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Substituting for the residuesx1 = m1 � 1 and forx3 = 1 satisfying
the odd parity condition and simplifying

2n� < �m1m3 + 2�m1

n� < �m1(n+ 1) + 1

� < �m1 1 +
1

n
+

1

n

� < �m1 � 2 +
2

n

< �m3 +
2

n
< �m2:

Therefore,

� � �m3:

Proof of C4: For the remaining range(m3 > � > �m3), the
correctionm1m3=2 yields the correct result.
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A New RSA Cryptosystem Hardware
Design Based on Montgomery’s Algorithm

Ching-Chao Yang, Tian-Sheuan Chang, and Chein-Wei Jen

Abstract—In this paper, we propose a new algorithm based on Mont-
gomery’s algorithm to calculate modular multiplication that is the core
arithmetic operation in an RSA cryptosystem. The modified algorithm
eliminates over-large residue and has very short critical path delay that
yields a very high-speed processing. The new architecture based on this
modified algorithm takes about1:5n2 clock cycles on the average to finish
onen-bit RSA operation. We have implemented a 512-bit single-chip RSA
processor based on the modified algorithm with Compass 0.6-�m SPDM
CMOS cell library. The simulation results show that the processor can
operate up to 125 MHz and deliver the baud rate of 164 Kbits/s on the
average.

I. INTRODUCTION

As the telecommunication network has grown explosively and the
internet has become increasingly popular, security over the network
is the main concern for further services like electronic commerce
[1]. The fundamental security requirements include confidentiality,
authentication, data integrity, and nonrepudiation. To provide such
security services, most systems use public key cryptography. Among
the various public key cryptography algorithms, the RSA cryptosys-
tem[2] is the best known, most versatile, and widely used public
key cryptosystem today. In public key cryptography algorithms,
the essential arithmetic operation is modular multiplication, which
is used to calculate modular exponentiation. However, modular
exponentiation on numbers of hundreds of bits (512 bits or higher)
makes it difficult for the RSA algorithm to attain high throughput.

An attractive method for faster implementations is based on
Montgomery’s modular multiplication algorithm [3], [4], in which the
quotient only depends on the least significant digit of operands. Vari-
ous algorithm modifications and hard-ware designs of Montgomery’s
algorithm can be found in [5]–[11]. To speed up processing, in [5]
and [7], they used the high radix technique to reduce the required
clock cycle number. In [6], they avoided the quotient determination
by shifting the multiplicand 2 bit. This achieved a significant speed-
up of modular multiplication available today. However, all the
methods [5]–[9] suffer from the over-large residue. So an additional
final reduction is required, which increases the hardware and time
complexity. Though this problem is solved in [10] and [11], the
iteration times are doubled. Also, in [5] and [7], the intermediate
result is in carry-save form or redundant representation and the
input operands are assumed to be in nonredundant binary form in
the next modular multiplication. Therefore, additional cycles will be
introduced at the start of the next iteration to convert the data format.

In this paper, we propose a modified Montgomery’s algorithm
to eliminate the aforementioned problems. The algorithm modifies
the range of the partial product by separating the multiplication and
modular reduction operation so that the output will fall in the right
range after postprocessing. Therefore, we avoid the over-large residue
problem and the additional subtraction procedure. The hardware
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design based on the modified algorithm can start the next iteration
immediately when the first digit of the previous iteration output is
available. Hence, no additional cycles are required at the start of
the next iteration. Furthermore, a fully pipelined design reduces the
critical path and attains a high clock rate and high throughput.

This paper is organized as follows. In Section II, we will propose
the modified Montgomery algorithm and apply it to the modular
exponentiation. In Section III, the hardware design of a 512-bit RSA
processor will be presented. Finally, we will conclude this paper in
Section IV.

II. M ODIFIED MODULAR EXPONENTIATION ALGORITHM

A. Modified Montgomery’s Algorithm

Montgomery’s modular multiplication algorithm [3] can avoid
range comparison which is the critical operation in traditional division
in modular multiplication. However, this algorithm requires some
preprocessing and postprocessing to remove an extra factor and limit
the range of intermediate output. To address these problems, Chen
[10], [11] proposed a modified Montgomery’s algorithm. Compared
with the original Montgomery algorithm, Chen’s algorithm has a
simpler modular reduction step. The output will fall in the range
smaller thanN . However, the iteration step is increased fromn to
2n.

To eliminate such problems and keep the iteration step as low as in
the original Montgomery algorithm, we propose a modified algorithm
in C-like code as follows:

Algorithm 1 (The Modified
Montgomery’s algorithm)

(Inputs):
Modulus:N (n-bit binary representation)
Multiplier: = (

� �

� � � )
Multiplicand: B (n-bit number)

(Outputs):
Result: � ? ? � (mod ),

� � + < +

Quotient: = (
� �

� � � )
(Algorithm):
MM(A, B, N)
f
P1: ? = = ? + ;

( � , < , = (
� �

� � � ) )
P[0] = 0;

P2: for ( = ; < ; ++)
f

= ( [ ] + ) mod ;
// even or odd ?

[ + ] = ( [ ] + ? + ) div 2;
// right shift 1-bit

g
= [ ] + ;

Return R;
g

In this modified algorithm, similar to Chen’s algorithm, the mod-
ular multiplication operation is split into multiplication procedure
(P1) and Montgomery modular reduction procedure(P2) . In
P1, we only take the lowern bits (C0) of the product to do
the Montgomery reduction instead of whole2n bits as in Chen’s
algorithm. The highern bits (C1) of the product has the same weight
2n asP [n]. We sumC1 with P [n] to get the result (whereP [n] is
the result of theC0 after Montgomery reduction). Though the value
of our result(R = C1 + P [n]) is different from the result(R[n])
of Montgomery algorithm, they are equivalent in moduloN . This

verification is shown in the Appendix which also shows the output
range.

The algorithm takesn clock cycles as Montgomery’s algorithm in
[6] but shorter than Chen’s algorithm that needs2n cycles. Besides,
the hardware cost forP2 is only one level ofn-bit adders, which
is as low as Chen’s algorithm and half of Montgomery’s algorithm
in [6] because of only twon-bits ( [ ] and ? ) and one carry
instead of threen-bit additions. So the critical path of the modified
algorithm is the same as Chen’s algorithm and is shorter than that in
[6] in hardware implementation. Furthermore, the final modification
of the result in [6] is no longer required in the modified algorithm,
which means less delay and hardware.

B. Modified Modular Exponentiation Algorithm

The modified Montgomery algorithm cannot directly apply to
modular exponentiation due to the extra factor2�n and the residue.
We add some preprocessing and postprocessing steps to solve these
problems. First, to bound the output range, we add one extra bit of
precision to intermediate resultsA andB for precision consideration.
This will increase the iteration steps fromn to n+2 steps, and the ex-
tra factor will be �( + ). The extra factor is not removed explicitly.
Instead, we firstpre-processM by taking and ( ( + ) mod )
to compute 0 � ( + )(mod ), so the unwanted factor will be
removed automatically.

After the last iteration of modular multiplication operation, we
post-process Rby taking the result and 1 as input operands to remove
the extra factor, i.e., = ( ? + , ). We can observe that if the
input operand is 1, the highern bit of product( ) will be zero, so
the output result of postprocessing will be less than the modulusN .
Therefore, we not only remove the unwanted factor+ of the result
but also make the result fall in the right range after postprocessing.
The new modified algorithm for computing modular exponentiation
is described below:

Algorithm 2 (The modified modular
exponentiation algorithm)

(Inputs):
Modulus: N (n-bit number)
Exponent: = ( � � � � � )
Message: M (n-bit number)
Constant: = ( + ) mod

(Function):
( ; ; ) = ? ? �( + )(mod )

(Outputs):
Result: [ � ] = mod , � <

(algorithm):
MME(M, E, N, C)
f

M0 = MM(M, C, N); // pre-processing
[ ] = 0;

for ( = ; < � ; ++)
f

[ + ] = ( [ ], [ ], );
if ( � � == )

[ + ] = ( [ + ], 0, );
else

[ + ] = [ + ];
g
[ � ] = ( [ � ], , ); //

post-processing return [ � ];
g

This algorithm takes about the same cycles as Montogomery’s
algorithm [3], [6] applied to modular exponentiation but needs less
time because of a shorter critical path. The number of modular
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Fig. 1. Architecture of the 512-bit RSA processor.

multiplications isdlog2 E e + v(E) - 2, wherev(E) is the number
of nonzero bits inE. So, forn-bit RSA modular exponentiation with
equal probability for 0 and 1, the number of modular multiplication
is (2n+ 2) for the worst case and(1:5n+ 2) for the average case.
Algorithm 2 takes(2n + 2)� n clock cycles which is shorter than
that in [10] and [11] which need(2n+2)� 2n cycles to complete a
modular exponentiation in the worst case. Since cycle time is equal
to that in [10] and [11], our algorithm takes less time to complete
RSA operations and has higher throughput.

III. H ARDWARE DESIGN AND REALIZATION

A. Hardware Design

Fig. 1 shows the architecture of a 512-bit RSA processor based
on the modified algorithm. We use four 512-bit linear shift regis-
ters to store operands needed in computing 512-bit RSA operation
( mod ). The operations of the RSA processor are described
below. In the initial stage, RSA operands are loaded into shift registers
serially through an 8-bit input buffer. While loading messageM into
the text register, we shift the exponent register until the first nonzero
is the most significant bit and count the number of bits of exponent,
dlog

2
Ee. After the initial stages, we start the multiplier. Once the

first output bit of the multiplier is ready, we start the Montgomery
module immediately. So the execution time of CPA, multiplier, and
Montgomery module is almost overlapped. Therefore, the function
units of our design are fully utilized during computation.
1) Carry-Propagation Adder and Serial Parallel Multiplier:The
carry-propagation adder converts the carry-save form of the output
from the Montgomery module to nonredundant binary form. It
generates one bit output per cycle to the serial-parallel multiplier for
the next iteration. The serial-parallel multiplier shown in Fig. 2 is to
realize the multiplication and square of twon+1 bit numbers. It first
generates then+2 lower bits of a product serially to the Montgomery
module, then it stops and holds then higher bit of the product. The
n higher bits of the product will be added with the output of the
Montgomery module to get the modular multiplication result.

The multiplier itself is a linear array type of multiplier with a
special input circuit. The linear array shown in Fig. 2 (neglecting the
AND array) is a direct systolic implementation. When the multiplier is
generating a product of two numbers, the parallel inputM 0 is ready
in the text register and another operandR[i] can arrive in serial.
However, if we want to square one number, a serial input of the
operand will make the multiplier fail. We solved this problem by

Fig. 2. Architecture and timing of linear array multiplier.

Fig. 3. The input data sequence for the squaring operation.

scheduling the serial input operandsR[i] and insert some zeros to
ensure the square operation from failure, as shown in Fig. 3.

2) Montgomery Module:The Montgomery module shown in
Fig. 4 performs the modular reduction by repeating the following
procedure:ai = (P [i]+ci) mod 2; P [i+1] = (P [i]+ai�N+ci)=2.
C0 = (cn+1 cn cn�1 � � � c1 c0)2 is then + 2 lower bit of the
product from the multiplier.C0 entered the Montgomery module
one bit per cycle from the lower bit to the higher bit in series.
The reduction step is a shift-and-add step that is very similar to the
basic step of a multiplication. The quotient determination is a parity
decision on the summation of the intermediate result and the carry.
This can be done simply by an exclusive-OR gate with inputs of
ci and the LSB of the intermediate result in the previous iteration.
After n + 2 iterations, the Montgomery module will addP [n + 2]
and then higher bits of the product from the multiplier together.
The result is then sent to the carry-propagation adder for the next
modular multiplier iteration.

3) Hardware Cost and Performance:The total clock cycle of one
512-bit RSA operation in the processor is

4 � 512 + 519 � 2 + (dlog2Ee+ �(E)) � 519

where�(E) is the number of 1 bit in the exponent. It takes about 0.39
M clock cycles for the average case (equal to 0 or 1 probability) or
0.54 M clock cycles for the worst case. The hardware cost analysis of
the design (excluding control and I/O buffer) is listed in Table. I. The
size of the controller part that uses 11 states for the counter-based
finite state machine is quite small compared with the other part, as
the final layout shows.

4) A 512-Bit Single-Chip RSA Processor:Fig. 5 shows the layout
of the 512-bit RSA chip. We partition the 512 bit into eight main
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Fig. 4. The circuit of the Montgomery module.

TABLE I
HARDWARE COST ANALYSIS OF OUR DESIGN FOR THEn-BIT RSA ALGORITHM

blocks that were described in previous sections. The interconnections
of data signals are all locally connected to neighboring blocks. This
design has tried to minimize the effects of the global signal lines.
We use a buffered tree structure to drive all global signals including
control signals and clock lines. The tree structure resembles theH-
tree structure. So the gate delay penalty caused by propagating the
global signals is minimized to 1.5 ns. To include the effect of the wire
loading, we use a Compass ISM (input slope model) delay model to
estimate the critical path delay 6.06 ns that includes the gate delay
and wire-loading delay. For a more conservative estimation, we add
an extra 30% delay to the ISM results, so the total delay is 6.06
� 1.3= 7.8 ns, roughly equals to 8 ns. So the chip can operate up to
125-MHz clock. (The 30% extra delay is according to our empirical
experiences on the ISM model and physical measurement results.)
The main technical characteristics of the chip are listed in Table II.

Some RSA chips presented so far are listed in Table III, which also
gives cost and performance comparisons with our design. All the data
are in the worst-case scenario. This table does not include data of
[5], [6], [8], and [9] since no detailed chip information is available.
The highest baud rate has been achieved in [7] by incorporating the
Chinese Remainder Theorem (CRT) to gain the 4� speedup. Our
design can also incorporate the CRT to gain such speedup. However,
the CRT is only suitable for the users who know the factorization of
modulusN . In [12], the number of clock cycles needed in a 512-

TABLE II
FEATURES OF THE RSA PROCESSOR

bit RSA operation has been greatly reduced by using the radix-32
technique. However, the critical path will also increase, so the clock
rate will be lower. In our design, a higher clock rate can be applied
because the critical path delay is shorter than others. Therefore, our
design is the fastest chip, excluding the design in [7].

IV. CONCLUSION

In this paper, we propose a scheme based on Montgomery’s
algorithm to implement the most widely used RSA cryptosystem.
The modified Montgomery’s algorithm efficiently reduces the critical
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Fig. 5. Layout of the RSA processor.

TABLE III
SOME RSA CHIPS PRESENTED SOFAR

path and operation cycles to increase the throughput rate. This scheme
can avoid the final adjustment of residue and save the data format
conversion time. A hardware design of a 512-bit RSA processor
was also proposed and implemented based on this algorithm. The
processor has high utilization and is regular to be cascaded for higher
bits. The shortcoming of this design is that the global signals span 512
cells. A conservative analysis has included wire loading to estimate
their effects. The processor takes about 0.54-M clock cycles to finish
a 512-bit RSA encryption (decryption) and delivers a baud rate of
118 kbit/s at 125 MHz in the worst case. The variable encoding
and decoding time for 512-bit RSA operation may not be desirable
in some system designs but can be easily coped in asynchronous
system designs. Besides, since we do not operate with all 512 bit,
this design can save power consumption.

APPENDIX

The following is to verify that our modified Montgomery algorithm
is modulo equivalent to the original Montgomery algorithm:

Verification:
In the for loop,by induction:

[ + ] ? + =

=

=

( � ) + ?

=

=

( � )

so, � [ ] < +

[ ] ? =

= �

=

( � ) + ?

= + ?

Since
= [ ] +

Then
? = [ ] ? + ?

= ? + + ?

= ? + ?

Hence,
� ? ?

� (mod )
� � + <

+
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Analog Implementation of Fast Min/Max Filtering

S. Siskos, S. Vlassis, and I. Pitas

Abstract—An analog implementation of running min=max filters
based on current-mode techniques is presented in this brief. Switched-
current delay cells and current/voltage two inputs min/max selectors are
used either for current or voltage inputs respectively. The voltage two
input Min/Max circuit is designed using current conveyors and a modified
structure of this is used to implement the running Min/Max filter for
window sizen = 8. Simulation results demonstrate the feasibility of the
proposed implementation, which can be extended to a higher window size.

Index Terms—Min/Max filters, mixed analog–digital integrated circuits,
nonlinear filters, running filters.

I. INTRODUCTION

In the recent years the use of nonlinear filters has exhibited a strong
growth due to their capabilities to cope with system nonlinearities,
non-Gaussian noise environments and sensor and perceptual system
nonlinearities [1]. One of the most frequently used classes of non-
linear filters is based on order statistics [2]. Let us suppose that the
input samples in the filter window are denoted byx1; x2; � � � ; xn.
If we order them according to their magnitude, we get their order
statistics:x(1) � x(2) � � � � � x(n). The minimal input sample is
x(1) and the maximal input sample isx(n). The ith-order sample is
denoted byx(i); 1 � i � n. The median of the input samples isx(v),
wheren = 2v + 1. Max/min filtering as well as median filtering
are very frequently used in digital signal and image processing. In
particular, maximum and minimum filtering are directly linked to the
gray scale mathematical morphology operationsdilation anderosion
respectively [3]. Dilation/erosion is essentially a maximum or mini-
mum operation respectively on the samples within the filter window.
Both dilation and erosion have numerous applications, particularly
in digital image filtering, edge detection, region segmentation and
shape analysis. In the following, we shall concentrate our efforts
in proposing digital filter architectures that are suitable to max/min
filtering and that are easily implemented in a hybrid (analog/digital)
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Fig. 1. Themax calculation flow diagram forn = 8.

way. The motivation to built these architectures is to construct
extremely fast, simple, and affordable filters that operate directly on
the analog signal and can be easily incorporated to smart sensors as
well as into smart cameras. The proposed architectures are essentially
suited to one dimensional signal filtering (e.g., sound, ECG/EEGS,
measurements). However, due to the separability property of the
max/min filtering, the same architectures and their implementation
can be used for two-dimensional signal (image) processing, by
applying them along image rows and columns independently.

II. FAST STRUCTURES FORRUNNING MAX/MIN FILTERING

The problem of running max/min filtering can be formulated as
follows. Let xi; i 2 Z by an one-dimensional signal. The output of
a max or min filter yi; i 2 Z is given by

yi = T (xi; � � � xi�n+1) (1)

wheren is the filter length (window size) andT is themax or min
operator, respectively. Equation (1) is called “running”max or min
filtering because after each output calculation, the filter window is
shifted one position to the right (i.e., it “runs”).

The computational complexity, measured in number of compar-
isons per output point, isC(n) = n � 1. It is desirable to construct
filter structures that have a smaller number of comparisons per output
point in order to speed the filtering process. This is accomplished by
employing the “divide-and-conquer” strategy.

Let as suppose that the filter window sizen is a power of two:
n = 2k. It is easily seen thatmax or min calculation ofn numbers
can be split into themax or min calculation of two subsequences
of length n=2 each:

yi = T (xi; � � � ; xi�n+1)

= T [T (xi; � � � ; xi�(n=2)+1); T (xi�(n=2); � � � ; xi�n+1)]: (2)

This procedure can be repeated recursively until we reach subse-
quences of length 2 [4]. In this case, themax or min calculation
of two numbers is done by one comparison only. The corresponding
flow diagram is shown in Fig. 1 forn = 8. Each dot corresponds to
one comparisonT [�; �]. The flow diagram haslog2 n stages. Only
one extra comparison per output point is needed at each stage.
Therefore, the computational complexity of this structure is reduced
to C(n) = log2 n, which is much less than the complexityn � 1
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