SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 28(8), 799-818 (10 JULY 1998)

A Domain-Independent Software Reuse
Framework Based on a Hierarchical
Thesaurus

hsien-chou liao, ming-feng chen and feng-jian wang
Department of Computer Science and Information Engineering, National Chiao-Tung
University, 1001 TaHsueh Road, Hsinchu 30050, Taiwan, R.O.C.
(email: {hcliao,mfchen,fiwang@csie.nctu.edu.tw)

SUMMARY

Software reuse is an effective way to improve software productivity and quality. Software libraries
are getting bigger, while most of them, such as those for object-oriented languages, use simple
but somewhat ineffective classification methods. These libraries typically provide search aids for
novices, but not for experts. They are not flexible enough to adequately serve users with different
abilities. In this paper, a Software Reuse Framework (SRF) for overcoming these drawbacks is
proposed. Based on a built-in hierarchical thesaurus, the classification process can be made semi-
automatic. SRF is a domain-independent framework that can be adapted to various libraries.
SRF also provides four search levels to serve users with different skill levels. Two sample SRF
systems* are implemented, one for Smalltalk-80 and the other for MFC 4.0 (Microsoffl Foundation
Class) libraries. 0 1998 John Wiley & Sons, Ltd.

key words: software reuse; faceted scheme; hierarchical thesaurus

INTRODUCTION

In the past 30 years, software productivity has been growing steadily. Only 15 per
cent of existing software programs are domain-specific, 85 per cent are general in
nature, i.e. up to 85 per cent of existing software programs have reuse potential in
other domaind? During software development, the process of software reuse can
be classified into four phaseabstraction selection specialization and integration®

The selection phase enables users to locate desired components. Library classification
and search processes facilitate the location of components. Search techniques for
component classification and search can be divided into the following four categories:
keyword searchfull-text retrieval structured classification schemand hypertext*

Many approaches to improving classification and search processes have been
proposed,® but most of them have two shortcomings: (1) they usually are labor-
intensive in the classification process and cannot be used for different libraries; and
(2) they provide search aids for novices but not for experts.

*The sample systems can be accessed from the anonymous FTP site ‘dssl.csie.nctu.edu.tw’ under the directories
‘/download/SRF/Smalltalk’ and ‘/download/SRF/MFC'.

CCC 0038-0644/98/080799-20$17.50 Received 15 July 1996
[0 1998 John Wiley & Sons, Ltd. Revised and Accepted 19 February 1998

800 h.-c. liao, m.-f. chen and f.-j. wang

The faceted approach is a reuse approach that is widely accépteth the
faceted scheme, a thesaurus provides vocabulary control, and a conceptual distance
graph is used to evaluate the similarities between terminology of facets. But con-
structing a thesaurus and a conceptual distance graph is labor-int&hsive
conceptual distances are different for novices and for experts; hence, the evaluated
result based on the conceptual distance graph with a single level may not be suitable
for both novices and experts.

In this paper, a domain-independent Software Reuse Framework (SRF) is proposed.
SRF is based on a faceted scheme modified from the one presented in Prieto-Diaz
and Freemaf? In SRF, an existing thesaurus is transformed into héerarchical
thesauruswith a four-level structure. This hierarchical thesaurus incorportes the
thesaurus and conceptual distance graph of the original faceted scheme. SRF also
provides a semi-automatic classification process based on the hierarchical thesaurus,
and it enablesynonymy generatiorwhich operates on the hierarchical thesaurus to
provide a similarity-based search mechanism with four distinct search levels to satisfy
users with different ability levels who use the library. The synonyms of words in
queries are collected via synonymy generation. Uibe frequenciesf words represent
their similarities to concepts, and are accumulated via user feedback during searches.
The synonymity weightbetween words and synonyms, derived from use frequencies,
are the bases upon which SRF compusawilarity degreesbetween queries and
software components. Finally, the software components returned during searches are
listed according to their similarity degrees to reduce the need for further searching.
SRF is domain-independent and can be used for different libraries. Two prototypes
have been implemented in MS-Windows to demonstrate SRF characteristics.

AN OVERVIEW OF SOFTWARE REUSE FRAMEWORK—SRF
SRF is proposed to meet the following requirements:

1. Efficiency classification should be semi-automatic at least, and should be
practical for use with different libraries.

2. Serves users with multiple skill levelssers may be novices, moderately skilled,
or even experts. Novices usually need search processes that provide all possible
components. Conversely, experts need only search mechanisms that provide
specific components. Search processes must be usable not only by novices, but
also by experts as well.

SRF contains six elements: laerarchical thesaurusa classification cataloga
special-word dictionary, thesaurus pre-processprgcessclassificationprocess, and
searchprocess. The SRF data-flow diagram is showrFigure 1

As Figure 1 shows, a thesaurus first undergaégsaurus pre-processingluring
which plain text from the input thesaurus is analysed and transformed into a
hierarchical thesaurusThe special-word dictionaryis used to record all resulting
special words and their corresponding words in Hierarchical thesaurusSpecial
words are those that do not exist in the hierarchical thesaurus, but are used in the
classification process: they include jargon, proper nouns, abbreviations, and so on.
A corresponding weight represents the distance between a special word and its
corresponding word. Thelassification process uses the hierarchical thesaurus and
special-word dictionary to generate facet descriptors for software components. A

a software reuse framework 801

Software
Library
Component
Informatin

User |e

Thesaurus

Plain Text

Special Word —~(Word, Weight)

Thesaurus
Pre-
processing

Classifi-
cation

Facet
Descriptors

h 4
Classification Special-Word
Catalog Dictionary

Hierarchical Thesaurus
»

Query, Search Level

Search

Candidate Components

Figure 1. SRF data-flow diagram

facet descriptor is a component index. All facet descriptors are stored in the
classification catalog.

When a user queries th&earch process, SRF examines the contents of the
classification catalog, hierarchical thesaurus, and special-word dictionary to compute
similarity degrees between the query and candidate components. The candidate
components are then listed according to their similarity degrees.

In SRF, the hierarchical thesaurus is the key element that enables SRF to satisfy
the above classification and search-process requirements. The purpose of classification
is to acquire a set of words that describe the features of a component. Classification
is conducted in three stepgcquisition, Analysisand Clarification. Utilization of
the hierarchical thesaurus in the classification process requires the intervention of
domain experts, mainly during clarification. This classification process can be made
semi-automatic, as described in the section on ‘The SRF Classification Process’ below.

In the search process, a user enters a query and selects a specific search level.
The search levels correspond to the four-level structure of the hierarchical thesaurus
and affect the number of candidate components returned. Users with different levels
of library experience can search on different search levels. Thus, SRF satisfies users
with different skill levels.

THE HIERARCHICAL THESAURUS

Construction

A thesaurus usually abstracts sets of categories from the meanings of selected
words. Each category contains a group of synonyms. Synonyms in categories are
listed according to their parts of speech: noun, verb, adjective, and adverb. Synonyms
of the same type are further grouped according to major semantic definitions to

802 h.-c. liao, m.-f. chen and f.-j. wang

Table I. An example of a thesaurus listing

#298. Relation

N. relation, bearing, reference, connection,
concern, correlation, analogy, similarity.,.
comparison, ratio, proportion, link, tie

V. regard, concern, touch, affect, interest
connect, associate, link

Adj. relative, correlative, cognate
related, connected, implicated, associated,
affiliated
approximating, proportional, proportionate,
allusive, comparable
like, relevant, applicable

Adv. relatively
thereof, about, concerning, anent, whereas

form a collection of paragraphs. An example of a thesaurus listing is shown in
Table 1

The plain text shown inrable | can be transformed into the hierarchical structure
shown inFigure 2

The structure shown irFigure 2 is called ahierarchical thesaurusit has four
levels. The levels from top to bottom are, respectively, category, part of speech,
major definition, and synonym. Interior nodes represent abstract concepts and leaves
represent words. An abstract representation of such a hierarchy is shdviguire 3

Level 4 is called thecategorylevel; it contains all categories in the thesaurus.
Level 3 is called thecluster level and each category leads to four clusters. The
symbols,N, V, Adj, and Adv on this level represent noun, verb, adjective, and adverb
clusters, respectively. Level 2 is called tmetional level, on it, each notion is a
refinement of a node on Level 3. Level 1 is called identity level and contains
all words in the thesaurus.

Synonymy generation

Synonymy generation aims to find synonyms in the hierarchical thesaurus that
have common ancestor nodes (i.e. abstract concepts) with input words. It is carried

#298 {1 Abstract concept
Relation O Word

Adj,y, Advyy,

Vzvx-/ qum lAdeH] ‘Adquxvzln- !Ad"zr/x-zl ‘Ad"zt)x.zJ

Figure 2. A hierarchical example of a thesaurus listing

a software reuse framework 803

Level 4
(Category Level)

Level 3
(Cluster Level)

Level 2
(Notion Level)

e e e et —— e ——. —— — t e ke - - ——— —— -

Level 1
(Identity Level)

C, rcategory e : a set of links from each word
{S}:aset of synonyms in {S} to node on Level 2.

Figure 3. An abstract representation of a hierarchical thesaurus

out in two stepsconcept classificatiomnd synonym collectionConcept classification
means obtaining all concepts on one level for a word. Synonym collection means
returning all (descendent) leaves of these concepts. A word that has more meanings
usually has more synonyms. Let a synonymy generation work for wooth Level

SL. The synonym generation proceeds as follows:

1. Concept classificatiancollects the set ofwconcepts orsL. The result is called
the concept setdenoted asCs (W, SL):

CS(W, SL) ={n | n is an ancestor node of on SL.}

2. Synonym collectiancollects the leaves (i.e. words) that have at least one

concept inCS(W, SL). The result is called thesynonymy setdenoted as
SS(W, SL) :

SS(W, SL) ={w | wis a descendant leaf of, N O CS(W, SL.}

The number of synonyms isS(w, SL) is affected by thesL set. For any given
word W the number ofSS(w, SL) synonyms is reduced level by level (from Level
4 to 1). This allows SRF to meet the requirement of hawijinct search processes
corresponding for users with different skill levelSRF thus provides four search
levels with respect to the levels in the hierarchical thesaurus. The synonomy
generation of a wordvin a query on Level 4 can return at mass(w, SL). Thus,
a query on Level 4 may return most related candidate components, but queries on
Level 1 are thought to use no synonymy generation and return only component(s)
containing query words as their keywords, i.e. those that match exactly. The following
example shows synonymy generation on Levels 3 and 2.

Let the input word be thdink in Table | and let the synonymy generation on
Level 3 explore the synonyms that have concepts similéinko Concept classification

804 h.-c. liao, m.-f. chen and f.-j. wang

collects the conceptdl,os and V,qg as shown inFigure 2 and synonym collection
gets the synonymstelation, bearing, reference,.., proportion, link and tie from
NL,os, @nd regard, concern touch affect interest connect associate and link from
V,es If the synonymy generation is on Level 2, concept classification collects the
concepts N,gs, and V,q5, and synonym collection gets synonynt®mparison,
relation, proportion, link andtie from N,os, and connect associate and link from
V.95 These synonyms are refinements of the noun and verbal concepiskof
Using Level 2 to explordink yields fewer but closer synonyms than using Level 3.
SRF allows users to select any level during search. Users may select the ones
they need according to how familiar they are with the library. Generally, users who
are unfamiliar with the search domain, so-called novices, may choose higher levels
(Levels 3 or 4) to get more candidate components. Conversely, users experienced
with the domain, so-called experts, may choose lower levels (Levels 1 or 2) to get
fewer but more closely related candidate components. When software components
are returned by search processes, those more similar to query words are listed first
to reduce the need for further searching. Thus, SRF is designed to evaluate the
similarity degreesbetween queries and software components. However, software
components are described by sets of words in the classification process, and each
word may belong to more than one concept. To evaluate the similarities between
guery words and software components, SRF must first evaluate the similarities
between words and conceptdse frequencyand synonymity weighaire proposed to
compute these similarities, and are discussed in the next section.

Use frequency and synonymity weight

An SRF query can be viewed as a search for components with one or more
desired concepts. The keywords of software components have their own concepts.
If a concept derived from query words is also a concept of a software component’s
keyword, the software component may be the one needed. In other words, this
concept is common to both the query words and the keywords of the selected
component. Therefore, the common concepts may be the best candidates to represent
the real ideas users want to express in their queries. Let each descendent leaf (word)
of a concept be associated with a value determined byfrégguencythat the leaf
is used as a query word, and the concept is a concept of the selected component’s
keywords. The software components selected by means of the concept having
descendent query words with higher frequencies may be more desirable.

Words can be used for different concepts. A word thus has different use frequencies
for each ancestor concept. Let the use frequency of a wapresenting a concept
C be denoted a®¥JF(W, C). UF(W, C) is added each time a query wowlmatches
a selected component’s keyword. Given two conceftsand C,, W more closely
matchesC, if UF(w, C,) is larger thanUF(w, C,). Similarly, W more closely
matchesC thanw if UF(W;, C) is larger thanur(w, C) .

As mentioned above, synonymy generation is important to SRF’s search process.
In keyword-based search tools, components are returned only when queries (partially)
match component keywords. When synonymy generation is used, components can
be returned when one of their keywords matches one synonym of a query word.
Desired components can thus be returned even when the query words are not their
keywords. Synonymy generation expands the search scope, and queries may return

a software reuse framework 805
- : Level SL

Level 1

Figure 4. A synonymy generation graph for W and S

large numbers of candidate components, which may inconvenience users. Computing
the similarity degrees between returned components and queries to order these
components can reduce user effort. SRF usgsonymity weighto represent the
degree of closeness between a word and its synonym: For a query word, synonyms
having the larger synonymity weights are closer.

When the synonyms of a word are collected via a set of concepts, the closeness
between the word and these concepts are usually different. One possible reason is
that their use frequencies are different. If a concept of high use frequency is selected
during synonymy generation, the synonymity weight of the corresponding synonym
is considered large. The synomymity weight is defined as follows: Suppose a
synonyms of a word Wis collected via synonymy generation on Le&l, w and
S hasn(n =1) common conceptsg, for 1=k=n, the synonymity weight is denoted
as SW(w, S, SL) . A graph showing synonymy generation betwegand S is given
in Figure 4

Let UF(w, C,) be ws kth concept on LevebL, 1=k=n, and SW(w, S, SL) be
the maximum ofUF(w,C,), 1=k=n. When wis the same as, SW(w, S, SL) is
defined asMAX,, a constant representing the maximum synonymity weight. The
equation forsw(w, S, SL) is shown below:

SW(W, S, SL) = Q)
max [UF(W,C,)] if W # S and G, is a common concept
1=k=n on Level SL for W and S
MAX sw otherwise

For example, letw be thelink and S be theconcernin Table L Figure 5 shows

Level 3

Level 1

Figure 5. The synonymy generation for link

806 h.-c. liao, m.-f. chen and f.-j. wang

the synonymy generation fdink on Level 3 . link has two common concepts with
concern onLevel 3 , and thus has two use frequencies{link, N,gg) and UFHIink,

V,og). Let the corresponding frequencies be 3 and 8, and labeled on the links from
link to the common concepts. The synonymity weigiw (link, concern 3) equals

8 from Eg. (1).

THE SRF CLASSIFICATION PROCESS

SRF faceted scheme

SRF uses daceted schemeadapted from Prieto-Diaz and Freenidrtp classify
software components. It includes three parts: a hierarchical thesaurus, a special-word
dictionary, and a classification catalog. The hierarchical thesaurus was introduced
above. The special-word dictionary contains a setstdtements each of which
contains three tuples:

SP — (CWD,CWT)

where SP represents special words not found in the hierarchical thesaurus but used
in the application domain, such as jargon, proper nouns, abbreviations, and so on;
Cwbis a word in the hierarchical thesaurus represenghrgand CwTdescribes how
closely relatedCwbis to SP. CWTis a value between 0 and 1, amWwT= 1 means

that Cwband SP have the same meaning. AP is usually an abbreviation of some
keywords or phrases and may occur in more than one statement, i.e. it may be
described by more than or@wD For example, thesP OS may be described by two
CWB, operationand system Thus, the special-word dictionary contains the statements,
OS — (operation 1) andOS — (system 1).

The classification catalog stores all tfacet descriptordor software components,
where a facet descriptor is a component index used for comparison during the search
process. Each facet descriptor consists of a sdaoét-value pairs A component’s
facet-value pair represents some component characteristics. The pair consists of a
facet valueand afacet-value weightA facet value is a word in either the hierarchical
thesaurus or the special-word dictionary. The facet-value weight associated with a
component represents how well the facet value describes the component. An abstract
representation of the faceted scheme in SRF is showFigare 6 In addition to

Facet, Facet,
P, — (CWD,,CWT,)
: FDSC) | (FV,, FVW), FV,,, FVW),
8P, —* (CWD,,, CWT,)) DLV VW L BV FVW L),
$P, — (CWD,, CWT,)
. . FD(SC,) (FV,,, FVW,) (FV,,,, FVW.,)
SP, —* (CWD,,, CWT. 2 2110 2117 21 217
’ ¢ " 3!) (FVQIT FVWZ\Z)"" (Fv222‘ 222>’“'
i e
FD: Facet Descriptor SC: Software Component
Hierarchical Thesaurus Special-Word Dictionary FV: Facet Value FVW: Facet Vatue Weight

Classification Catalog

Figure 6. An abstract representation of the SRF faceted scheme

a software reuse framework 807

the hierarchical thesaurus and special-word dictionary, the tabl€igare 6 also
represents the classification catalog, in whisi denotes a software component,
FD(SC) denotes the facet descriptor feIC, Fv denotes a facet valug&vwdenotes

a facet-value weight, an@rFv, Fvw) denotes a facet-value pair. The set of facet-
value pairs of a componersG for the facetFacet ; is denoted agFVv, , FVW;)

(FVi2 , FYW,), ..., etc Each column in the table represents the facet-value pairs
in one facet, and each row represents the facet descriptor associated with one
component, i.e. all facet-value pairs for a component.

SRF classification process

SRF’s classification process can be divided into three stagesuisition
Analysis and Clarification. Each facet of a software component’s description is
acquired from the software library. These descriptions are analysed to ecaraai
date pairs SRF clarifies candidate-pair words as follows: each candidate pair is
considered a facet-value pair if listed in the hierarchical thesaurus or special-word
dictionary; otherwise, it is redefined by domain experts to get facet-value pair(s).
These facet-value pairs are collected as component facet descriptors and put in the
classification catalog. Domain experts can also define facet-value pairs and put them
in the catalog. The data flow diagram for SRF’s classification process is shown
in Figure 7

Here the Smalltalk-80 library is used as an example. In Smalltalk-80, a method
is treated as a software component for classification purposes. Three faoetsipn
Object and System-Typeare used to classify software components. A method is

Software
Library

Component Information

Acquire
Descriptions

Descriptions

Analyze
Descriptions

Candidate (Word, Weight)'s
ASpccial Word —(Word, Weight)

Facet
Descriptors

Classification Special-Word
Catalog Dictionary

Clarify
Words

Hierarchical Thesaurus

Figure 7. The SRF classification process data flow diagram

808 h.-c. liao, m.-f. chen and f.-j. wang

classified by analysing its execution functions, the objects it manipulates, and the
functionally identifiable and application-independent modules it has. These facets are
defined in Holm and Maarekand were selected because they are the most likely
ones for users to consider during search processes. The detailed classification process
for the Smalltalk-80 library is discussed below.

1. Acquisition This step acquires software component descriptions. In the
Smalltalk-80 library, the descriptions of three faceEynction Object and
Systerrilype are acquired from the names of methods, classes, and functional
categories of classes, respectively. These names are used as descriptions because
they represent software component indices in current libraries, and are used for
automatic classification her&able Il contains some of the descriptions acquired
from the Smalltalk-80 library.

2. Analysis This step analyses the acquired descriptions to extautidate pairs
The descriptions inTable Il are simply formatted as follows: in System-Type
facet, descriptions are sequences of words in which each pair of words is
separated by a hyphen. In Object facet, descriptions are sequences of concat-
enated words, each beginning with capital letter. In Function facet, descriptions
are the same as in Object facet except for the first word. Word extraction is
done facet by facet, and each word extracted forms a candidate pair with a
weight of 1. Some of the extracted candidate pairs are showhabie IlI.

3. Clarification. This step clarifies candidate-pair words that are not in the hier-
archical thesaurus or special-word dictionary. Here an example is used to show
how clarification is accomplished. Imable Ill, three words,sequenceable’,’,
and =’ need clarification. First, the standard forms of these words are recog-
nized. The wordsequenceables recognized asequenceand the facet-value
pair is defined assgquencel) instead of gequenceablel). The word ‘;’
represents a special operation. Domain experts defined two pmamsma 1)
and Qperator, 1) as representing ‘,’. Correspondingly, the process inserts
in the hierarchical thesaurus, and two statements—,(comma 1) and ‘, —

Table Il. Some acquired descriptions from the Smalltalk-80 library

System-Typé&acet Object Facet Function Facet
Collections-Abstract ArrayedCollection add
Collections-Abstract ArrayedCollection defaultElement
Collections-Abstract ArrayedCollection storeElementsFrom
Collections-Abstract ArrayedCollection e
Collections-Abstract SequenceableCollection ,
Collections-Abstract SequenceableCollection =

Collections-Abstract SequenceableCollection copyFrom
Collections-Abstract SequenceableCollection copyReplaceAll
Collections-Abstract SequenceableCollection copyReplaceFrom
Collections-Abstract SequenceableCollection e

Collections-Arrayed Array

Collections-Arrayed ByteArray

Collections-Arrayed IntegerArray

a software reuse framework

809

Table lll. Some extracted candidate pairs

System-Typé&acet Object Facet Function Facet

(collection, 1), (abstract, 1) (array, 1), (collection, 1) (add, 1)

(collection, 1), (abstract,1) (array, 1), (collection, 1) (default, 1), (element, 1)

(collection, 1), (abstract, 1) (array, 1), (collection, 1) (store, 1), (element, 1), (from, 1)

G.:.ollection, 1), (abstract, 1) “(sequenceable, 1), (coIIection,“l.) ¢, 1)

(collection, 1), (abstract, 1) (sequenceable, 1), (collection, 1¥”, (1)

(collection, 1), (abstract, 1) (sequenceable, 1), (collection, 1) (copy, 1), (from, 1)

(collection, 1), (abstract, 1) (sequenceable, 1), (collection, 1) (copy, 1), (replace, 1), (all, 1)
1), (abstract, 1) 1), (collection,

(collection, (sequenceable, 1) (copy, 1), (replace, 1), (from, 1)

(operator, 1) in the special-word dictionary. Thus, three facet-value pairs (‘,,
1), (comma 1), and ¢perator, 1) were defined. The word=" also represents

a special operation.=' was put into the hierarchical thesaurus directly, and
two statements= — (equal 1), and & — (operator, 1) were put into the
special-word dictionary. Three facet-value pairs=,(‘1), (equal 1), and
(operator, 1) were then defined.

Advanced discussion

The classification process must be discussed in detail for general libraries. In the
analysis step, acquired descriptions are either formatted or unformatted. Analysis of
formatted descriptions, in the example above can be carried out easily. Unformatted
descriptions are usually in natural language. Two appro&éhesve been proposed
to extract candidate pairs under these circumstances. The GURU Systéomati-
cally extractslexical affinity (LA) from natural-language documents. Each extracted
LA contains two words and an indicator of importangg ¢f the LA to a document.
The LA’s can be used as candidate pairs. Using the same example used in Reference
5, the LA’s of the utility mkdir are shown inTable IV. They are automatically
extracted from themkdir document. If a word exists in more than omne, the
maximum p-value is used as the weight for the word. Here, the candidate pairs for
mkdir are (irectory, 5.08), (make 5.08), €reate 2.74), (mkdir , 2.74), permission
1.48), and \yrite, 1.03).

The classification process may be semi-automatic, i.e. the first two steps can be

Table IV.LA’s for mkdir ranked byp-values

LA’S p
directory make 5.08
createmkdir 2.74
directory mkdir 2.55
directory permission 1.48
directory write 1.03

810 h.-c. liao, m.-f. chen and f.-j. wang

automated to reduce the effort required to classify a software library. Intervention
by domain experts is needed mainly during clarification.

The example in the preceding section indicated only a few clarification cases. A
more general method for clarifying words can be defined as follows. A candidate
pair (WD, WT) whoseWDis in the hierarchical thesaurus is treated as a facet-value
pair directly. If wDhasn statementsn=1) defined in the special-word dictionary, i.e.

WD— (CwQ, CWT,), WD — (CWD, CWT,), ..., WD — (CWQ, CWT,)
the corresponding facet-value pairs are defined as follows:

(WD, WT), (CWD,, WT X CWT), (CWD ,, WT X CWJ), ..., (CWD,, WT x
CWY)

If wbDor its standard form still cannot be found, domain experts select one (only)

of the following.

1. wDrepresents a special operation. Domain experts define one or more pairs
(CWD, CWT)s to representwD Correspondingly, the process insemt®in the
hierarchical thesaurus and the statement{®— (CwD, CWT) in the special-
word dictionary. The rest of the facet-value pair construction is similar to the
case in whichwbDhasn statements in the special-word dictionary.

2. wband a word in the hierarchical thesaurus have common cono&pis. put
in the hierarchical thesaurus and its ancestor concepts are those common ones.
(WD, WT) is thus treated as a facet-value pair.

3. wbhas no common concept with words in the hierarchical thesawirsis
put, with no ancestor concept, on Level 1 in the hierarchical thesaQus.

WT) is treated as a facet-value pair. The software component represented by
(WD, WT) can thus be returned whenDis in the user's query.
4. WDis useless. Its candidate pair is discarded.

THE SRF SEARCH PROCESS

After classification, the classification catalog of the software library has been con-
structed and users can now start SRF searches by entering queries and selecting
proper search levels.

Suppose there ane facetsF,, F,, ..., F, to be classified and the selected search
level is SL. A query Q contains a set of words. From a facet standpaintan also
be considered a set containing a word set for each ofntliacets.

An SRF search process has four stegpaery-Word validationQuery-Pair initializ-
ation, Synonymy generatipnand Candidate-Component collectionBelow are
presented the details of these steps with an example.

1. Query-Word validation Let wbe a query word, i.e. a word in the word set of
Q Wmay exist in the hierarchical thesaurus or in the special-word dictionary,
or be unknown. Thus:

(a) if wis found in the hierarchical thesaurus,is valid;

(b) if wis found in a statemenww — (CwWD, CWT) in the special-word
dictionary, theCwnbis valid;

(c) if wis unknown, validation fails and SRF informs the user of this. Upon

a software reuse framework 811

receipt of such a message, users can continue searching by deleting
or initiate a new search by modifying the current one.
SRF repeats these actions until all the query word(s) irave been validated,
i.e. all have been found in the hierarchical thesaurus or the special-word
dictionary. For a query {{*}, {databasg { perform, sqgj} on Level 2 , the
asterisk “*’ represents no restriction and no validation is necessatgbase
and performare found in the hierarchical thesaurassjl is found in the special-
word dictionary. Thus, these three words are all valid.

. Query-Pair initialization All Qs words have been found in the hierarchical
thesaurus or special-word dictionary. If a query wavis found in the special-
word dictionary, it will have one or mor¢gCwD, CWT)s listed. TheseCwDs
should be included in the query to find other related components. Instead of
using query words directly, SRF definesgaery pair, that contains a word
and an associated weight to help the search. Each query wasdassociated
with a QPS(W), a set of query pairs, forcvD, CwT)sfound in Step 1. In this
step, SRF initializes &@PS(w) for eachwin Q as follows:

(@) QPs(w) = {(w, 1)}, if wis in the hierarchical thesaurus.

(b) QPS(W) = {(W, 1), (CWD ,, CWT,), (CWD ,, CWT,), ..., (CWD,, CWT)} ,
if whask statementgk =1), W — (CwDQ, CWT,), W — (CWD, CWT,),
..., W —> (CWR, CWT,), in the special-word dictionary.

Here (w, 1) is put in QPS(W) because the original word precisely expresses the
user's meaning. SRF then defines each fagetin Q as a facet-query-pair set
FQPS(F;), the union ofQPS(W) for all F;’s words inQ For Q an integrated query
IQ is a set ofFQPS(F) for all F, in Q For the query in Step 1QPSdatabasg =
{(database 1)} and QPgperform) = {(perform 1)} since databaseand perform are
found in the hierarchical thesaurugPgsql) = {(sql, 1), (structure 1), (Query, 1),
(language 1)} since there are three statemerdg] — (structure 1), sql — (query,

1), andsgl — (language 1), in the special-word dictionary. Th@ equals {atabase
1), (perform 1), (sql, 1), (structure 1), (Query 1), (anguage 1)}.

3. Synonymy generatio.et (WD, WT) be a query pair irFQPS(F;) . In this step,

SRF gets the synonymy set fwwD SS(WD, SL), via synonymy generation,
matches it with software componers€s facet values, and then computes the
closeness betweefvD, WT) and eachsC matched. AnScC is a candidate when
one synonym inSS(WD, SL) is a facet value ofC for facetF,. The closeness
between (WD, WT) and SC is called their query-pair similarity denoted as
SIimQP((WD, WT), SC, SL). SL then becomes one of the three parameters
because it affects the resuftS(wD, SL) of synonymy generation and thus
affects the query-pair similarity betwegwD, WT) and SC. SRF repeats these
processes until the synonymy generation for all query pairsQinhas been
completed and the query-pair similarities between query pairs and their candidate
components have been computed. The computatioquefy-pair similarity is
discussed below.

Figure 8 shows the synonymy generation fovD SS(WD, SL) has m synonyms
(m=1) that are also facet values in the facet descriptor for software compeent
Let these synonyms be denoted Rs, FV,, ..., FV,, respectively.

812 h.-c. liao, m.-f. chen and f.-j. wang
- | Level SL

_$___"__._ _.

@ @ Level 1

(WD, WT)
FVWJ,

The links come from “e//‘
the classification catalog.

Figure 8. The synonymy generation \6fD

The degree of closeness betweadand FV, is defined assw(wb, FY, SL) , the
synonymity weight ofFV, resulting fromwbD The computation oBW(WD, FY, SL)
is done using Eg. (1)FVW also represents how welly, describesSC. The product
of SW(WD, FY, SL) x FVW may thus represent the closeness betwe@®and SC
via FV;, and SRF defines the closeness betwa&rand SC as the maximum of the
m products.SimQP((WD, WT), SC, SL) is computed as the product of the maximum
and WT The equation forSimQP((WD, WT), SC, SL) is shown below.

SimQP((WD, WT), SC, SL))
=WT x max [SW(WD, FV;, SL) x FVYW,].

1<j=m

For example, let one query pair of the derived in Step 2 gderform 1) own a
possible candidate componed@Database::ExecuteSQlwhose facet descriptor is
{{ ...}, {(database 1)}, {(execute 1)}, (sql, 1), (structure 1), (Query, 1), (language
)}. Figure 9 shows the synonymy generation f@erform perform has only one
synonym, execute in the facet descriptor foCDatabase::ExecuteSQIlperform has

#426 #695 #744 #1788
Musician Action Completion Observation Level 4
[Ygos.i J ‘ Vs | I Vs l Level 2
N
@ ‘ Level 1

CDatabase: :ExecuteSQL

Figure 9. The synonymy generation for perform

a software reuse framework 813

four common concepts witkexecuteon Level 2 , and has thus four use frequencies,
URperform V,.6.0), URperform Vges.,), URperform V.,,.,), and URperform Vgg.,).

Let the corresponding frequencies be 2, 10, 7, and 5 and labeled on the links from
perform to the common concepts. The synonymity weigwperform, execute2)
equals 10 from Eqg. (1). The query-pair similarigsimQP((perform 1), CDataba-
se::ExecuteSQL2) thus equals 10 from Eqg. (2).

4. Candidate-Component collectiom this step, SRF collects the candidate compo-
nents for query pairs inQ and computes their similarity degrees, and puts the
collected components in @andidate-component setCS(IQ, SL) . Suppose
there is a total ofk query pairs iniQ, denoted agwbD,, WT,), (WD ,, WT,),

..., (WD, WT,), the equation forcCSs(IQ, SL) is shown below.

CCS(IQ, SL) = U {sdVsc, SImQP((WD, WT)), sc, SL)# 0} (3)

1=si=k

After CCS(1Q, SL) has been collected, their similarity degrees are also computed.
SRF computes the similarity degree betwaen and SC, denoted assim(IQ, SC,
SL), by averaging all query pair similarities between the query pairgirand SC
When aniQ has more query pairs with greater similarity degreess® it should
own a largerSim(IQ, SC, SL) . Thus, the average equation feim(IQ, SC, SL)
is defined as below

Sim(IQ, SC, SL) = i > SimQP((WD;, WT,), SC, SL) 4

i=1

Software componentDatabase::ExecuteSQk used to demonstrate this step. The
facet descriptor folCDatabase::ExecuteSQis {{ ...}, {(database 1)}, {(execute 1),
(sql, 1), (structure 1), (Query, 1), (anguage 1)} and IQ equals {(atabase 1),
(perform 1), (sql, 1), (structure, 1), (queryl), (anguage 1)}. Thus, the similarity

1
degreeSim(IQ, CDatabase::ExecuteSQL2) equalsé(S X MAX, + 10).

Finally, SRF returns the candidate components in order of their similarity degrees.
IMPLEMENTATION AND EXPERIMENTAL STUDIES OF SRF

The Prototypes

Two SRF prototypes have been implemented in Windows 95 using Visual Basic
3.0 and MS-Access 2.0. The hierarchical thesaurus was adapted from Rogetl3
Electronic Thesaurus, which contains 1022 categories and 17,359 words. Two sample
object-oriented libraries, Smalltalk-80 (349 classes and 6697 methods) and MFC
(Microsoft Foundation Classes: 210 classes and 4871 methods) libraries were used
to demonstrate SRF’s characteristics. Before SRF is implemented,, a constant
for computing the synonymity weight in Eq. (1), has to be determinadx,,
represents the maximum synonymity weight, a value larger than the use frequencies
of all words in the hierarchical thesaurugAX,, cannot reflect user’'s past experiences
if it is set too high or low. For implementation convenienaese timesare used

814 h.-c. liao, m.-f. chen and f.-j. wang

instead of use frequencies. The use times of words were set to zero initially, and
increased by one when the word occurred in a facet value of a selected SC during
a query. In general, words in facet values of SCs but not considered meanings of
those facet values are not often used. Thus, words whose use times increase rapidly
are apparently used quite often, and may match user’s ideas more closely. The use
times of words that do not represent user’s ideas increase slowly. In this implemen-
tation, MAX,, is defined as 100.

SRF provides six tools: alassification toqgl a hierarchical thesaurus examinator
a library browser, a class hierarchy browsera document viewegrand asimilarity-
based search toolThe first two are used by domain experts to classify software
components. The others are used by general users to perform component searches
in object-oriented libraries, where two popular browsers and a viewer are also
commonly used in object-oriented programming environments. They were
implemented to let users inspect the contents of classes or methods in SRF directly.
The last one, the Similarity-Based Search Tool (SBST), is used to search components
using techniques discussed in this paper.

Figure 10shows the interfaces of these four tools in SRF. The upper right window

- 'II.'.l |:- Rensd Frameswork for Hicoosoft Yo+ B

§ Timibity-FAuid Ssaik Tooel

Figure 10. A sample user interface of SRF with MFC library

a software reuse framework 815

is the library browser. When a system type on the left is selected, the classes of
the selected system type are shown in the middle list. Similarly, when a class is
selected, its methods are shown in the right list. The lower right window is the
document viewer, in which users can view documents of classes or methods by
clicking the Class Doc.or Method Doc button in the other tools. The lower left
window is the class hierarchy browser. Users can click théiton to expand or

the ‘=’ icon to collapse the subclasses of a class. %A icon in front of a class
means that the class has no subclass. The upper left window is the SBST. It includes
three panelsQuery, Search Leveland Candidate ComponentdNithin the Query
panel, on the top-left corner, users can enter their descriptions of desired components
according to three facetSystem Type, Clasand Function A facet description is
either a set of words separated by commas, or an asterisk *’ representing no
restriction. The Search Level panel on the top-right corner allows users to decide
the level for search. Once users click tBearchbutton, SRF performs a search
based on the query entered, the selected search level, and the methods discussed in
the section on ‘The SRF Search Process’. SBST displays the results in a Candidate
Components panel, which includesCéassListof candidate classes andMethodList

of candidate methods in the selected class.

When classifying the Smalltalk-80 and MFC libraries, the first two steps, Acqui-
sition and Analysis, automatically generated 1303 and 1033 distinct candidate words,
respectively. In the Clarification step, 317 and 363 words were separately clarified
by domain experts. Thelarification rate a numerical ratio of clarified words to
candidate words, was computed for each facet and is showiainle V. The
clarification rates for the two libraries were 24 per cent and 35 per cent, i.e. one-
fourth and about one-third of the candidate words needed clarification. This illustrates
how the efforts required to classify the two sample libraries were greatly decreased
through use of the hierarchical thesaurus.

In Table V, the total number of distinct words for Smalltalk-80 library is 1303
and the summation of that for each facet is 1575%862+1257). The former value
is less, because a candidate word may be used in two or three facets, and thus be
counted more than once in the summation. This situation occurs to the number of
clarified words.

Table V. The number of candidate words and clarified words for three facets

System-type Object Function Total number of
distinct words

ST MFC ST MFC ST MFC ST MFC
Number of candidate 56 53 262 225 1257 1020 1303 1033
words
Number of clarified 8 12 46 63 306 354 317 363
words
Clarification Rate 14 23 18 28 24 35 24 35
(per cent)

(ST: Smalltalk-80 Library, MFC: Microsoft Foundation Class Library)

816 h.-c. liao, m.-f. chen and f.-j. wang

Table VI. Search time (in seconds) comparison between Groups | and I

Question no. 1 2 3 4 5 6 7 8 9 10 11 12 Average

Group | 118 219 186 174 196 260 310 230 639 418 587 990 361
Group I 114 206 172 128 116 226 184 208 617 161 160 957 271
Difference 4 13 14 46 80 34 126 22 22 257 427 33 90

Speedup (per cent) 3.5 6.3 8.1 359 69.0 150 685 10.6 3.6 159.6 266.9 3.4 33.2%

Experimental studies

Here an experiment was designed to evaluate the feasibility of SRF search process.
It was carried out on SRF’s version for the MFC library. Sixteen subjects (graduate
students) participated in this experiment. They were divided into two groups: Group
| subjects used three tools, the library browser, class hierarchy browser, and document
viewer; Group Il subjects used in addition the SBST. Twelve questions were
designed, each containing statements describing a target component, which was either
a class or a class and one of its methods, the subjects had to find. The subjects’
actions in the experiment, such as starting searches, reading documents, etc., were
automatically recorded in an action log file. After analysing the action log files for
the sixteen subjects, two results were extracted:

1. Search timethis is the total time a subject took to find the target component
in each question.Table VI lists the average search times for all subjects.
Subjects in Group I, who also used SBST found the target components faster
than those in Group |, and their use of SBST achieved 33.2 per cent speedup,
on average.

2. Tool use timethis is the total time the subjects used tools for each question.
Only the Group Il subjects were calculated to determine whether they did use
SBST in the experimenfTable VIl lists the tool-use times for the three tools,
SBST, Library Browser (LB), and Class Hierarchy Browser (CHB). Subjects
obviously spent more time (32.2 per cent) using SBST than LB (9.7 per cent)
and CHB (2.5 per cent). In total subjects spent 44.4 per cent of their time
using tools, and 55.6 per cent reading documents. When the time spent for
reading documents is ignored, percentages for use of the three tools can be

Table VII. Tool-use time (in seconds) for the three tools, similarity-based search tool (SBST), library
browser (LB), and class hierarchy browser (CHB) with respect to total search time (TST)

Question 1 2 3 4 5 6 7 8 9 10 11 12 Sum (per
no. cent)

SBST 229 509 433 344 218 395 452 1180 1717 372 387 4012 10248 32.2
LB 31 121 91 55 180 250 67 29 763 166 100 1226 3079 9.7
CHB 23 24 23 0 24 6 60 3 239 8 0 357 797 2.5

TST 900 1765 1550 1022 1333 1676 1471 2979 4939 1342 1277 11613 31864

a software reuse framework 817

calculated, and this is shown iiable VIIl. Group Il subjects spent almost
three fourths of their total tool-use time on SBST, i.e. Group Il subjects did
use SBST in the experiment.

These experimental studies illustrate that SBST is useful in shortening search
times. One thing that needs to be noticed is that the use frequencies of words
representing concepts in the hierarchical thesaurus were all set to zero and weren't
increased. The orderings of candidate components generated by SBST in this experi-
ment might not be the best. Thus, search times may be even shorter than our
experimental results after the use frequencies are increased from user feedback.

CONCLUSION AND FUTURE WORK

In this paper, we have presented in detail the Software Reuse Framework (SRF),
which is based on a hierarchical thesaurus, and an experiment designed to evaluate
SRF. The results of our experiment indicate that the SRF classification process is
efficient, and that applying SRF does save search time.

Although SRF implementation and experimental studies look promising, at least

three questions remain to be answered:

1. Is the model of four search levels suitable? This model was originally provided
for users with different skill levels. Our experiment did not validate suitability.

2. How will use frequencies affect search time? In our experiment, we conjectured
that the use of frequencies from long-term user feedback will save search time.
This needs further study and evaluation.

3. Is SRF actually domain-independent? Our prototypes used Smalltalk-80 and
MFC libraries, both are general-purpose code libraries. This is not sufficient to
demonstrate domain-independence, due to lack of speciality.

Recently, Internet technology provides convenient ways for people to communicate
with each other. It also provides convenient ways for servers to collect information
from end-users. If SRF is extended on the Internet, it is easier to collect massive
search information to evaluate the four search levels and use frequencies. The
extension is currently being done with JAVA libraries. Besides, the Web information
is diverse but not well-classified. The diverse Web information is useful to evaluate
SRF’s domain-independent characteristic. Tools based on SRF might be developed
to assist users in searching Web information.

Table VIII. Tool-use time (in seconds) for the three tools, similarity-based search tool (SBST), library
browser (LB), and class hierarchy browser (CHB) with respect to total tool use time (TTUT)

Question 1 2 3 4 5 6 7 8 9 10 11 12 Sum (per
no. cent)

SBST 229 509 433 344 218 395 452 1180 1717 372 397 4012 10248 72.6
LB 31 121 91 55 180 250 67 29 763 166 100 1226 3079 21.8
CHB 23 24 23 0 24 6 60 33 239 8 0 357 797 5.6

TTUT 283 654 547 399 422 561 579 1242 2719 546 487 5595 14124

818 h.-c. liao, m.-f. chen and f.-j. wang

10.

11.

12.

REFERENCES

. T. C. Jones, ‘Reusability in programming: A survey of the state of the HEEE Transactions on
Software EngineeringSE-10 (5), 488-493 (1984).

. R. G. Lanergan and C. A. Grasso, ‘Software engineering with reusable designs and |E>te’,
Transactions on Software Engineering) (5), 498-501 (1985).

. C. W. Krueger, ‘Software reuseACM Computing Survey4 (2), 131-183 (1992).

. T. Lsakowitz and R. J. Kauffman, ‘Supporting search for reusable software obj&dEE, Transactions

on Software Engineering22 (6), 407—423 (1996).

. H. C. Liao and F. J. Wang, ‘Software reuse based on a large object-oriented lik@M\, SIGSOFT
Notes 74-80 (February 1993).

. Y. Maarek, D. Berry and G. Kaiser, ‘An information retrieval approach for automatically constructing
software libraries’|IEEE Transactions on Software Engineerirn/ (8), 800-813 (1991).

. A. Smeaton, ‘SIMPR: Using natural language processing techniques for information retritreaged-
ings of RIAO’91 Huddersfield, April 1990; 152-160.

. S. P. Arnold and S. L. Stepoway, ‘The REUSE System: Cataloging and retrieval of reusable software’,
Proceedings of COMPCONS ’'87376-379.

. R. Helm and Y. S. Maarek, ‘Integrating information retrieval and domain specific approaches for

browsing and retrieval in object-oriented class librari¢¥pceedings of OOPSLA'9U7-61.

R. Prieto-Diaz and P. Freeman, ‘Classifying software for reusabiliBEE Software 6-16 (January

1987).

R. Prieto-Diaz, ‘Implementation faceted classification for software re@®hmunications of the ACM

34 (5), 89-97 (1991).

R. Prieto—Diaz and C. Braun, ‘Computing similarity in a reuse library system: An Al-based approach’,

ACM Transactions on Software Engineering and Methodoldgy3), 205-228 (1992).

	INTRODUCTION
	AN OVERVIEW OF SOFTWARE REUSE FRAMEWORK-SRF
	THE HIERARCHICAL THESAURUS
	Construction
	Synonymy generation
	Use frequency and synonymity weight

	THE SRF CLASSIFICATION PROCESS
	SRF faceted scheme
	SRF classification process
	Advanced discussion

	THE SRF SEARCH PROCESS
	IMPLEMENTATION AND EXPERIMENTAL STUDIES OF SRF
	The Prototypes
	Experimental studies

	CONCLUSION AND FUTURE WORK

