
File: DISTL2 286801 . By:CV . Date:08:06:98 . Time:10:45 LOP8M. V8.B. Page 01:01
Codes: 3682 Signs: 1640 . Length: 50 pic 3 pts, 212 mm

Journal of Combinatorial Theory, Series A�AT2868

Journal of Combinatorial Theory, Series A 83, 94�117 (1998)

Group Divisible Designs with Two Associate Classes:
n=2 or m=2

H. L. Fu

Department of Department of Applied Mathematics, National Chiao-Tung University,
Hsin-Chu, Taiwan, Republic of China; and

Department of Discrete and Statistical Sciences, 120 Math Annex,
Auburn University, Alabama 36849-5307

and

C. A. Rodger*

Department of Discrete and Statistical Sciences, 120 Math Annex,
Auburn University, Alabama 36849-5307

Communicated by the Managing Editors

Received September 22, 1995

In this paper we find necessary and sufficient conditions for the existence
of a group divisible design GDD(n, m) of index (*1 , *2) in which n=2 or m=2,
thereby completing the solution of the existence problem for all n, m, *1 , and *2 .
In the process, necessary and sufficient conditions are found for the existence of an
x-regular partial triple system whose complement in *Kn has a 1-factorization.
� 1998 Academic Press

1. INTRODUCTION

A group divisible design GDD(n, m; k; *1 , *2) is an ordered triple
(V, G, B) where V is a set of varieties or symbols, G is a partition of V into
m sets of size n, each set being called a group, and B is a collection of
subsets of V, called blocks, each of size k, such that

(1) each pair of symbols that occur together in the same group occur
together in exactly *1 blocks, and

(2) each pair of symbols that occur together in no group occur
together in exactly *2 blocks.
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Elements occurring together in the same group are called first associates,
and elements occurring in different groups are called second associates. We
say that the GDD is defined on the set V.

GDDs with *1=0 have been of great use in constructing other designs.
But just as interesting to the statisticians are GDDs in which *1>0.
According to Raghavarao [12] partially balanced designs with two asso-
ciation classes were classified in 1952 by Bose and Shimamoto into five
types: group divisible designs, simple, triangular, latin square type and
cyclic. We will concentrate here on group divisible designs. For a wealth of
information on GDDs see Raghavarao [12]. Clatworthy [3] gives tables
for all the classes of GDDs.

In this paper, we consider the existence of GDDs in the case where k=3.
To simplify the notation, let a GDD(n, m; 3; *1 , *2) be denoted by a
GDD(n, m) of index (*1 , *2), and let a block of size 3 be called a triple.
Together with Dinesh Sarvate, we have already completely solved this
existence problem in the case where n, m�3, proving the following result.

Theorem 1.1 [7]. Let n, m�3 and *1 , *2�1. There exists a
GDD(n, m) of index (*1 , *2) if and only if

(1) 2 divides *1(n&1)+*2(m&1) n, and

(2) 3 divides *1 mn(n&1)+*2 m(m&1) n2.

GDDs with m=1 (so *2 is irrelevant) and k=3 are the well known
triple systems (TS), so we denote a GDD(n, 1; 3; *1 , *2) by a TS(n) of
index *1 . Since a TS(n) has only one group, V=G so it can be simply
represented by (V, B). We will use the following famous result.

Theorem 1.2 ([8], or see [10]). Let n�3. There exists a TS(n) of
index * iff

(a) 2 divides *(n&1), and

(b) 3 divides *n(n&1).

So the existence of a GDD(n, m) of order (*1 , *2) has been completely
settled if m=1 or n=1 (and so also if *2=0). It has also been settled if
*1=0 with the following result.

Theorem 1.3 [9]. There exists a GDD(n, m) of index (0, *2) iff

(a) 2 divides *2(m&1) n,

(b) 3 divides *2m(m&1) n2, and

(c) m�3.
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In this paper, the cases where m=2 and where n=2 are solved (see
Theorem 5.1), thus completing the solution of the existence problem for a
GDD(n, m) of index (*1 , *2) (see Theorem 5.2). At first sight, this would
seem to be quite simple to handle compared to the myriad of cases that
have to be considered to prove Theorem 1.1. However, it turns out to be
a very interesting case, requiring different solution techniques and another
necessary condition. In particular, one technique developed here requires
knowing when there exists a multigraph on n vertices whose edges can be
partitioned into triples, and whose complement in *Kn has a 1-factorization
(see Theorem 2.9). This result is of interest in its own right (see [15], for
example).

Graph theoretically, a GDD(n, m) of index (*1 , *2) is a partition of the
edges of a graph H into copies of K3 (each K3 is also called a triple), where
H is the multigraph with vertex set V=V0 _ V1 _ } } } _ Vm&1 , |Vi |=n for
each i # Zm , in which two vertices are joined by *1 edges if they both occur
in Vi for some i, and otherwise are joined by *2 edges. Edges joining
vertices in the same or different groups are called pure or cross edges
respectively. This description of a GDD will often be used in this paper.

It is worth remarking that many papers have been written on GDDs; for
example considering the case where k=4 [2], and the case where not all
groups have the same size [4]. See [5] for many references.

2. PRELIMINARY RESULTS: m=2

In this section we obtain several building blocks. In Section 3, these will
be put together in various ways to show that the following necessary condi-
tions are sufficient for the existence of a GDD(n, 2) of index (*1 , *2) (see
Theorem 3.7).

Lemma 2.1. If there exists a GDD(n, 2) of index (*1 , *2) then

(1) 2 divides *1(n&1)+*2n,

(2) 3 divides *1 n(n&1)+*2 n2, and
(3) *1�*2 n�2(n&1).

Proof. Conditions (1) and (2) follow because each vertex must have
even degree, and the number of edges must be divisible by 3. (3) follows
since any cross edge must be contained in a triple that contains another
cross edge and a pure edge, so the number of pure edges must be at least
half the number of cross edges. K

We now proceed to produce some building blocks and other useful
results.
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Lemma 2.2. Let n�3. There exists a GDD(n, 2) of index (n, 2n&2).

Proof. Define

B=[[(a, 0), (b, 0), (c, 1)], [(a, 1), (b, 1), (c, 0)] | 0�a<b�n&1, c # Zn].

Then (Zn_Z2 , [Zn_[i] | i # Z2], B) is a GDD(n, 2) of index (n, 2n&2). K

The following is a result of Petersen.

Theorem 2.3 [11]. Let H be a regular multigraph of even degree. Then
there exists a 2-factorization of H.

Lemma 2.4 is a special case of a result of Rodger and Stubbs.

Lemma 2.4 [16]. Let *, n�1. Suppose that 0�x�*(n&1), x is even,
and 3 divides xn. Then there exists an x-regular mutligraph of multiplicity at
most * with n vertices whose edges can be partitioned into triples.

These two results can be combined to obtain Corollary 2.5. Let E(H ) be
the set of edges in H.

Corollary 2.5. Suppose that *, n�1, 0�x�*(n&1), 3 divides xn,
and *(n&1) and x are even. Then there exists an x-regular multigraph H of
multiplicity at most * with n vertices whose edges can be partitioned into
triples, such that *Kn&E(H ) has a 2-factorization.

Proof. Choose H using Lemma 2.4, then apply Theorem 2.3 to
*Kn&E(H ). K

We will need a companion result to Corollary 2.5 to cope with the situa-
tion where *(n&1) is odd. Obtaining this result will require the following
results, the first by Stern and Lenz, the second by Rees, and the third by
Simpson. For any D�Zwn�2x"[0], let H[D] be the graph with vertex set
Zn and edge set [[ j, j+d] | d # D, j # Zn], reducing the sum modulo n.

Lemma 2.6 [18]. There exists a 1-factorization of H[D] if and only if
there exists a d # D such that n�gcd(n, d ) is even.

Note that if d=n�2 # D then since n�gcd(n, d ) is even, H[D] has a 1-fac-
torization.

Theorem 2.7 [15]. For all n#0 (mod 6) and for all even x with
0�x<n except for (n, x) # [(12, 10), (6, 4)], there exists an x-regular
simple graph H on n vertices whose edges can be resolvably partitioned into
triples, such that Kn&E(H ) has a 1-factorization.
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Theorem 2.8 [17]. For any y�1 and for some s # [3y, 3y+1], the
integers in [ y+1, y+2, ..., 3y+1]"[s] can be partitioned into pairs (ai , bi)
with bi>ai such that [bi&ai | 1�i� y]=[1, 2, ..., y].

We can now present the companion to Corollary 2.5. It is a result that
is of interest in its own right.

Theorem 2.9. Suppose that *�1 and n�3. Then

(i) there exists an x-regular graph H on n vertices and of multiplicity
at most * whose edges can be partitioned into triples, such that

(ii) *Kn&E(H ) has a 1-factorization.

if and only if 0�x�*(n&1), if x>0 then 3 divides xn, if x<*(n&1) then
2 divides n, and 2 divides x.

Proof. It is obvious that if (i) and (ii) are true then 0�x�*(n&1), if
x>0 then 3 divides xn, if x<*(n&1) then 2 divides n, and 2 divides x;
therefore we will now prove the opposite statement.

For each *�1 and each even n�4, let S(n, *) be the set of integers x
for which (i) and (ii) are true. Let l=2 if n#0 or 4 (mod 6) and let l=6
if n#2 (mod 6).

Since there exists a 1-factorization of Kn , 0 # S(n, *), and for x<*(n&1)
if x # S(n, *) then x # S(n, *$) for all *$�*. Also, by Theorem 1.2 there
exists a TS(n) of index l; so if x= yl(n&1)+x$ with 0�x$<*(n&1) and
*�l, and if x$ # S(n, *), then x # S(n, *+ yl). Therefore we need only
consider the cases where 0<x<l(n&1).

Suppose that n#0 (mod 6). We need only consider the cases where
x<2(n&1). If x<n then the result follows from Theorem 2.7 unless
(n, x) # [(12, 10), (6, 4)]. Fortunately, since we do not require the set of
triples to be resolvable, we can obtain solutions in these cases too: for each
m # [3, 6] the complement of the edges in the triples of a GDD(2, m) of
index (0, 1) is a 1-factor. If n�x�2n&4 then we can simply combine a
solution where x$=n&2 and *$=1 with a solution where x"=x&(n&2)
and *"=1.

If n#2 or 4 (mod 6) then since x is even and 3 divides xn, we have that
x#0 (mod 6), so let x=6y. If x=n&2 then n#2 (mod 6); since there
exists a GDD(2, 3y+1) of index (0, 1) we have that n&2 # S(n, 1). If
x<n&2 then define s, ai and bi as in Theorem 2.8, and let T=[[ j, ai+ j,
bi+ j] | j # Zn], reducing sums modulo n. Then T is a set of triples that
partition H=H[D$] where D$=[1, 2, ..., 3y+1]"[s], and Kn&E(H )=
H[D] where D=[1, 2, ..., n�2]"D$. Since x<n&2, n�2 # D, so Kn&E(H )
has a 1-factorization by Lemma 2.6. So it remains to consider x�n.
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If n#4 (mod 6) then l=2 so we can assume that x<2(n&1); so
n+2�x�2n&8 (since x#0 (mod 6)). We can combine a solution where
x$=n&4 and *$=1 with a solution where x"=x&(n&4)�n&4 and
*"=1.

If n#2 (mod 6) then l=6, so we can assume that x<6(n&1); so
n+4�x�6n&12 (since x#0 (mod 6)). Let l$ be such that l$(n&2)<
x�(l$+1)(n&2). Combine l$ solutions where x$=n&2 and *$=1 with a
solution where x"=x&l$(n&2)�n&2 and *"=1. K

It will be useful to let [x, y, z] denote the graph with vertex set Zn_Z2

in which two vertices (u, i) and (v, j) are joined by x edges if i= j=0, by
y edges if i{ j, and by z edges if i= j=1.

The next four results are crucial building blocks in the construction of
the GDD's in Section 3.

Lemma 2.10. For each i # Z2 , let Ti be an xn-regular multigraph on the
vertex set Zn_[i] that has a 1-factorization. Then there exists a set of
triples whose edges partition the edges of [0, x, 0]+Ti .

Proof. Partition the xn 1-factors in a 1-factorization of Ti into n sets
S0 , S1 , ..., Sn&1 , each of size x. For each a # Zn and for each edge
[(u, i), (v, i)] in a 1-factor in Sa , let B contain the triple [(u, i), (v, i),
(a, i+1)], reducing the sum modulo 2. K

A quasigroup (Zn , b) of order n is an n_n array in which each cell con-
tains exactly one symbol, and each symbol in Zn occurs exactly once in
each row and exactly once in each column; if cell (a, b) contains c then we
write a b b=c. A quasigroup (Zn , b) is symmetric if a b b=b b a for all
a, b # Zn , and is idempotent if a b a=a for all a # Zn . It is well known (and
easy to see!) that there exists a symmetric idempotent quasigroup of order
n for all odd n�1.

Lemma 2.11. Let n be odd, and let F be any 1-factor of [0, 1, 0]. Then
there exists an edge-disjoint decomposition of [1, 1, 0]&F and of [0, 1, 1]&F
into copies of K3 .

Proof. Let (Zn , b) be a symmetric idempotent quasigroup of order n.
Let i # Zn and let F $=[[(a, 0), (a, 1)] | a # Zn]. Let B$i=[[(a, i), (b, i),
(a b b, i+1)] | 0�a<b�n&1], reducing i+1 modulo 2. Then clearly the
triples in Bi$ partition the edges in [1, 1, 0]&F $ or [0, 1, 1]&F $ if i=0 or
1 respectively. The first coordinate of the symbols in the triples in B$i whose
second coordinate is i+1 can easily be renamed to produce a set of triples
Bi that partition the edges of [1, 1, 0]&F or [0, 1, 1]&F as required. K
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Lemma 2.12. Let i # Z2 , and let H i be a 2x-regular graph on the vertex
set Zn_[i]. Then there exists a 2x-regular multigraph T consisting of 2x
1-factors, each being in [0, 1, 0], such that there exists an edge-disjoint
decomposition of Hi+T into copies of K3 .

Proof. By Theorem 2.3, Hi has a 2-factorization into x 2-factors T0 ,
T1 , ..., Tx&1 . For each j # Zx , Tj consists of vertex disjoint cycles which we
can arbitrarily orient to form directed cycles; call the resulting directed
graph T $j . Let H$i be the corresponding directed graph. For each directed
edge (a, b) in T $j , let [(a, i), (b, i+1)] # F2j and [(a, i), (a, i+1)] # F2j+1 .
Let T be the 2x-regular multigraph formed by the sum of F0 , ..., F2x&1 .
Then B=[[(a, i), (b, i), (b, i+1)] | (a, b) # E(H$i)] is a set of triples whose
edges partition the edges of Hi+T. K

Lemma 2.13. Let n�4 be even. Let ==0 if n#0 (mod 4), ==1 if n#6
(mod 12), and ==3 if n#2 or 10 (mod 12). For each i # Z2 there exists a
simple graph Hi on the vertex set Zn_[i] such that:

(i) H0 is (n�2+=)-regular and H1 is (n�2&=)-regular,

(ii) the edges of [0, 1, 0]+H0+H1 , can be partitioned into triples,
and

(iii) there exists a 1-factorization of Kn&E(H i), i # Z2 .

Proof. Let D=[2k&1 | 1�k�n�4]. Define

D if ==0,

D0={D _ [2] if ==1,

D _ [2, 4] if ==3,

and define

D if ==0,

D1={(D _ [2])"[n�2&2] if ==1,

D _ [n�2&4] if ==3.

In any case, define Hi=H[Di] on the vertex set Zn_[i], for each i # Z2 .
Then clearly Hi satisfies (i), and since n�2 � Di it follows from Lemma 2
that (iii) is satisfied.

If ==0 then let B=[[( j, 0), ( j+2k&1, 0), ( j+k+n�4, 1)], [( j, 1),
( j+2k&1, 1), ( j+k+n�4&1, 0)] | j # Zn , 1�k�n�4].

If ==1 then let B=[[( j, 0), ( j+2k&1, 0), ( j+k+(n+2)�4, 1)],
[( j, 0), ( j+2, 0), ( j+1, 1)] | j # Zn , 1�k�(n&2)�4] _ [[( j, 1), ( j+
2k&1, 1), ( j+k+(n+2)�4, 0)], [( j, 1), ( j+2, 1), ( j+2, 0)] | j # Zn ,
1�k�(n&6)�4].
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If ==3 then let B=[[( j, 0), ( j+2k&1, 0), ( j+k+(n+6)�4, 1)] |
j # Zn , 1�k�(n&2)�4] _ [[( j, 0), ( j+2, 0), ( j+1, 1)], [( j, 0), ( j+4, 0),
( j+2, 1)], [( j, 1), ( j+(n&4)�2, 1), ( j+(n&4)�2, 0) | j # Zn] _ [[( j, 1),
( j+2k&1, 1), ( j+k+(n&2)�4, 0)] | j # Zn , 1�k�(n&10)�4].

Then in each case, B is a set of triples which partition the edges of
[0, 1, 0]+H0+H1 . K

The following structure will be needed in Section 3.
Let n be even, and let H be a partition of Zn into sets of size 2. A sym-

metric quasigroup (Zn , b) with holes H and of order n is an n_n array in
which: cell (a, b) contains exactly one symbol in Zn if [a, b] � H and no
symbols if [a, b] # H; for each a # Zn row and column a contain each
symbol in Zn exactly once except for symbols a and b, where [a, b] # H;
and cells (a, b) and (b, a) either contain the same symbol or are both
empty, for 0�a<b�n&1; if cell (a, b) contains c then we write a b b=c.
The following is well known (see [10], for example).

Lemma 2.14. For all even n�6, there exists a symmetric quasigroup with
holes H and of order n, where H is a partition of Zn into sets of size 2.

Since maximum packings and minimum coverings of triple systems have
been completely determined, we have the following result.

Lemma 2.15 [6, 9]. Let n#2 (mod 6), n�8 and let L be a set of 2
independent edges in Kn . Then there exists an edge-disjoint decomposition of
(6y+2) Kn+2L and of (6y+4) Kn&2L into copies of K3 , for all y�0.

Finally, it will probably help enormously to list the values of n that
satisfy conditions (1) and (2) of Lemma 2.1 for all values of *1 and *2 . This
is done in Table I.

TABLE I

The Values of n (mod 6) for Each Value of *1 (mod 6) and *2 (mod 6) that Satisfy Conditions
(1) and (2) of Lemma 2.1

*2 : 0 1 2 3 4 5

*1

0 any 0 0, 3 even 0, 3 0
1 1, 3 �� 3 �� 3, 5 ��
2 0, 1, 3, 4 0 0, 2, 3, 5 0, 4 0, 3 0, 2
3 odd �� 3 �� 3 ��
4 0, 1, 3, 4 0, 2 0, 3 0, 4 0, 2, 3, 5 0
5 1, 3 �� 3, 5 �� 3 ��
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3. EXISTENCE WHEN m=2

We begin with a result that helps us deal with condition (3) of Lemma
2.1. It allows us to focus on large values of n, so then this lower bound on
*1 will no longer be a moving target (that is, a function of n).

Proposition 3.1. If conditions (1)�(3) of Lemma 2.1 are sufficient for
the existence of a GDD(n, 2) of index (*1 , *2) whenever *2�2(n&1), then
they are sufficient for all *2�1.

Proof. Suppose that n, *1 and *2 satisfy Conditions (1)�(3) of Lemma
2.1, that 2x(n&1)<*2�(2x+2)(n&1), and that x�1. Then by (3),
*1�*2 �2+x+= where

1
2 if *2 is odd and *2<(2x+1)(n&1),

=={1 if *2 is even,
3
2 if *2 is odd and *2�(2x+1)(n&1).

Let *$1=*1&xn and *$2=*2&2x(n&1). Then *$2�2(n&1), and since
*$1=*1&xn�*2 �2+x+=&xn=(*2&2x(n&1))�2+==*$2 �2+=, so *$1�
*$2 n�2(n&1), so (3) is satisfied by n, *$1 and *$2 . (1) and (2) are easily seen
to be satisfied too. Therefore, by our assumption there exists a GDD(n, 2)
of index (*1&xn, *2&2x(n&1)). Also, by Lemma 2.2 there exists a
GDD(n, 2) of index (xn, x(2n&2)) for any x�1. So together these two
GDDs form a GDD(n, 2) of index (*1 , *2). K

Therefore, it remains to consider the case where *2�2(n&1); or
n�*2�2+1. Under this condition, (3) simply becomes *1�(*2+1)�2. So
throughout the rest of this section we will assume that n and *1 satisfy
these lower bounds imposed by *2 .

Proposition 3.2. Suppose that n is odd, *1�*2 �2+1 and n�*2 �2+1.
Let n, *1 and *2 satisfy conditions (1) and (2) of Lemma 2.1. Then there
exists a GDD(n, 2) of index (*1 , *2).

Proof. Since n is odd, *2 is even (see Table I). Let *=*1&*2 �2. So
*�1. The result will follow if we can find an integer t that satisfies the
following conditions:

(i) 0�2t�*(n&1) and 3 divides (*(n&1)&2t) n, and

(ii) *2&*(n&1)�2t�*2 , and 3 divides (*(n&1)&*2+2t) n.

For, once these conditions are met, we can proceed as follows. Condi-
tion (i) ensures that the conditions of Corollary 2.5 are met when
x=*(n&1)&2t, so there exists a (*(n&1)&2t)-regular graph H0 on the
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vertex set Zn_[0] such that there exists a set B0 of triples which partition
the edges of H0 ; so *Kn&E(H0) is a 2t-regular graph. Similarly, condition
(ii) ensures that the conditions of Corollary 2.5 are met with x=*(n&1)&
*2+2t, so there exists a (*(n&1)&*2+2t)-regular graph H1 on the vertex
set Zn_[1] such that there exists a set B1 of triples which partition the
edges of H1 ; so *Kn&E(H1) is a (*2&2t)-regular graph. Since *2 is even,
by Lemma 2.12 there exists a set F0 of 2t 1-factors and a set F1 of *2&2t
1-factors, each 1-factor being in [0, 1, 0], such that for each i # Z2 there
exists a collection B$i of triples which partition the edges of *Kn&E(H i) and
the edges in the 1-factors in Fi . Finally, if F is the *2 -regular multigraph
consisting of all the edges in F0 and F1 , then by Lemma 2.11 there exists
a collection B of triples that partition the edges of [*2 �2, *2 , *2 �2]&E(F ).
Then each edge [(u, i), (v, i)] with i # Z2 is contained in * triples in Bi and
B$i , and is in *2 �2 triples in B, and clearly each edge [(u, 0), (v, 1)] is in *2

triples, so the result will follow. So it remains to find an appropriate integer
t. Recall that *�1.

If *2=6x+2 and n#3 (mod 6) then *1�3x+2 (since *1�*2 �2+1)
and n�3x+3 (since n�*2 �2+1). Choose t=W(3x+1)�2X . Then
2t�n&1, 3 divides n, and *2&(n&1)�2t.

If *2=6x+2 and n#5 (mod 6) then *1#2 (mod 3) (see Table I), so
*#1 (mod 3). If x is odd then n�3x+2, so choose t=(3x+1)�2. If x is
even then n�3x+5 (since n#5 (mod 6)), so choose t=(3x+4)�2.

If *2=6x+4 and n#3 (mod 6) then n�3x+3, so choose
t=W(3x+1)�2X .

If *2=6x+4 and n#5 (mod 6) then *1#1 (mod 3) (see Table I). If
x is even then n�3x+5, so choose t=(3x+2)�2. If x is odd then n�
3x+8, so choose t=(3x+5)�2.

If *2=6x and n#1 (mod 6) then: if x is odd then n�3x+4, so
choose t=(3x+3)�2; if x is even then n�3x+1, so choose t=3x�2.

If *2=6x and n#3 (mod 6) then n�3x+3, so choose t=W3x�2X .

If *2=6x and n#5 (mod 6) then *1#0 (mod 3) (see Table I) and so
*�3, and n�3x+2. If x is even then choose t=3x�2, and if x is odd then
choose t=(3x+3)�2. K

It turns out that if *2 is odd then we need to consider the smallest value
of *1 by itself.

Proposition 3.3. Suppose that *2 is odd and *1=(*2+1)�2. Let n, *1

and *2 satisfy conditions (1)�(3) of Lemma 2.1. Then there exists a
GDD(n, 2) of index (*1 , *2).
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Proof. By (3) of Lemma 2.1, n�*2+1. Since *2 is odd, n and *1 are
even (see Table I), so we can write *1=6x+2y, *2=12x+4y&1, and n�
12x+4y, where y # Z3 . So Table I shows that *1 , *2 and n are restricted
even more: if *1#0 (mod 6) then *2#5 (mod 6) so n#0 (mod 6); if *1#2
(mod 6) then *2#3 (mod 6) so n#0 or 4 (mod 6); and if *1#4 (mod 6)
then *2#1 (mod 6) so n#0 or 2 (mod 6). Notice that in every case

(a) either n#0 (mod 6) or n�2&*1#0 (mod 3).

It will also be useful later to notice that if n#2 or 10 (mod 12) then *1#4
or 2 (mod 6) respectively, and so since n�2�(*2+1)�2=*1 we have:

(b) if n#2 or 10 (mod 12) then n�2�*1+3;

and if n#6 (mod 12) then n�2 is odd, so we have:

(c) if n#6 (mod 12) then n�2�*1+1.

Let = be defined as in Lemma 2.13. By Lemma 2.13, for each i # Z2 , there
exists a simple graph Hi on the vertex set Zn_[i] satisfying (i)�(iii). Let
B0 be a set of triples that partitions the edges of [0, 1, 0]+H0+H1 (see
(ii)). By (iii), Kn&E(Hi) can be partitioned into n&1&(n�2+(&1) i =)=
n�2&1&(&1) i = 1-factors.

We want to apply Theorem 2.9 with x=n�2&*1&(&1) i = and *=1, so
we have some things to check. If n#2 or 4 (mod 6) then = # [0, 3], so by
(a) we have that 3 divides xn. In each case n�2&(&1) i = is even, so x is
even because *1 is even. Clearly x�n&1, and by (b) and (c) we have that
x�0.

Therefore, by Theorem 2.9, for each i # Z2 there exists a set of triples B$i
and there exists an (n�2&*1&(&1) i =)��regular graph H$i with vertex set
Zn_[i] whose edges are partitioned by the triples in B$i such that
Kn&E(H$i) has a 1-factorization into n&1&(n�2&*1&(&1)i =)=n�2+
*1&1+(&1) i = 1-factors.

Finally, for each i # Z2 , since *1�2 we can take the (*1&2)(n&1)
1-factors in a 1-factorization of (*1&2) Kn on the vertex set Zn_[i]. So
for each i # Z2 , altogether on the vertex set Zn_[i] we have defined
(n�2&1&(&1)i =)+(n�2+*1&1+(&1)i =)+(*1&2)(n&1)=n(*1&1)=
n(*2&1)�2 1-factors. By Lemma 2.10, there exists a set B1 of triples that
partition the edges in these 1-factors together with the edges in [0, *2&1, 0].

Then clearly the triples in B0 , B1 , B$0 and B$1 form a GDD(n, 2) of
index (*1 , *2). K

Before presenting our last proposition, we need to deal with two excep-
tional cases.
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Lemma 3.4. Let n#2 or 4 (mod 6), *1=6y+6, *2=12y+9 and
n�6y+6. Then there exists a GDD(n, 2) of index (*1 , *2).

Proof. If n#2 (mod 6) then there exists a TS(2n) of index 2, and by
Proposition 3.3 there exists a GDD(n, 2) of index (6y+4, 12y+7), which
together produce a GDD(n, 2) of index (6y+6, 12y+9).

If n#4 (mod 6) then define = as in Lemma 2.13. By Lemma 2.13, for
each i # Z2 there exists a simple graph Hi on the vertex set Zn_[i] that is
(n�2+(&1)i =)-regular, such that there exists a set B of triples that parti-
tion the edges of [0, 1, 0]+H0+H1 , and such that Kn&E(Hi) has a 1-fac-
torization into a set F1(i) of n�2&1&(&1) i = 1-factors. Since 6 divides
x=3n�2&6y&6&(&1) i = and 0�x�n&1, by Theorem 2.9, for each
i # Z2 there exists a set Bi of triples and an x-regular graph Hi in
(6y+5) Kn defined on the vertex set Zn_[i] whose edges are partitioned
by the triples in Bi , such that (6y+5) Kn&E(H ) has a 1-factorization into
a set F2(i) of (6y+5)(n&1)&x 1-factors. In F1(i) and F2(i), i # Z2 there
are a total of (6y+4) n 1-factors, which altogether with the edges in
[0, 12y+8, 0] can be partitioned into a set B$ of triples (by Lemma 2.10).

Clearly the triples in B, B$, B0 and B1 together form a GDD(n, 2) of
index (6y+6, 12y+9). K

Lemma 3.5. Let *1#4 (mod 6), *2=1 and n#2 (mod 6). Let n, *1 and
*2 satisfy conditions (1)�(3) of Lemma 2.1. Then there exists a GDD(n, 2)
of index (*1 , *2).

Proof. Let *1=6y+4. Let F=[[2a, 2a+1] | a # Zn�2] and F0=
[[(a, 0), (b, 0)] | [a, b] # F]. Let L=[[0, 1], [2, 3]], and for each i # Z2

let Li=[[(a, i), (b, i)] | [a, b] # L].

Let (Zn , b) be a symmetric quasigroup with holes F and of order n (see
Lemma 2.14). Define

B=[[(a, 0), (b, 0), (a b b, 1)] | 0�a<b�n&1, [a, b] � F]

_ [[(2a, 0), (2a+1, 0), (2a, 1)], [(2a, 0),

(2a+1, 0), (2a+1, 1)] | 2�a<n�2]

_ [(2a, 0), (2a, 1), (2a+1, 1)], [(2a+1, 0),

(2a, 1), (2a+1, 1)] | 0�a�1].

Then the triples in B contain: each edge [(a, 0), (b, 0)] exactly once if
[a, b] � F, exactly twice if [a, b] # F"L, and not at all if [a, b] # L; each
edge [(a, 0), (b, 1)] exactly once; and each edge [(a, 1), (b, 1)] exactly
twice if [a, b] # L, and otherwise not at all.
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Using Lemma 2.15, let B0 be a collection of triples that partition the
edges of (6y+2) Kn+2L0 on the vertex set Zn_[0], and let B1 be a
collection of triples that partition the edges of (6y+4) Kn&2L1 on the
vertex set Zn_[1].

Finally, let (Zn_[0], F0 , B$) be a GDD(n�2, 2) of index (0, 1).
Then the triples in B, B$, B0 and B1 together form a GDD(n, 2) of index

(6y+4, 1). K

Proposition 3.6. Suppose that n is even, *1�*2 �2+1 and n�*2 �2+1.
Let n, *1 and *2 satisfy conditions (1) and (2) of Lemma 2.1. Then there
exists a GDD(n, 2) of index (*1 , *2).

Proof. The result will follow if we can find an integer t that satisfies the
following conditions:

(i) 0�t, nt�*1(n&1), and 3 divides (*1(n&1)&tn) n, and

(ii) t�*2 , (*2&t) n�*1(n&1), and 3 divides (*1(n&1)&(*2&t) n) n.
For, once these conditions are met, we proceed as follows.

Since n is even *1 is even, so (*1(n&1)&tn) is even. Therefore, by
Theorem 2.9 and using (i), there exists a (*1(n&1)&tn)-regular graph H0

on the vertex set Zn_[0] of multiplicity at most *1 and there exists a set
B0 of triples such that: these triples partition the edges of H0 ; and T0=
*1 Kn&E(H0) has a 1-factorization into tn 1-factors. Similarly, by Theorem
2.9 and (ii), there exists a (*1(n&1)&(*2&t) n)-regular graph H1 on the
vertex set Zn_[1] and there exists a set B1 of triples such that: these
triples partition the edges of H1 ; and T1=*Kn&E(H1) has a 1-factoriza-
tion into (*2&t) n 1-factors. Finally, by Lemma 2.10, there exists a set B
of triples which partition the edges of [0, *2 , 0]+T0+T1 . Then clearly the
triples in B0 , B1 and B together form a GDD(n, 2) of index (*1 , *2). So it
remains to find a suitable value of t in each case.

In the following, to check that tn�*1(n&1) it is easier to check that
t�(*1&t)(n&1). Also, we will choose t so that t�*2 �2, in which case
tn�*1(n&1) implies that (*2&t) n�*1(n&1).

If *2=6x then *1�3x+1 and n�3x+1. Choose t=3x. From Table
I, 3 divides *1 , n or n&1, and since 3 divides t, the divisibility by 3 condi-
tions in (i)�(ii) are met.

If *2=6x+1 and n#0 (mod 6) then *1�3x+2 and n�3x+2.
Choose t=3x+1.

If *2=6x+1 and n#2 (mod 6), then *1#4 (mod 6) (see Table I), so
*1�3x+4 and n�3x+2. Choose t=3x+2. Then all conditions in (i)�(ii)
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are met except that if x=0 then *2<t; but then we seek a GDD(n, 2) of
index (6y+4, 1) which was constructed in Lemma 3.5.

If *2=6x+2 then *1�3x+2 and n�3x+2. Choose t=3x+1.

If *2=6x+3 and n#0 (mod 6) then *1�3x+3 and n�3x+3.
Choose t=3x+2.

If *2=6x+3 and n#2 (mod 6) then *1#0 (mod 6) (see Table I), so
*1�3x+3 and n�3x+5. Choose t=3x+3. Then all conditions in (i)�(ii)
are met except that if *1=3x+3 then nt>*1(n&1). However, if
*1=3x+3 then we can write *1=6y+6, *2=12y+9 and n#2 (mod 6),
so we can use Lemma 3.4.

If *2=6x+3 and n#4 (mod 6) then *1�3x+3 and n�3x+4.
Choose t=3x+3. Then all conditions in (i)�(ii) are satisfied unless
*1=3x+3, for then nt>*1(n&1). If *1=3x+3 then again the GDD can
be obtained from Lemma 3.4.

If *2=6x+4 then *1�3x+3 and n�3x+3. Choose t=3x+2.

If *2=6x+5 and n#0 (mod 6) then *1�3x+4 and n�3x+6.
Choose t=3x+3.

If *2=6x+5 and n#2 (mod 6) then *1#2 (mod 6) (see Table I), so
*1�3x+5 and n�3x+5. Choose t=3x+4. K

Finally, we can present the main result.

Theorem 3.7. Let n�3 and *1 , *2�1. There exists a GDD(n, 2) of
index (*1 , *2) if and only if

(1) 2 divides *1(n&1)+*2n,

(2) 3 divides *1 n(n&1)+*2 n2, and
(3) *1�*2 n�2(n&1).

Proof. By Proposition 3.1, it suffices to consider the case where
*2�2(n&1), so n�*2 �2+1 and therefore by (3) *1�(*2+1)�2. If n is
odd (so *2 is even) the result follows from Proposition 3.2. If *1=
(*2+1)�2 then the result follows from Proposition 3.3. If n is even and
*1�*2 �2+1 then the result follows from Proposition 3.6. K

4. EXISTENCE WHEN n=2

In this section we prove that the following necessary conditions for the
existence of a GDD(2, m) of index (*1 , *2) are sufficient (see Theorem
4.10).
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Lemma 4.1. If there exists a GDD(2, m) of index (*1 , *2) then

(1) 2 divides *1+2*2(m&1),

(2) 3 divides *1m+2*2m(m&1), and
(3) *1�(m&1)*2 .

Remark. Condition (1) implies that *1 is even.

Proof. Both (1) and (2) follow since each vertex must have even degree
and the number of edges must be divisible by 3. (3) follows since each pure
edge is contained in a triple containing two cross edges, so the number of
pure edges is at most half the number of cross edges. K

We can easily handle the case where n=m=2 now.

Lemma 4.2. There exists a GDD(2, 2) of index (*1 , *2) if conditions
(1)�(3) of Lemma 4.1 and condition (3) of Lemma 2.1 hold.

Proof. The conditions (3) of Lemma 2.1 and 4.1 imply that *1=*2 , so
the GDD(2, 2) of index (*1 , *2) must be a TS(4) of index *=*1=*2 . By
Theorem 1.2 conditions (1) and (2) of Lemma 4.1 ensure that a TS(4) of
index * exists. K

In view of this result, throughout the rest of this section we can assume
that m�3.

Our proof that conditions (1)�(3) of Lemma 4.1 are sufficient for the
existence of a GDD(2, m) of index (*1 , *2) relies heavily on the following
lemma.

Lemma 4.3. If there exists an edge-disjoint decomposition of *2Km into a
collection B of copies of K3 and a spanning subgraph H such that the edges
of H can be directed to form H+ so that in H+ each vertex has out-degree
*1 �2, then there exists a GDD(2, m) of index (*1 , *2).

Proof. Suppose *2Km on the vertex set Zm has been decomposed into
a directed graph H+ and a collection B of K3 's as described. Let

B1=[[(0, a), (1, a), (0, b)], [(0, a), (1, a), (1, b)] |

(a, b) is a directed edge in H+]

and

B2=[[(0, a), (0, b), (0, c)], [(1, a), (1, b), (0, c)], [(1, a), (0, b), (1, c)],

[(0, a), (1, b), (1, c)] | [a, b, c] is a triple in B$].
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Then since each vertex a # Zm has out-degree *1 �2 in H +, the edge
[(0, a), (1, a)] is in *1 triples defined in B1 . Also, for each a{b, the edge
[a, b] occurs x times in H and *2&x times in copies of K3 in B, so the
edges [(i, a), ( j, b)], i, j # Z2 occur in x triples in B1 and *2&x triples in
B2 . Therefore (Z2_Zm , [Z2_[i] | i # Zm], B1 _ B2) is a GDD(2, m) of
index (*1 , *2). K

Proposition 4.4. Suppose that *2(m&1) is even and m�3. Then condi-
tions (1)�(3) of Lemma 4.1 are sufficient for the existence of a GDD(2, m)
of index (*1 , *2).

Proof. Recall that (1) of Lemma 4.1 implies that *1 is even. Condition
(2) implies that 3 divides *2m(m&1)&*1 m. Condition (3) implies that
*2(m&1)&*1�0. Therefore we can apply Corollary 2.5 with x=
*2(m&1)&*1 and *=*2 (and replacing n with m) to produce an x-regular
multigraph G of multiplicity at most *2 whose edges can be partitioned into
triples, so that H=*2Km&E(G) has a 2-factorization into *1 2-factors.
Each 2-factor consists of edge-disjoint cycles that can be oriented to form
directed cycles. The resulting directed graph H + has out-degree *1�2 at
each vertex, so the proposition follows from Lemma 4.3. K

It remains to consider the case where *2(m&1) is odd, so we know that
*2 is odd, and *1 and m are even. We begin by showing that it essentially
suffices to consider the case where *2=1. It may help to consult Table II
which lists the values of m (mod 6) that satisfy conditions (1)�(2) of
Lemma 4.1.

A Kirkman triple system KTS(n) is a TS(n) (V, B) of index 1 and order
n in which B can be partitioned into sets of size n�3 so that each such set
is a partition of V. We will use the following theorem in the proof of
Proposition 4.7.

Theorem 4.5 [13]. For all n#3 (mod 6) there exists a KTS(n).

TABLE II

The Values of n (mod 6) for Each Value of *1 (mod 6)
and *2 (mod 6) that Satisfy Conditions 1�2 of

Lemma 4.1 when *2(m&1) Is Odd

*2 : 1 3 5

*1

0 0, 4 0, 2, 4 0, 4
2 0 0 0, 2
4 0, 2 0 0
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Similarly a GDD(n, m) (V, G, B) of index (0, *2) is resolvable if B can be
partitioned into sets of size |V|�3 so that each such set is a partition of V.
We will use the following special case of a result of Assaf, Hartman, Rees
and Stinson.

Theorem 4.6 [1, 14]. For all m�4, there exists a resolvable
GDD(6, m) of index (0, 1).

Proposition 4.7. Suppose *2(m&1) is odd and m�4. If conditions
(1)�(3) of Lemma 4.1 are sufficient for the existence of a GDD(2, m) of
index (*1 , *2) when *2=1, then they are sufficient for all *2�1, except
possibly for the case where *2=5 (mod 6), m#2 (mod 6) and *1=2.

Proof. Suppose *2(m&1) is odd, and suppose conditions (1)�(3) of
Lemma 4.1 are sufficient for the existence of a GDD(2, m*) of index
(*1* , 1) for all m*�3 and *1*�1. Suppose that: m�4; *1 , *2�1; if *2#5
(mod 6) and m#2 (mod 6) then *1>2, and that m, *1 and *2 satisfy the
conditions (1)�(3) of Lemma 4.1. Let *$2=*2&1 and *"2=1. We consider
the case m#0, 2 and 4 (mod 6) in turn.

Case 1: m#0 (mod 6). Let *$1=min[*$2(m&1), *1] and *"1=*1&*$1 .
Then since *$1 and *$2 are even, and since 3 divides m, we have that m, *$1
and *$2 satisfy conditions (1)�(3) of Lemma 4.1. So by Proposition 4.4,
there exists a GDD(2, m) of index (*$1 , *$2). Also, *"1 is even, and since *1�
(m&1) *2 , we have that *"1�m&1, so m, *"1 and *"2=1 satisfy conditions
(1)�(3) of Lemma 4.1. So by our assumption there exists a GDD(2, m) of
index (*"1 , *"2). Together these two GDDs form a GDD(2, m) of index
(*1 , *2) as required.

Case 2: m#2 (mod 6). Let m=6x+2 where x�1, and let *2=6y+=
where = # [1, 3, 5] and y�0. Then from Table II, *1=6z+=&3 where
z�1 (recall that this proposition does not consider the case where *2#5
(mod 6), m#2 (mod 6) and *1=2, so z{0). Then by (3), *1�(m&1) *2=
(6x+1)(6y+=)=6(6xy+=x+ y)+=, so since *1=6z+=&3 it must be
that in this case

*1�(m&1) *2&3.

Define *"1 to be the largest integer congruent to 4 (mod 6) such that
*"1�min[m&4, *1], and write *"1=6z"+4. Notice that z"�0 since x�1
and z�1 (so *1�4). Define *$1=*1&*"1 , so *$1=6z+=&3&6z"&4=
6(z&z"&1)+=&1.

Since *"1�m&4, *"1#4 (mod 6) and *"2=1, we have that m, *"1 and *"2
satisfy conditions (1)�(3) of Lemma 4.1, so by assumption there exists a
GDD(2, m) of index (*"1 , *"2).
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If *1�m&4 then *"1=m&4 so *$1=*1&(m&4)�(m&1) *2&3&
(m&4)=(m&1) *$2 . If *1<(m&4) then *$1�*1<m&4<(m&1) *$2 . So
in any case m, *$1 and *$2 satisfy (3) of Lemma 4.1.

If *1�m&4 then *$1=*1&(m&4)#=&1 (mod 6), and *$2=*2&1#
=&1 (mod 6), so *$1#*$2 (mod 6). Also, if *1<m&4 then *1=0, 2 or 4
(mod 6) if *2#1, 3 or 5 (mod 6) respectively (see Table II); so *$2=
*2&1#*$1 (mod 6). Therefore, in any case, we have m, *$1 and *$2 satisfy (2)
of Lemma 4.1, and clearly (1) is satisfied. So, since *$2 is even, by Proposi-
tion 4.4 there exists a GDD(2, m) of index (*$1 , *$2).

Together, the GDD(2, m) of index (*$1 , *$2) and that of index (*"2 , *"2)
form a GDD(2, m) of index (*1 , *2) as required.

Case 3: m#4 (mod 6). Let m=6x+4, where x�0, and let *2=6y+=
where = # [1, 3, 5] and y�0. From Table II, we can write *1=6z, where
z�1. Then by (3), *1�(m&1) *2=(6x+3)(6y+=)=6(6xy+3y+=x)+3=,
so since = is odd and *1=6z it must that

*1�(m&1) *2&3.

Define *"1 to be the largest integer congruent to 0 (mod 6) such that *1�
min[m&4, *1], and write *"1=6z" where z"�0. Define *$1=*1&*"1=
6(z&z").

Since *"1�m&4, *"1#0 (mod 6) and *2=1, we have that m, *"1 and *"2
satisfy conditions (1)�(3) of Lemma 4.1, so by assumption there exists a
GDD(n, m) of index (*"1 , *"2).

If *"1�m&4 then *"1=m&4, so *$1=*1&(m&4)�(m&1) *2&3&
(m&4)=(m&1) *$2 . If *1<(m&4) then clearly *$1�(m&1) *$2 . So m, *$1
and *$2 satisfy (3) of Lemma 4.1. Clearly 3 divides *$1 and (m&1), so (2)
is satisfied, and 2 divides *$1 and *$2 so (1) is satisfied. Therefore by Proposi-
tion 4.4 there exists a GDD(2, m) of index (*$1 , *$2) which together with the
GDD(2, m) of index (*"1 , *"2) forms a GDD(n, m) of index (*1 , *2). K

Proposition 4.8. Suppose that m�4 is even. Conditions (1)�(3) of
Lemma 4.1 are sufficient for the existence of a GDD(2, m) of index (*1 , 1).

Proof. To prove this result we use Lemma 4.3, so we need to direct
some edges in Km to form the spanning subgraph H+ in which each vertex
has outdegree *1 �2 so that the remaining undirected edges can be parti-
tioned into copies of K3 . We will consider the cases m=0, 2 and 4 (mod 6)
in turn (see Table II). By (3) of Lemma 4.1 we have that *1�m&1, and
by Theorem 1.3 we can assume that *1>0. We begin with m=6x+4 since
it is the simplest case.

Case 1: m=6x+4. Since m=6x+4 and *2=1, we have *1=6y (see
Table II). Since 1�*1�m&1, we have that 1� y�x. We define Km on
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the vertex set [�] _ Z6x+3 . Let (Z6x+3 , T ) be a KTS(6x+3) with
parallel classes ?0 , ..., ?3x (see Theorem 4.5). Clearly ?i has 2x+1 triples.
Partition the triples in ?0 into 2 sets T0 and R0 so that |T0 |= y. Direct
some of the edges of Km as follows to form H+.

(i) Join � with an edge directed to each vertex in each triple in T0 .

(ii) Join each vertex in each triple in R0 with an edge directed to �.

(iii) Direct the edges in each triple in T0 to form directed 3-cycles.

(iv) Direct the edges in each triple in �3y&1
i=1 ?i to form directed

3-cycles (?3y&1 exists since 3y&1<3x).

Then � is incident with 3y=*1 �2 edges directed out in (i). Each v # Z6x+3

is incident with 1 edge directed out in (ii)�(iii) and 3y&1 edges directed
out in (iv), so also has outdegree *1 �2 in H +. The edges in Km remaining
undirected are partitioned by the triples in R0 _ (�3x

i=3y ?i).

Case 2: m=6x+2. Since m=6x+2 and *2=1, we have that *1=
6y+4. Since *1�m&1, we have 0� y<x and x�1.

If m=8 then *1=4. Define K8 on the vertex set Z4_Z2 . Let H+ contain
the directed edges in [((i, 0), (i, 1)) | i # Z4] _ [((i, 0), (i+2, 0)), ((i+2, 0),
(i+1, 1)), ((i+3, 1), (i, 0)), ((i+1, 1), (i+2, 1)), ((i+3, 1), (i, 1)), ((i, 1),
(i+3, 1)) | i # Z2] reducing sums modulo 4. Then each vertex has out-
degree 2=*1 �2, and the edges remaining undirected are partitioned by the
triples in [[(i, 0), (i+1, 0), (i+2, 1)] | i # Z4].

So we can now assume that x�2. We define Km on the vertex set
[�i | i # Z5] _ Z6x&3 . Let (Z6x&3 , T ) be a KTS(6x&3) with parallel
classes ?0 , ..., ?3x&3 . Partition the triples in: ?0 into 3 sets T0 , T1 and R0 ;
?1 into 3 sets T2 , T3 and R1 ; ?2 into 2 sets T4 and R2 ; so that |Ti |= y
for i # Z5 (?2 exists since x�2). Then |R0 |=|R1 |=2x&1&2y>0, and
|R2 |>0. Direct some of the edges of Km as follows (to form H+).

(i) H+ contains the directed edges [(�i , �i+1), (�i , �i+2) |
i # Z5], reducing the sum in the subscript modulo 5.

(ii) For each i # Z5 direct the edge from �i to each vertex in a triple
in Ti .

(iii) For each vertex v in a triple in T0 _ R0 , T1 _ R0 , T2 _ R1 , T3 _
R1 , and R2 direct the edge from v to �1 , �0 , �3 , �2 and �4 respec-
tively.

(iv) Direct the edges in each triple in �i # Z5
Ti to form directed

3-cycles.

(v) Direct the edges in each triple in �3y&1
i=3 ?i to form directed

3-cycles (?3y&1 exists since 3y&1<3x&3).
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The edges directed in (i)�(v) form H+. For each i # Z5 , �i is incident with
2 edges directed out in (i) and 3y directed out in (ii) so has outdegree
3y+2=*1 �2 in H+. Each vertex v # Z6x&3 is incident with 5 edges direct
out in (iii)�(iv), and 3y&3 directed out in (v), so also has degree *1 �2. The
edges in Km remaining undirected are partitioned by the triples in
(�i # Z3

Ri) _ (�3x&3
i=3y ? i).

Case 3: m=6x. In this case we have to consider 3 further cases, since
*1#0, 2 or 4 (mod 6) (see Table II), so we consider the cases *1#0 or 2
(mod 6) and *1#4 (mod 6) in turn.

Suppose that *1=6y+2=, where = # [0, 1], and suppose *1{2. Since
2<*1�m&1, we have that 1� y<x, and so x�2. Let Km be defined
on the vertex set [�0 , �1 , �2] _ Z6x&3 , and let (Z6x&3 , T ) be a
KTS(6x&3) with parallel classes ?0 , ?1 , ..., ?3x&3 . Of course, ? i (i # Z3x&3)
contains 2x&1 triples. Partition the triples in ?0 into 3 sets T0 , T1 and R0

so that |T0 |=|T1 |= y (so |R0 |=2x&1&2y�1), and partition ?1 into 2
sets T2 and R1 so that |T2 |= y (?1 exists since x�2). Direct some of the
edges of Km as follows (to form H +).

(i) For each i # Z3 , direct the edge from �i to each vertex in a
triple in Ti .

(ii) For each vertex v in a triple in T0 _ R0 , T1 _ R0 and R1 direct
the edge from v to �1 , �0 and �2 respectively.

(iii) Direct the edges in each triple in T0 _ T1 _ T2 to form directed
3-cycles.

(iv) Direct the edges in each triple in �3y&2+=
i=2 ? i to form directed

3-cycles (?3y&2+= exists since 3x&3>3y&2+=).

(v) If ==1 then direct the edges �0 to �1 , �1 to �2 , and �2 to �0 .

The edges directed in (i)�(v) form H+. For each i # Z3 , �i has out degree
3 |Ti |+==3y+==*1 �2 (from (i) and (v)). For each v # Z6x&3 , v has 3
edges directed out defined in (ii) and (iii), and has 3y&3+= edges directed
out defined in (iv), so has out degree *1 �2. The edges in Km remaining
undirected are partitioned by the triples in R0 _ R1 _ [[�0 , �1 , �2]] _
(�3x&3

i=3y&1 ? i) if ==0, and by R0 _ R1 _ (�3x&3
i=3y ? i) if ==1.

Suppose that *1=6y+4 or *1=2, and suppose that m � [12, 18]. Since
1�*1�m&1, we have that 0� y<x and x=1 or x�4. We define Km on
the vertex set Zx_Z6 . Let (Zx_Z6 , [[i]_Z6 | i # Zx], T ) be a resolvable
GDD(6, x) with parallel classes ?0 , ?1 , ..., ?3x&2 (see Theorem 4.6). Direct
some of the edges of Km as follows (to form H+).

(i) If *1{2 then for each i # Zx , let H + contain the directed edges
((i, 1), (i, 4)), ((i, 1), (i, 5)), ((i, 2), (i, 5)), ((i, 2), (i, 0)), ((i, 3), (i, 4)),
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((i, 3), (i, 0)), ((i, 0), (i, 1)), ((i, 5), (i, 3)), ((i, 4), (i, 2)), ((i, 4), (i, 5)),
((i, 5), (i, 0)), and ((i, 0), (i, 4)).

(ii) If *1=2 then let H+ contain the directed edges ((i, 1), (i, 4)),
((i, 2), (i, 4)), ((i, 3), (i, 0)), ((i, 4), (i, 0)), ((i, 5), (i, 2)), and ((i, 0), (i, 2)).

(iii) Direct the edges in each triple in �i # Z3y
?i to form directed

3-cycles (?3y&1 exists since 3y&1<3x&2), and let H+ contain these
directed edges.

For each vertex v # Zx_Z6 there are 2 edges directed out of v defined in
(i) if *1=6y+4, there is 1 edge directed out of v in (ii) when *1=2, and
in either case there are 3y edges directed out of v in (iii), so v has outdegree
*1 �2 in H +. The edges of Km that have not been directed are partitioned
by the triples in (�3x&2

i=3y ? i) _ [[(i, 1), (i, 2), (i, 3)] | i # Zx] if *1=6y+4,
and (�3x&2

i=3y ? i) _ [[(i, 1), (i, 2), (i, 3)], [(i, 3), (1, 4), (i, 5)], [(i, 5), (i, 0),
(i, 1)] | i # Zx] if *1=2.

Suppose that *1 # [2, 4, 10] and m=12. If *1=10 then define K12 on the
vertex set Z2_Z6 , let H+ contain the directed edges defined in (i) above
for each i # Z2 , and add the directed edges in [((0, i), (1, i+ j)), ((1, i),
(0, i+ j+1)) | i # Z6 , j # Z3]. Then each vertex has outdegree 5=*1 �2, and
the edges remaining undirected are partitioned by the triples [[(i, 1), (i, 2),
(i, 3)] | i # Z2]. If *1 # [2, 4] then define K12 on the vertex set
[�i | i # Z3] _ (Z3_Z3). Let (Z3_Z3 , T ) be a KTS(9) (see Theorem 4.5)
with parallel classes ?i , i # Z4 such that ?4=[[(i, 0), (i, 1), (i, 2)] | i # Z3]
and [(0, 0), (1, 1), (2, 2)] # ?3 (clearly this is possible by renaming the
symbols). Let Ti=[[(i, j), (i, j+1), �j+2] | i # Z3 , j # Z3], reducing sums
modulo 3. For *1=2 let H+ contain the directed edges in [((i, j), �j),
(�j , �j+1) | i, j # Z3], then the edges remaining undirected in K12 are
partitioned by the triples in �i # Z3

(? i _ Ti). For *1=4 let H+ contain the
directed edges in [((i, j), �j) | i, j # Z3 , i{ j] _ [(�j , � j+1), (�j , ( j, j)) |
j # Z3] together with the directed edges in the directed 3-cycles formed
from the triples in ?2 _ [[(0, 0), (1, 1), (2, 2)]]; then the edges remaining
undirected in K12 are partitioned by the triples in (?1 _ ?3)"[[(0, 0), (1, 1),
(2, 2)]].

Suppose that *1 # [2, 4, 10, 16] and m=18, and define K18 on the vertex
set Z3_Z6 . If *1=16 then for each i # Z3 let H+ contain the directed
edges defined in (i) above together with the directed edges in [((i, j),
(i+1, k)) | j, k # Z6 , i # Z3]; the edges remaining undirected are parti-
tioned by the triples in [[(i, 1), (i, 2), (i, 3)] | i # Z3]. If *1=4 or 2 then let
H+ contain the directed edges defined in (i) or (ii) above respectively; the
edges remaining undirected are partitioned by the triples in a GDD(6, 3)
of index (0, 1) (see Theorem 1.3) together with the triples in [[(i, 1), (i, 2),
(i, 3)] | i # Z3] if *1=4 and in [[(i, 1), (i, 2), (i, 3)], [(i, 3), (i, 4), (i, 5)],
[(i, 5), (i, 0), (i, 1)] | i # Zx] if *1=2. If *1=10 then let H + contain the
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directed edges in [((i, 2j), (i, 2j+1)) | i, j # Z3] _ [((i, j), (i+1, k)) |
j, k # Z6 , j{k, i # Z3]"[((i, 2j), (i+1, 2j+2)) | i, j # Z3]; then the edges
remaining undirected are partitioned by the triples in [[(0, j), (1, j),
(2, j)], [(0, 2k), (1, 2k+2), (2, 2k+4)] | j # Z6 , k # Z3] _ (�z # Z3

Bz),
where ([z]_Z6 , [[(z, 2j), (z, 2j+1)] | j # Z3], Bz] is a GDD(2, 3) of
index (0, 1) (see Theorem 1.3). K

Proposition 4.9. Let m#2 (mod 6), m�3, *1=2 and *2#5 (mod 6).
There exists a GDD(2, m) of index (*1 , *2).

Proof. Let m=6x+2. Clearly it suffices to consider the case where
*2=5 since by Theorem 1.3 there exists a GDD(2, m) of index (0, 6). Also
by Theorem 1.3, there exists a GDD(2, 3x+1) of index (0, 1), so by taking
5 copies of this GDD, possibly with different groups, it is possible to define
a collection B of triples that partition all the edges of 5Kn , except for 5
1-factors (corresponding to the 5 sets of groups). Therefore it remains to
find a set of 5 1-factors of 5K6x+2 whose edges are partitioned by a set B1

of triples and a set of edges forming a spanning subgraph H that can be
directed so that each vertex in the resulting directed graph H+ has out-
degree *1 �2=1.

We define K6x+2 on the vertex set Z3x+1_Z2 . Let B1=[[(i, 0),
(i+1, 0), (i+2, 1)] | i # Z3x+1] and let H + contain the directed edges in
[((i, 0), (i, 1)), ((i, 1), (i+1, 1)) | i # Z3x+1], reducing the sum modulo
3x+1. Then clearly each vertex in H+ has outdegree 1 as required. Fj=
[[(i+ j, 0), (i+2, 1)] | i # Z3x+1] forms a 1-factor for each j # Z2 , and it is
easy to see that the edges in [[(i, 0), (i+1, 0)], [(i, 0), (i, 1)], [(i, 1),
(i+1, 1)] | i # Z3x+1] can be partitioned into 3 1-factors, so the result
follows. K

We have now settled the case n=2 as the following Theorem shows.

Theorem 4.10. Let m�2 and *1 , *2�1. There exists a GDD(2, m) of
index (*1 , *2) if and only if

(1) 2 divides *1+2*2(m&1),

(2) 3 divides *1m+2*2m(m&1), and

(3) *1�(m&1) *2 .

Proof. The necessity follows from Lemma 4.1. The sufficiency follows
from Proposition 4.4 if *2(m&1) is even, from Proposition 4.7 if *2(m&1)
is odd and *2=1, from Proposition 4.9 if m#2 (mod 6), *1=2 and *2#5
(mod 6), and therefore from Proposition 4.7 in all other cases where
*2�2. K
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5. FINAL COMMENTS

We can now summarise the results on this paper with the following
result (see Theorems 3.7 and 4.10).

Theorem 5.1. Let n=2 or m=2, and *1 , *2�1. There exists a
GDD(n, m) of index (*1 , *2) if and only if

(1) 2 divides *1(n&1)+*2(m&1) n,

(2) 3 divides *1 mn(n&1)+*2 m(m&1) n2,

(3) if m=2 then *1�*2 n�2(n&1), and
(4) if n=2 then *1�(m&1) *2 .

This can now be incorporated with Theorems 1.2, 1.3, and 1.1 to prove
the following encompassing result.

Theorem 5.2. Let n, m, *2�1 and *1�0. There exists a GDD(n, m) of
index (*1 , *2) if and only if

(1) 2 divides *1(n&1)+*2(m&1) n,

(2) 3 divides *1 mn(n&1)+*2 m(m&1) n2,

(3) if m=2 then *1�*2 n�2(n&1), and
(4) if n=2 then *1�(m&1) *2 .
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