is included in Theorem 3.1). In Section 4 (Theorem 4.2) we extend the char- 
acterization to degenerate cases and demonstrate that its verification can be ex- 
ecuted in effort which is polynomial in the parameters of the problem; the result 
facilitates a polynomial test for vertices. 

Partition polytopes and preliminaries are formally introduced in Section 2. 
Representations of partition polytopes and their vertices are given in Section 3, 
with particular emphasis on the degrees of freedom in such representations. Fi- 
nally, an algebraic characterization of the vertices is provided in Section 4. 

2. Preliminaries: Partition polytopes 

Throughout, we let k and n be positive integers. These parameters will be 
fixed throughout this section. 

Superscripts are used to denote columns of matrices, subscripts for rows and 
double indices for elements, e.g., U’, Ui and U;. The vector of l’s of appropriate 
dimension is denoted e. For matrices U and V of common dimension, say 
m x p, the inner product of U and V is defined by (U, V) s CL, CT=, iJ/Ff, 
We recall that for matrices U, V and W of dimension m x p, m x q and q x p, 
respectively, we have that (U, VW) = (V’U, W) = (UWT, V). 

A partition is an ordered collection of sets z = (71, ! . . . , q,), where 7c1, . . . , q, 
are disjoint, nonempty subsets of N whose union is N. Given such a partition 7t, 
we refer top as its size and to the sets nl , . . . , zp as its parts. Also, if the number 
of elements in the parts of a partition 7~ = (rci, . . . , T-C,) are nl, . . , nP, respective- 
ly, we refer to (121, . . . , nP) as the shape of n; of course, in this case 
CT=, nj = INI = n. Partitions of size p are called p-partitions and partitions of 
shape (nl , . . ! nP) are called (ni , . . . , n,)-partitions. 

Sets of partitions of particular interest are those whose shape is constrained 
to be in a prescribed set. Specifically. if r is a set of positive integer p-vectors 
with coordinate-sum n (that is, I’ is a set of potential shapes of p-partitions) we 
refer to the set of all p-partitions whose shape is in r as the set of r-shape pur- 
titions; at convenience, we suppress the explicit dependence on r and refer 
generically to constrained-shape partition-sets. If L and U are positive integer 
p-vectors satisfying L < U and CT=, Lj < n < CT=, Uj, the (nonempty) set of 
positive integer p-vectors (n, , . . , n,) with coordinate-sum n that satisfy 
Lj<nj<U,foreachj= l,...,pisdenotedr (L.u); the corresponding set of par- 
titions is denoted LICLx”) and, with the dependence of L and U suppressed, 
referred to as a hounded-shape partition-set. 

Let A be a k x n real matrix. For a p-partition rr = (rci , . . , np) we define the 
n-summation-matrix of A, denoted A”, by 
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A”- [p,...,p] E WL~. (2.1) 

With e’. . . ek as the unit vectors in Rp, we note that 

= f--+(e”)r. (2.2) 
/‘I IEn, 

We recall that a polytope is the convex hull of a finite set. For a matrix 
A E lRkxn and a set of p-partitions lI, the purtition polytopr with dutu-nmtri.\- 
A corresponding to II, denoted P,“, is the convex hull of {A”: rc E f7} 2 [WA”“. 
While the notational dependence of 9,” on A and II is always preserved. we 
sometimes refer to partition polytopes or to the partition poll’topes correspond- 
ing to I7. If I7 = ZI@“) for corresponding positive integer p-vectors L and U we 
use the notation P(L.U’ for P$’ and refer to this polytope as a hounded-shape pur- A 
tition polytope. 

We recall that a vertex of a polytope P is a point 11 in P having the property 
that the only representation of u as i (u + 6) with a. b E P has a = h. It is well 
known that V E P is a vertex of P if and only if there is a linear function that 
attains a unique maximum over P at V, and we use this property interchange- 
ably with the above definition. The important role vertices play in convex max- 
imization problems is discussed in the introduction. 

We next consider the case where the data-matrix is the identity I E R”‘“. In 
this case, for each p-partition n, I” E RnX” is given by 

(I”); E 
1 iftErc,, 

0 otherwise. 

where e’ for t = 1,. . n and eJ for j =: 1. %p denote the unit vectors in R” and 
[w”, respectively; consequently (using (Eq. (2.2)) with I as the underlying ma- 
trix) 

= AxA’(&)T = A”. 
/=I ltn, 

12.4) 
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An explicit representing systems of linear inequalities is next derived for 
bounded-shape partition polytopes with the identity as the data-matrix. 

Lemma 2.1. Let L and U be positive integer p-vectors satisfying L < U and 
J& Li <n < CT=, U,, and let Il be the set of r cL’u)-partitions. Then P/” is the 
solution set of the linear system: 

X: 20 fort= l,..., nandj= l,... :p: (2.5a) 

A*= 1 fort= l,...,n, 
j=i 

(2.5b) 

for j = 1, . . . ?p. (2.5~) 

Proof. Let K be the solution set of (2.5). Trivially, I” E K for each 7~ E II, 
implying that the convex hull of these matrices, namely Pin, is contained in K. 
Next, standard results (that rely on the fact that the constraint matrix of the 
inequality system (2.5) is totally unimodular) assure that the vertices of K are 
integer solutions of (2.5) (cf., Schrijver, 1986); as integer solutions of (2.5) 
correspond to p-partitions in n, that is, have representation as I” for some 
rr E II, each vertex of K is in P/“. By another standard result, K is the convex 
hull of its vertices, and consequently K is contained in Pf’. 0 

3. Vertex representation 

In the current section we derive representations of partition polytopes and 
their vertices. We recall Proposition 1.2 which asserts unique representations 
as A” of the vertices of bounded-shape partition polytopes when the vectors 
A’, . . , A” are nonzero and distinct. The next example demonstrates that with 
the columns of A nonzero and distinct, multiple representations of interior vec- 
tors of bounded-shape partition polytopes and of vertices of constrained-shape 
partition polytopes (which are not bounded-shape) are possible. 

Example. Let k = 1, n = 4, A = (-2, - l( 1,2) and p = 2. For positive indices i 
and j with i + j = 4, we let Zj’(‘.j) be the partitions with shape (i> j) and we let 
Pci,i) be the corresponding partition polytopes. Now, rr* = ({ 1,4}, {2,3}) and 
x2 = ({2,3),{1,4)) are two distinct partitions in fl(2;2) that satisfy 
A”’ = AK’ = (0,O). Of course, (0,O) is not a vertex of Pc2.*) = {(x, -z): 
-3 < CI < 3) (in fact, in view of Proposition 1.2, (0,O) is not a vertex of any 
bounded-shape partition polytope). Also, {A”: 7~ E Ii’(‘.3)} = {A”: 7~ E Ii’(3.1)} = 



F K. Mwcmg rr (11. I Linear Algehru uncl its Applic~ations 278 (19%‘) 263-284 xc) 

{(-2.2),(-1.1). (l.-1),(2-2)) = {AK: no 17i’.“)‘!‘7”‘}. So, the vertices of 
the partition polytope corresponding to 117(‘,3) u 177(3.‘1 are (-2,2) and (2. -2) 
and each is realizable by two partitions. Of course, IIi’.3i U d3.‘) is a set of 
partitions which is constrained-shaped, but not bounded-shape. 

The next result provides three necessary and sufficient conditions for vectors 
corresponding to given partitions to be vertices of bounded-shape partition 
polytopes. One of these (condition (d) in Theorem 3.1) was introduced in 
BHR; another (condition (b)) tightens the necessary condition for being a ver- 
tex stated in Proposition 1.2. 

Theorem 3.1. Let A E RXxn have nonzero und distinct colurnn.v, let 
L,). . L,,. c/l. . r/, he positive integers suti.fj,ing L, < C: ,for ,i = 1 1 , p 
uncl Cy_, L, < II 6 CT=, Uj, and let 71 E 17 WJ, i Then the fbllo,ring mre qku- . 
lent. 

(a) A” is II vertex of’??““, 
(b) A” = AI” is u unique representation qf A” us A” = AX Irith X E P,!“” ‘. 
(c) {Y E P;’ [‘I: AY = A” und (I”; Y) < n - l} = 8, und 
(d) there esists cc matrix C E RkXP und vector r E W such thut: 

(1) (C” ~ C”)TA’ > c(, - ‘q. jbr r. s E { 1. p} ,rith r # .r und t E q.. 
(2) x,- 6 0 if /7c,I > L,., and 
(3) clF 3 0 if l-r,-1 < u,.. 

Proof. Let I! = 17(L.u). We recall from Eq. (2.4) that A” = Al” for each (T E Ii’. 
(a) + (b): Suppose A” = AI” is a vertex of PF’L ‘. Then A” is the unique max- 

imizer over !‘(r,c’ of some linear functional, say one that is represented by the 
matrix C E EJxp. Now, suppose that A” = AX with x’ E Pj’.“’ and we will show 
that X = I”. As X E @“, there exist partitions 7~‘. . IT“ in n and positive co- 
efficients ~1.. ~ xc, which sum to 1 such that X = XI_, cc,I”‘; in particular, 
(C,il”) = (C,AX) = Cz=, r,y(C,AI”‘) = Cy=, x,(C,A”‘). As A” is the unique 

maximizer over & (‘~J’) of the linear function represented by C, as the 2,‘s are 
positive and sum to 1 and as the A”“s are in qiL”), it follows that for each 
.)‘ = I % 3 q. (C, A”‘) = (C. A”) and AT’ = A”. Thus Proposition 1.2 implies that 
all 71”s coincide with 71 and therefore X = Cz=, xJK’ = I”. 

(b) + (c): Suppose A” = AI” is a unique representation of A” as A” = AX 
with X E P:“L’i. Let Y be a matrix in P/(““) satisfying AY = A’. It then follows 
that Y = I”. implying that (Y.Z”) = (I”, I”) = II. Thus Pj’.“’ f’ {Y t W”‘“: 
AY=A”and(I”.Y)<n-1}=8. 

(c) + (a): Assume that A” is not a vertex of 9:“’ ‘. From Proposition 1.1, 
each vertex of ~~~“” IS m the set {A”: 71 E IT} and a standard result implies that 
A” has a representation as a convex combination of vertices of Z’:““‘. Hence. 
there exist partitions 71’ ~ . : 7~“ in i7, all distinct from 71, and positive coeffi- 
cients xl.. . a(, which sum to 1 such that A” = cy , a,A”‘. As A”‘ = AI”‘ for 
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s = 1,. . , q, hence, A” = Cz=‘=, a,AIti = A(C:=, cc,Z”‘). Also, the convexity of 
P(L*U) assures that Cz=, c(,I* E P,(L.U’. Now, as (I”,Z”) 6 n - 1 for each p-parti- I 
tion cr that is distinct from rc, we have that (I”, Cz==, a,Z”‘) = 

Cz=, CI,(I”,Y’) < Cz==, a,(n - 1) = 12 - 1. So, X = Cz=, c@’ E @‘) satisfies 
.4X = A” and (Z”,X) < n - 1, demonstrating that {X E P,@“): AX = A” and 
(I”,X) < IZ - 1) is not empty. 

(a) w (d): This equivalence is established in Theorem 5 of BHR. 0 

The three necessary and sufficient conditions for being a vertex of a bound- 
ed-shape partition polytope given in Theorem 3.1 yield computational methods 
with polynomial complexity in n,p and k; further discussion of such methods is 
deferred till the end of the current section, at which point the restrictive as- 
sumption that A’s columns are nonzero and distinct is relaxed. 

Condition (a) of Theorem 3.1 does not imply condition (b) when A’s 
columns include repeated vectors and/or zero vectors; for example, if all columns 
of A coincide, each single-shape partition polytope contains a single point 
which is a vertex of the polytope and this vertex has multiple representations 
as A” when p > 1 (in fact, this example neither satisfies the conclusion of Propo- 
sition 1.2). In Theorem 3.5 we identify variants of condition (b) which charac- 
terize vertices of bounded-shape partition polytopes without the assumption 
that A’s columns are nonzero and distinct. A modification of condition (d) 
which is necessary for (a) and applies for the general case is developed in 
Section 4. We are not aware of a corresponding modification of condition (c). 

A few additional definitions are needed before we are ready to explore gen- 
eral bounded-shape partition polytopes. Let fi be the number of nonzero distinct 
columns of A. We will consider matrices with 2 + 1 rows or ii + 1 columns where 
these rows/columns are indexed by 0, 1, . , ii. Further, when a matrix has rl + 1 
rows indexed by 0, 1, . ii, we use underlining to denote the submatrix obtained 
by truncating the O-row, so, if B E R(n+‘)xn, then & E IWlixn. 

Given a k x n matrix A, wet let k’ be the k x h submatrix of A obtained by 
deleting zero and multiple columns that appear in A, for uniqueness we assume 
that the first of any group of repeated columns of A is preserved while the 
others are deleted, and the order of k;s columns is induced from A. Also, let 2 
be the k x (1 + 2) matrix obtained from 2 by adding the zero vector as the O-col- 
umn. Of course, never does k’ have a zero column but 2 always does. Finally, let 
J E @if+” be the (0, 1 }-matrix with J’ = e’ (the s-unit vector in rW”> if 
A’ = k”(# 0) and J’ = e” (the O-unit vector in [WC”+‘)) if A’ = 0. For example, if 

1 0 3 3 1 

1 0 0 0 1 

then 
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0 1 0 0 0 
1 0 0 0 1 

J= 1 0 0 0 1 and J_ = 
00110’ 

00110 

The use of underlining to denote truncation of the zero row of a matrix having 
1 + ri rows (introduced in the above paragraph) and the construction of 2 from 
k’ by augmenting it with a zero vector imply that for each matrix Y with 1 + iz 
rows we have that 

AY =& 

in particular, 

(3.1) 

~J=A=&. (3.3) 

When A has no zero columns, the forthcoming development can be carried out 
without the use of 2, but solely with the use of k’. In particular, when A’s 
columns are nonzero and distinct, k’ = A and J_ = 1 E R”““. 

We will use J,J_ and A E Rkxn as data-matrices. In particular, for a y- 
partition rt Eq. (2.4) implies that JZ” = .J”,J_Z” = z”. AI” = A” and, by Eq. (3.2) 

A” = AI” = (iJ)I” = ;1(JI”) zz AJ’ (3.3) 

and 

A” = Al” = (i&Z” = ,i(JZ)n = &. (3.4) 

The next lemma shows that for a set of partitions L’, Pfl> PJ”% Pl and P,” form a 
sequence of polytopes where each is a projection of its predecessors; further. 
the composite projection of P,!” onto Pf is given by X --) AX. The decomposi- 
tions we are about to establish are demonstrated in Fig. 1. We shall refer to P,! 
as the generalized transportation polytope corresponding to 17. 

Fig. 1. 
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Lemma 3.2. Let A E Rkxn and let Il be a set ofpartitions. Then: 
(a) Py = {JX: X E Py C Wxp}, 
(b) PJ” = (1: Y E P; c R(‘+n)xp}, 

(c) P; = {ki: z E PJ” c W”}. 
Further, the composiie projections oj’P7 onto PF, of P,?y ontf PA” and of Py 

onto PA” are given, respectively, by X + JX;X + AX and Y + AY. 

Proof. A standard argument about convex hulls shows that 

{JX: X E PF} = {JX: X E conv{Z”: rr E Z7}} = conv{JI”: 7-r E II} 

= conv{J”: 7c E II} = 9:: (3.5) 

proving (a). The same argument combines with Eq. (3.4) to show that 

{ki: Z E Py} = {ki: Z E conv{J_“: 71 t II}} 

= conv{&n: rt E II} = conv{A”: n E II} = P,“, (3.6) 

proving (c). Next, to establish (b), observe that the projection mapping 
Y E [W(‘+“)“P into 1 E [Wnxp by eliminating the 0 row is a linear operator; this 
operator is representable by a matrix, say E E R”‘(‘+“) with EY = 1 for each 
Y E R(lf”)xp. As in Eq. (3.6) we then get that 

(1: Y E Py} = {EY: Y E Py} = {EY: Y E conv{J”: 71 E II}} 

= conv{EJ”: rr E II} = conv{C: z E Z7} = P/. (3.7) 

Finally, the composite projections of Pf’ onto PJ”, of P: 0nto.P: and of Py 
onto PA” are given respectively, by X + Jx i JX, X + A(JX) = k’@X) 
= (kJ)X = AX (here we use Eq. (3.2)) and Y + k’x = AY (here we use 
(3.1)). 0 

Corollary 3.3. Let A E Rkxn and let Ll be a set of p-partitions. Then the partition 
polytope PA” is the image of the generalized transportation-polytope PF under the 
linear function mapping X E Py C Rnxp into AX E Rkxp. In particular, Jbr every 
p-partition rt,A’ = AIX. 

We next obtain an explicit representation, through a system of linear in- 
equalities, for bounded-shape partition polytopes when the data matrix is J. The 
result resembles Lemma 2.1 which concerns the case where the data matrix is I. 

Lemma 3.4. Let L and U be positive integer p-vectors satisfying L < U and 

xy=1Lj<n< CT=, Uj. Then PJ ‘L~u’ ir the solution set of the linear system . 

yf’20 fors=O:l. . . . . iiandj= l,..., p, (3.8a) 
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kk;‘=(Je)y fors=0,1,...,5, 
j-1 

(3.8b) 

(3.k) 

btlith e as the vector (1, , l)T E R”. 

Proof. Trivially, each of the matrices J” for 7c E H(L,‘) satisfies (3.8), hence, the 
convex hull of these matrices, namely PJ (‘.‘I, is contained in the solution set of 
(3.8) which we denote by K. 

Adding variables ‘;” for j = 1,. . >p, replacing (3.8~) by the constraints 
Y/!’ = c;=, Y! and L, < q! < Uj for j = 1,. . . :p and adding the constraint 
CT=, q? = Ci=O(Je)s = n, th e mear system (3.8) is expanded to a network flow 1’ 
problem with integer lower and upper bounds on arc-flows (see Fig. 2); in par- 
ticular, standard results (that rely on the fact that the constraint matrix of the 
defining linear system is totally unimodular) assure that the polytope associat- 
ed with the network flow problem has integral vertices (see Schrijver, 1986). 
The constructed expansion defines a one-to-one lineur map from K onto this 
polytope, under which vertices are mapped onto vertices, and we conclude that 
all vertices of K are integer matrices. 

Let Y* be a vertex of K; it then follows from the above paragraph that Y’ is 
an integer matrix. For each s=O;l, . . . . ii, let H,={t=l,..., a: A’=k”}: 
these sets partition N and for each s, Cyz, (Y’): = (Je),s = /HJ. The latter to- 
gether with the integrality of Y* implies that for s = 0, 1. ? ii, there exists a 
(not necessarily unique) partition of H,_ into sets cry,, . . , CT+ such that 
10.~~ 1 = (Y*)I. For j = 1,. . . ,p, let rc, s UfzO g,,. It follows that ?I], . . n,, 

Fig. 2. 
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partition N; also, for j = 1,. . . ,P, bjl = C”, IQ = C:&‘*): so (Eq. (3.8~)) 
implies that Lj < lnjl < Uj. Thus, 7~ E n @auf. Next, for s=O,l,..., ii and j= 

1,. . ,P,C~~~,P); = bs,l = (Y*):, h ence, (.I”): = (JP)Js = CtCH, (I”): = (Y)i, 

implying that Y’ = J” E Py,“). So, each vertex of K is in P’,‘). By another 
standard result, K is the convex hull of its vertices, implying that K is contained 
in PylU’. 0 

The explicit representation of P’%‘) in Lemma 3.4 does not generally extend 
to Py,‘); specifically, when zero vectors exist, they have to be accounted for the 
lower and upper bounds on the cardinality of the parts. But, part (b) of Lemma 
3.2 shows that P’,U’ is a projection of P’,‘). When A has no zero column, 
(Je)O = 0 and all solutions of (3.8) have Y/ = 0 for j = 1,. . . ,p; by eliminating 
these variables, we get from (3.8) a characterization of Py,U). 

The next theorem provides three necessary and sufficient conditions for vec- 
tors corresponding to partitions to be vertices of bounded-shape partition 
polytopes, without the assumption that A’s columns are nonzero and distinct. 
The three conditions look cumbersome and repetitive, but, they have distinct 
uses. Condition (b) extends the uniqueness of the representation of vertices 
when A’s columns are nonzero and distinct (condition (b) of Theorem 3.1), 
while condition (d) explains the potential degrees of freedom in multiple repre- 
sentations of extreme points of the partition polytopes (see the discussions fol- 
lowing the theorem and Corollary 3.6). Conditions (c) and (d) concern the 
polytopes Py,U’) and P,(L,‘) which have explicit linear inequalities representa- 
tions (Lemma 2.1 and Corollary 3.3 

) 
and are therefore useful for computable 

tests; in fact, the representation of PJL.‘/) is used to establish the (most difficult) 
implication (a) * (c). 

Theorem 3.5. Let A E Rkxn, let L1, . . . , Lp,, U1, . . . , Up be positive integers 
satisfying L < U and CT=, Lj 6 n 6 c$ Uj, and let 71 E Il(L,U). Then the 
following are equivalent: 

(a) A” is a vertex of Pf,“), 
(b) {Z E Py? ki = A”} = {J”} and J_” is a vertex of Py”/), and 
(c) {Y E P:“,“‘: AY =A”} = {Y E Py.“): Y = J_“} and s”is a vertex of Py’“), _ 

and 
(d) bTL :,pr(L,u): AX = A”} = {X E P,@“): LX = J_“} and J_” is a vertex of 

I . 

Proof. (a) + (c): Suppose A” is a vertex of Pf’“‘. To see that 
{Y E Pj% 1 = J_“} G {Y E Py’“): AY = A”}, let Y E Py’(/) satisfy 1 = J’. 
It then follows from Eq. (3.1) and Eq. (3.4) that AY = iI= k’s” = A”. To see 
the reverse inclusion, let Y E Py’“” satisfy 2 Y = A”. Consider the network flow 
(with integer lower and upper bounds on arc-flows) expansion of the linear 
system (3.8) as described in the proof of Lemma 3.4; see Fig. 2. Lemma 3.4 and 
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its proof show that Py’“’ . IS m one-to-one correspondence with the solution-set 
of this network flow problem with vertices mapped onto vertices. Thus, we may 
and will identify vectors in Py,‘), that is, solutions of (3.8) with their 
expansion to solutions of the network flow problem; in particular, this is the 
case for Y and J”. Also, a circuit z is a nonzero, normalized, minimal support 
solution of the (homogenous) system 

ez; = 0, 
/=I 

z; - 24.-O forj= l,..., p, 
3=0 

(3.9a) 

(3.9b) 

P c z{=O fors=O,l,..., ii, (3.9c) 
j=l 

where normalized means that (Izll, = 1 (with 11 I/m denoting the 1, norm) and 
minimal support means that the set of nonzero variables of no solution of (3.9) 
is strictly contained in that of z. Standard results show that the coordinates of a 
circuit z are all - 1,O and 1 and that each node of the network presented in 
Fig. 2 appears in either 0 or 2 indices corresponding to nonzero coordinates 
of z. Also, each column of a circuit z hasoat most tvvo nonzero elements which 
can take only the values -1 and 1; as A = 0 and A , . ,A” are nonzero and 
distinct, it follows that 

circuit z satisfies ;z = 0 if and only if z = 0. (3.10) 

As Eq. (3.9b) determines the zy’s of a circuit z from the remaining coordi- 
nates, we identify such a circuit with its projection z E Rnxp. 

As A” is a vertex of Pf,“) , A” is the unique maximizer over Pfsu) of some lin- 
ear function; let such a linear function be represented by the matrix C E Rkxp. 
Also, as Y and J” are solutions of the network flow problem, a standard result 
about network flows (e.g., Denardo, 1982 p. 99) implies that Y -J” can be de- 
composed into a sum Cy=, p,z’ where for each t = 1, . . , q, z’ is a circuit of the 
network flow problem, p, is a positive number and J” + j3,z’ is a feasible solu- 
tjon of the network flow problem, that is, J” + /?,ti E Py,‘), and by Lemma 3.2, 
AJ” + &A2 = A(J” + &z’) E PA (‘L’) Now Eq. (3.3) and the unique optimality . 
of A” over Py3u’ under the linear function represented by C implies that for 
t= I,... ,q, (C,A”) B [C,;J” t &h) = (C,A”) + /$(C,k) with equality 
holding if and on!y if AJ” + /I42 = A”, that is, (C. Af) < 0 with equality hold- 
ing if and only if AZ’ = 0, and by Eq. (3.10) this is the case if and only if Z’ = 0. 
As we are assuming that AY = Aa and Y = J” + CR1 ptz’, we have that (C, A”) 
= (C:AY) = (C,AJ” +c;=, &Az’) = (C,A”) + c;=, &(C, AZ’ ) < (C. A”); 
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it follows that the inequalities in the above string hold as equalities. Thus for 
t= l,... , q, (C, ,&) = 0 and consequently z’ = 0. Thus r = J_” + CR1 
&$ = J_“. 

It remains to show that J_” is a vertex of @“I. Indeed, assume that J” has a 
representation J” = j3Zi + (1 - p)Z2 for some 0 < B < 1 and Z' , Z2 E Py”/), 
and we will show that Z’ = Z2 = J”. By Eq. (3.4) A” = kJR, and by Lemma 
3.2 ki’ and ki2 are in Pf,‘). As A” is assumed to be a vertex of Pf,‘) and 
A” = k’s” = /?ki’ + (1 - p)ki2, we conclude that A” = ki’ = ki2. By part 
(b) of Lemma 3.2 there exist matrices Y’ and Y” in Pp.‘) with 1’ = Z’ and 
x2 = Z2, and Eq. (3.1) implies that AY’ =ix’ =ki’ =A” and 2Y’ =2x2 
= AZ2 = A”. Hence, the established conclusion {Y E PF.“‘): >Y = A”} = 
{Y E Py: I= p} implies that Z’ = _si’ = p and Z2 = x2 = I”. 

(c) + (b): It suffices to show that if {Y E Py”):iY = A”} = 
{Y E Py? jf = r}, then {Z E Py”‘): ki = A”} = {J_“}. So, assume that 
the first equality holds. By Eq. (3.4), k’s” = A”; as J” E Py’“), it follows that 
J” E .(z E Py? ki = A*}. To establish the reverse inclusion let Z E Pf.‘) sat- 
isfy AZ = A”. It then follows from part (b) of Lemma 3.2 that Z = Y_ for some 
Y E P@.“). for such Y we have from Eq. (3.1) that 2Y = iI= ki = A” and, by 
assumption, this implies that 1 = J”, that is, Z = I= J_“. 

(b) + (d): From Eqs. (3.2) and (3.4), if X E PF,‘) and JX = p then 
AX = (k’J)X = k’(JX) = ,@ = A=. So, {X E P,(L+ JX = s”} C {X E P,(L’“): 

AX = A”}. Thus, it suffices to show that if {X E P,(L,‘): JX = p} c 
{X E Ppc AX = A”} then there exists a matrix Z E Py,“) with k> = A” and 
Z # J”. So, suppose that X E P,(L’“) satisfies AX = A”and JX # p, and let 
Z s JX. Then Z = JX #J-y. and by Lemma 3.2 and Eq. (3.2), respectively, 
z = JX E Pys”) and AZ = A(JX) = (AJ)X = AX = A”. 

(d) + (a): Suppose condition (d) holds. We will assume that A” is not a ver- 
tex of Pf’“’ and establish a contradiction. From Proposition 1.1, each vertex of 
P@“) is in the set {A”: n E II} and a standard result assures that A” has a rep- 
kentation as a convex combination of vertices of Pf.“). Hence, there exist 
partitions rc’ , . . . ,714 in II and positive coefficients czl, , clq which sum to 1 
such that A” = Cyzl cqA” and each A”’ is a vertex of Pf,‘). As A”’ = AZ”’ for 
t = 1, . , q, implying that A” = cr=, arAn’ = c:=, a,AZXt = A(CT=, QZ”‘). As 

P(L’u) is convex, X = CT=, QZ~’ E P,(L)‘). So, X E P,(L*“) and AX = A”; hence, 
cbndition (d) implies that JX = J”, that is, J_” = JX = J(c;=, QZK’) 

= Cbi txlJZn’ = CTz1 QJ_R’. As J_” is assumed to be a vertex of Pyx”), as all 
the tll’s are positive and as all the J”‘s are in PFxu), we conclude that for 
t= l,... , q, J_“’ = J_” and therefore A7 = kj” = k’p = A”. As each A”’ is as- 
sumed to be a vertex of PL (w) whereas A” G not, we reached a contradiction 
which proves the asserted implication. IJ 

The equivalence of conditions (a) and (d) in Theorem 3.5 shows that for 
multiple representations of vertices of Pfxu) in the form AX where 
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X E P,(L’u),JX is unique. Restricting this condition to vectors associated with 
partitions we get the following corollary of Theorem 3.5 which extends Propo- 
sition 1.2 to situations where A’s columns may include repeated vectors and/or 
zero vectors. The corollary shows that the freedom of selecting a partition cor- 
responding to a particular vertex of F’f,U) reduces to the exchange indices as- 
sociated with common vectors and to the shift indices associated with the 
zero vector. 

Corollary 3.6. Let A E Rkxn, let LI.. ,Lp! UI,. . . Up be positive integers 
satisfjiing L < U and C,“=, Lj < n < C,“=, Uj, and let V he a vertex Of qjL."j. Then 
J_” coincide-for partitions II E lIiTIL.c’) w’ith A” = V. 

Proof. The implication (a) + (b) in Theorem 3.5 implies that if V = A” = A”’ 
for 71,~’ E n, then J_” = J_*‘. 0 

Condition (c) of Theorem 3.5 is next used to describe a test for vectors as- 
sociated with partitions to be vertices of given bounded-shape partition poly- 
topes. An alternative method is described in Hwang et al. (unpublished 
manuscript), and a test for vertices of partition polytopes determined by arbi- 
trary shape-constraints (not necessarily through lower and upper bounds) are 
provided in Hwang et al. (submitted). 

Testing ij’a vector A” is a vertex of' the bounded-shape partition polytope: Let 
A: L? U and rc be as in Theorem 3.5. Our test for determining whether or not A” 
is a vertex of F$“‘) has two parts. 

The first part of the test determines whether or not J_” is a vertex of F’jL.“. 
We observe that J” is a vertex of PJ (‘.‘) if and only if for every representation 
of _L” as i (Y’ + Y’) with Y’ and Y” in Pp.G’) we have that Y’ = Y”. This condi- 
tion holds if and only if for each s = 0: l! , ii and .i = 1: .p the maximum 
of (Y’ - Y”): over Y’ and Y” satisfying Y’ E P:““, Y” E PjL”‘) and 
Y = 4 (Y’ + Y”) is zero, which is verifiable by solving Zp linear programs where 
each-has fip variables and 2(ii i-p) + fip constraints. When A has no zero col- 
umns, J = J_ and a test for being a vertex of F’y’“’ = F’jL,‘) can be developed 
from the explicit representation of PjL’L” available from the Lemma 3.4. 

The second part of the test determines whether or not 1 = J” for each matrix 
Y satisfying Y E PjL”” ” and AY = A”. In view of Lemma 3.4 (&h the expansion 
discussed in the proof of the lemma), the assertion that Y E Py”’ is character- 
ized by a linear system having (ii + l)(p + 1) variables, (ii + 1) +p constraints. 
nonnegativity constraints and lower and upper bounds on p variable; also, the 
requirement 2 Y = A” reduces to another kp constraints. Testing whether or not 
each solution Y to the joint system satisfies I= J” can be accomplished by max- 
imizing and minimizing I’,’ for j = 1, . . . , p and s = 1. , ii over the joint sys- 
tem, that is, by solving 2Fip corresponding linear programs. 
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The above method for testing whether or not a vector A” is a vertex of a 
bounded-shape partition polytope depends on condition (c) of Theorem 3.5 
which reduces to condition (b) of Theorem 3.1 when A’s columns are nonzero 
and distinct. We observe that conditions (c) and (d) of Theorem 3.1 yield alter- 
native computational methods under the restricted assumption of that theo- 
rem. Indeed, condition (c) concerns solvability of a (sparse) linear system 
with np (0, 1}-variables and (n + l)(k + 1) equality and weak inequality con- 
straints, and condition (d) concerns solvability of a linear system having 
(k + 1)~ variables and (p - l)n strict inequality constraints. Each of these tests 
is obviously polynomial in k, R and p. 

4. Vertex characterization 

In this section we tighten the necessary condition of Proposition 1.3 for be- 
ing a vertex of a constrained-shape partition polytope to obtain a condition 
which is both necessary and sufficient. The result extends Theorem 5 of 
BHR by relaxing the assumption that the columns of A are nonzero and dis- 
tinct; see Theorem 3.1. Our analysis is carried out in two steps. First, we tighten 
the necessary condition of Proposition 1.3 to obtain a stronger necessary con- 
dition, then, we modify this tighter condition to obtain a condition which is 
both necessary and sufficient. 

We recall that argmaxXeA f(x) refers to the set of maximizers of the function 
f(.) over A. 

Theorem 4.1. Let Ll,. . . ,Lp, VI,. . . , Up be positive integers satisfying L < U and 
ziieLj 5; < iFTz, Uj, let Il be the set of I’(LJ)-shape partitions, let z E IZ 

vertex 
NS E {A”: u E qa” {AU: 

of Pfl”’ and for T,SE {l,...,p} let 
u E 71,). Then for some matrix C E Rkxp and vector 

a E Rp, 
(a) a, < 0 for r = 1, . . . , p satisfying L, < Inr(, 
(b) a,. 2 0 for r = 1, . . . ,p satisfying U, > 1~~1, 
(c) (Cd- 1?)~,4” < a, - a, for distinct indices r, s E { 1,. . . ,p} and u E 7c,, 

(d) if (C” - C’)TA” = a, - cl, for distinct indices r, sE {l,...,P) and 
UE~., then: 

(i) Au E Ars if A” # 0, and 
(ii) A” = 0, (n,l > L, and lzS,l < US if Ars = 0. 

Proof. Our proof modifies the arguments proving the necessity of the condition 
characterizing a vertex of bounded-shape partition polytopes as given in 
Theorem 5 of BHR under the assumption that the columns of A are nonzero 
and distinct. 
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As A” is a vertex of Pf it is the unique maximizer over P,” of some linear 
function, say one that is determined by the matrix C E [Wkxp; so 

(C,X) < (C,A”) for each X E F’,” \ {A”}. (4.1) 

As in BHR, consider the linear assignment problem with indices 0, 1, . . . p and 
cost-coefficients 

I f m~~x{(C’ - C’)TA” if I’,S 3 1, 

d,, = -cx 

i 

if I’ = 0,s 3 1 and lrrV1 = L,. 
(4.2) 

--x if s = 0,r 3 1 and /7c,1 = U,.. 

0 otherwise. 

Circuits (with respect to this problem) are then nonzero, normalized, minimal 
support solution of 

$& =0 fors=O,l,...,p (4.3) 
r=O 

and 

2ZY., = 0 forr=O,l,..., p, (4.4) 
V=O 

where normalized means that max{ Iz,I: r,s = 0, 1, . . . ,p} = 1 and minimal 
support means that if z’ # 0 satisfies Eqs. (4.3) and (4.4) then the set of nonzero 
coordinates of z’ is not strictly included in that of z. 

With I as the (p + 1) x (p + 1) identity, it is shown in BHR that under the 
assumption that the columns of A are nonzero and distinct, if z is a circuit with 
Z+z>O, then 

(4.5) 

and when (4.5) holds as equality, z., = 0 for all indices r,s = 1,. . :p. While 
the arguments of BHR establishing the inequalities of (4.5) are applicable when 
the assumption that the columns of A are nonzero and distinct is relaxed, the 
conclusions from equality in (4.5) need not hold and such situations are exam- 
ined in the next paragraph. Still, as in BHR, the (weak) inequalities of (4.5) suf- 
fice to show that the identity is optimal for our linear assignment problem, and 
further, Linear Programming Duality and the Weak and Strong Complement- 
arity Theorems imply the existence of a vector SI = (‘x0. CI~ : , a,) satisfying (a), 
(b) and 

& G u, - a., for all distinct indices r, s E { 1, ,p}, (4.6) 

with strict inequality holding in (4.6) if and only if z, = 0 for all circuits z 
satisfying (4.5) with equality. 
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We next examine circuits z for which I + z > 0 and (4.5) holds as equality. 
Let z be such a circuit. As in BHR, it follows that there exist distinct indices 
rl,r2,. . ,rq where q > 2 such that, with r,+i = r-1, 

( 

1 for (r,s) = (r,,r,+l), t= l,..., q 

zrs = -1 for (r,s) = (rt,ry), t = 1,. . . ,q; (4.7) 
0 otherwise. 

Without loss of generality assume that q = min{r,: t = 1, , q} and for 
t= l,... , q with r, 3 1 let ut be a maximizer or (Cc+’ - Crl)TA” over u E x,,. 
Now, if (4.5) holds as equality and r1 3 1, the arguments of BHR yield a par- 
tition rr’ obtained by cyclic shifts of the vectors A”1 ,A”>, . . . ,A+ with 
(C,A”) = (C,A”). It then follows from (4.1) that A” = A”, implying that, with 
uq+l - ul, Au1 = A”+‘, for t = 1, . , q; in particular, in this case the common 
vector A”’ = A”2 = . . = A!+ is in l-J;=, (Ir’,rr+l. Also, if (4.5) holds as equality 
and t-1 = 0, the arguments of BHR show that L,, < lx,> 1, ITC,.~/ < Uvq and the ex- 
istence of a partition rr’ obtained by shifts of the vectors A”*, A”3, . . , A”yml, with 
(C,A”) = (C,A”). F rom (4.1) we then have that A” = A”, implying that Au2 = 0 
and Au! = A”!+( for t = 2,3,. . ,q - 2. So, we have that Lrz < ITC,.~, l-rvqI < Urq 
and O = A”’ = A”3 = . . . = A+‘. in particular 0 E n’1’ nr’n+i. t-2 Of course, some 
of these conclusion are vacuous if q = 2 or if q = 3. 

Let r,s E {I!. . ,p} with r # s and let u E 71,. The definition of the &‘s in 
Eq. (4.2) and (4.6) then imply that (C’ - C’)A” <d, < c(, - a,, establishing 
(c); further, if (C’ - C’)A” = cx, - ccs, then u E argmax,,,+((e - C’)A” and 
d, = cc, - cc,. We establish (d) by further analysis of the case where 
(CS - C’)A” = CI, - c(, and considering two cases: 

Case I: Ars # 0. In this case there exist w E n, and v E 71, with A” = A”. As 
we already demonstrated that u E argmax,,,r(@ - C’)A”, we have that 
(CS - C’)A” 3 (C” - C’)A”’ = (C” - C’)A”. We will prove by contradiction 
that A” = A“. Suppose A” # A”. Let G be the partition obtained from 7c by 
switching v from rcY to rc, and u from rc, to rc,. Then 0 E ZZ 
and A” = A” + (A” - A”)(& - er)T #A”. So, A” E Pa \ {A”}, and (4.1) 
implies that (C,A”) > (C,A”) = (C,A” + (A” -A”)(8 - er)T); hence, 

0 > (C, (A” - A”)(e” - er)T) = (C(G? - e’), (A” -A”)) 

= ((Cs - C’), (A” -A”)) = (Cs - C’JTA” - (Cs - C”)TA”, 

in contradiction to the assertion (CS - C’)A” 2 (C” - C’)A”. The contradiction 
proves that A” = A”, in particular, A” E AK’. 

Case II: A” # 0. We have already concluded that d, = a, - cc, and therefore 
there exists a circuit z that satisfies z + Z 2 0, (4.5) with equality and z, # 0; it 
then follows that z has the representation (4.7) further, without loss of gener- 
ality we assume that rl = min,=i....,~ r,. The assertion ii” # 0 combines with the 
analysis of equality in (4.5) to imply that necessarily q = 3, rl = 0, 
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(7,s) = (YZ.O)> I% > L, and 17~~1 < U/, and A”’ = 0; further. as u E arg- 
max.,E,r(C.’ - C’)A”; A”’ can be selected as A” in the construction of the parti- 
tion 7~’ from 71 and z, implying that A” = A”’ = 0. 0 

It is easy to verify that the necessary condition for being a vertex of a bound- 
ed-shape partition polytope asserted in Theorem 4.1 implies the necessary con- 
dition of Proposition 1.3 (which applies to the more general constrained-shape 
partition polytopes). The necessary condition of Theorem 4.1 is next modified 
to obtain a condition which is both necessary and sufficient (cf., Theorem 5 of 
BHR). The task is accomplished by tightening the conclusions from equalities 
(C” - C”)A’ = 2, - CI, in (d). But, the new condition lacks a simple geometric/ 
algebraic motivation of the (necessary) condition of Theorem 4.1; further, ver- 
ification of the polynomial test for vertices described in Section 3 in simpler. 

Theorem 4.2. Let LI ~ , Lp. (/I, . . Up he positire integers satisfying L < U und 
J$, L, < n 6 Cyz, Uj, let Il be the set qf r (L.C’)-shape partitions and let 71 C Ll. 
Then A” is u 1:erte.x of’ 9,” if and on/y if-for some matri.v C E Rxxl’ and mctol 
x t w. 

(a) IX,- < 0 ,for r = 1~. . ,p satisfying L, < /xJ. and 
(b) cr,.>O~forr=l,...,psatisjjvingU,.>~n,.l; 
(c) (C - C’)‘A” < ry - M, for distinct indices t*‘. s E { I ~ , p} and II E 71, : 
(d, ) if’ q 3 2. rl , . rq are distinct indices in { 1. . p} , ~1. ~ uy are indices 

in {l,... _n} with u, E 71, and (with r,+l = 1) 
(@;-I - Crr)TA1l~ = M,-~ - u,,_, f& t = 1.. . .q: then A”1 = A”’ = = A’%; 

(dz) if‘ q z 2.~1,. . . rq are distinct indices in { 1. ,p} withl,, > In,., / and 
U,.<, < /z’.~~ I ( and ~1, . . . % r/,-l are indices in { 1. . , n} with u, E n, and 
(@;+I - Crr)’ A”) = I, - c(?!+, for t = 1.. q - 1. then A”1 = A”’ z :Z 
A% ’ z 0. 

Proof. Necessity: Assume that A” is a vertex of PA” and C and CI are constructed 
as in the proof of Theorem 4.1. In particular, (a)-(c) are satisfied. the 
coefficients & for r,s = 1, ,p given by Eq. (4.2) satisfy (4.6), and (from the 
arguments of the proof of Theorem 4.1) if z is a circuit (for the corresponding 
assignment problem) with I + z 3 0. with Eq. (4.7) in force and with equality 
holding in (4.5), then: 

(i) if t-1 > 0 then argmax,,,?, (fi+l - C’I)~A” is invariant of t = 1~. . y and 
the common set consists of a single element, and 

(ii) if rl = 0 then argmax,,,, (CQ+l - C”I)~A” = (0) for t = 1, , q - 1. 
Supposeq32,r,!..., ry are distinct indices in { 1. .p} and ul, . . uq are 

indices in { 1~ , n} with uI E ic, and (with r,,,, = l)(p+l - C’i)T,4tfl = 

% - CG,., for t = l! . , q. For each t, (c) and (4.6) show that 
(C-+l - C’.I)‘A”i 6 maxXE,,, (Crf-’ - C’oTA” = c&.,,.,+, < rr, - T,_, ,(@-I-’ ~ C’Q)TA”’ 
and therefore A”’ E argmax,,,, (CrlL’ - C’i)TA’ and d,.,.,., = x,, - x,.,+, It 
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follows that the vector z defined from ~1,. . . , rq by the right-hand side of 
(Eq. (4.7)) is a circuit satisfying 

P P 9 

cc drszrs = c 
dr,,rl+, = ear, - a,,, = 0, 

r=O so I=1 I=1 

As z is a circuit satisfying (4.5) with equality, assertion (i) of the above pa- 
ragraph shows that argmax,,,rl (P+l - C’I)~A” is invariant of t = 1, . , q and 
the common set consists of a single element, hence, the fact that 
AR E argmax xEn,, (C’t+l - CroTA” for t = 1, . . , q implies that A”’ = A”2 = 
. . . = A’q, and the proof of (d), is complete. 

A similar line of argument applies for the case considered under d-2 except 
that in order to obtain a circuit of the assignment problem it is necessary to 
augment rl, . . . , rq with r,+i = 0. 

Sufikiency: Suppose C and a satisfy conditions (a)-(d). We show that A” is a 
vertex of Pf by showing that (C,X) < (C, A”) for each X E Pf and equality 
holds only if X = A”. 

By Lemma 2.1, PI” is the solution set of (2.5). Adding variables q? for 
j= l,...,p, replacing (2.5~) by the constraints q! = Cf=, qj and 
Lj 5 $? < Uj for j = 1,. . . ,p and adding the constraint CT=, 59 = 
CzZo(Je)s = ~1, th e mear system (2.5) is expanded to a network flow problem 1’ 
with integer lower and upper bounds on arc-flows (see the more detailed con- 
struction in Lemma 3.4 and the corresponding Fig. 1 which applies to Py rath- 
er than P,“); as the augmented variables are uniquely determined by the original 
ones, we identify feasible flows of the network and elements in PI” (see the 
proof of Theorem 3.5 for details that apply to P$‘). We consider circuits of 
the network which are nonzero, normalized, minimal support solution of 
(2.5) (see the proof of Lemma 3.4 and Theorem 4.1 for more detailed defini- 
tions of circuits for other network flows). A circuit z for which I” + z E P,!’ 
may have one of two representation. It is either identified with sequences 
r-1,. . . , r4 of distinct indices in { 1, . . ,p} and uI, . . . , uq of distinct indices in 
{l,... ,n}suchthatq>2, ~(~n,fort=l,..., qand,withr,+,=l, 

Z UT = 

( 

1 for (u,r) = (ut,rr+l), t = 1,. . ,q, 

-1 for(z4,r)=(Ut,r1), t=l,..., q, (4.8) 
0 otherwise, 

or with sequences r-1,. . . , r4 of distinct indices in { 1, . . . ,p} and uI, . . . , ql of 
distinct indices in {l,...,n} such that 922, &En, for 
t= l,...,q- 1, lx,,1 >L,,, 1~~~1 < ur, and 

1 for (u, r) = (u,, Y,+I ), t = 2, . . , 4, 

Z ur = -1 for(U,r)=(Ur,r,), t=l,..., q-l, (4.9) 
0 otherwise. 
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In particular, each such a circuit corresponds to a unique partition G(Z) with 
I”(‘) zz 1” + z. 

A”! (&i I _ ,b)T 
A circuit with representation (4.8) satisfies AZ = CT_, 
and 

and similarly 
‘4% (e”-’ _ &i)T 

a circuit with representation (4.9) satisfies AZ = CT:, 
and 

(C.Az) = 
9-l Y-1 

C(C” - C”)TA”l e E(&! - a,,.,) = x,, - xry < 0, (4. I I ) 
1=I I ~1 

where the last inequality follows as (a) with /z,, 1 > L,, imply that r,., 6 0 and (b) 
with lrcrql < U,.(, imply that M,.~ > 0. We conclude that if (C,Az) = 0, then 
((C% - C).‘)TAU, = z, - a,,_, for all relevant indices t, and therefore (d) implies 
that AZ = 0. So, AZ =‘O for each circuit z satisfying (C, AZ) = 0. 

Let Y E p,“. By Corollary 3.3 Y = Ax for some X E P/“. Next, a standard 
result about network flows (used in the proofs of Lemma 3.4 and Theorem 
4.1) assures that X - I” can be decomposed into a sum CR, Bk2 where for 
each k = l? . , q, 2 is a circuit of our network flow problem, pk is a positive 
number and Z” + ok2 E P,“, the latter implying (again, by Corollary 3.3) that 
A” + &Azk = A(I” + /@) E l’4 “. From Eqs. (4.10) and (4.11) we have that 
(C, Ap) < 0 for each k, implying that (C, A” + fikAti) 6 (C, A”); hence, 
(C, Y) - (C, A”) = (C, A(X - I”)) = Cb, Pk(C, AZk) < 0 with equality holding 
only if (C. A2) = 0 for each k. As the above paragraph shows that A,” = 0 
whenever (C, AZk) = 0, we conclude that if (C. Y) = (C, A”) then Ati = 0 for 
each k, implying that Y = AX = A(I” + Cz_, /i&) = A” + cz:, /?,A2 = A”. 
So, indeed, we established that (C, X) < (C.A”) for each X E Pi’ with equality 
holding only for X = A”. 0 
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