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Substituting for the residues; = m; — 1 and forzs = 1 satisfying A New RSA Cryptosystem Hardware
the odd parity condition and simplifying Design Based on Montgomery’s Algorithm
. . Ching-Chao Yang, Tian-Sheuan Chang, and Chein-Wei Jen
2nf < —mimsz +2—my
nd < —-mi(n+1)+1
1 1 Abstract—In this paper, we propose a new algorithm based on Mont-
3 < —my <1 + —) + - gomery’s algorithm to calculate modular multiplication that is the core
n n arithmetic operation in an RSA cryptosystem. The modified algorithm
3< —my —2+ g eliminates over-large residue and has very short critical path delay that
. mi n yields a very high-speed processing. The new architecture based on this
2 modified algorithm takes about1.5n? clock cycles on the average to finish
< —=m3+ — onen-bit RSA operation. We have implemented a 512-bit single-chip RSA
< —ms " processor based on the modified algorithm with Compass 0.6m SPDM
2 CMOS cell library. The simulation results show that the processor can
Therefore, operate up to 125 MHz and deliver the baud rate of 164 Kbits/s on the
5 < —ms average.

I. INTRODUCTION

Proof of C4: For the remaining rangéms > 3 > —mgy), the

correctionmms/2 yields the correct result.

As the telecommunication network has grown explosively and the
internet has become increasingly popular, security over the network
is the main concern for further services like electronic commerce
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design based on the modified algorithm can start the next iteratieerification is shown in the Appendix which also shows the output
immediately when the first digit of the previous iteration output isange.
available. Hence, no additional cycles are required at the start ofThe algorithm takes clock cycles as Montgomery’s algorithm in
the next iteration. Furthermore, a fully pipelined design reduces tf@ but shorter than Chen’s algorithm that needscycles. Besides,
critical path and attains a high clock rate and high throughput. the hardware cost foP2 is only one level ofn-bit adders, which
This paper is organized as follows. In Section I, we will proposis as low as Chen’s algorithm and half of Montgomery’s algorithm
the modified Montgomery algorithm and apply it to the modulain [6] because of only twoe-bits (P[i] andqgi + N) and one carry
exponentiation. In Section lll, the hardware design of a 512-bit RSiAstead of three:-bit additions. So the critical path of the modified
processor will be presented. Finally, we will conclude this paper migorithm is the same as Chen’s algorithm and is shorter than that in
Section IV. [6] in hardware implementation. Furthermore, the final modification
of the result in [6] is no longer required in the modified algorithm,

Il. MODIFIED MODULAR EXPONENTIATION ALGORITHM which means less delay and hardware.

A. Modified Montgomery’s Algorithm B. Modified Modular Exponentiation Algorithm

Montgomery’s modular multiplication algorithm [3] can avoid The modified Montgomery algorithm cannot directly apply to
range comparison which is the critical operation in traditional divisiomodular exponentiation due to the extra facor® and the residue.
in modular multiplication. However, this algorithm requires som&Ve add some preprocessing and postprocessing steps to solve these
preprocessing and postprocessing to remove an extra factor and lipndblems. First, to bound the output range, we add one extra bit of
the range of intermediate output. To address these problems, Chegcision to intermediate resultsand B for precision consideration.
[10], [11] proposed a modified Montgomery’s algorithm. Comparedhis will increase the iteration steps framto n+2 steps, and the ex-
with the original Montgomery algorithm, Chen's algorithm has &ra factor will be2~*+2 . The extra factor is not removed explicitly.
simpler modular reduction step. The output will fall in the rangénstead, we firstore-processM by taking M and (2°**? mod N)
smaller thanV. However, the iteration step is increased frento  to computeM = M2+ (modN), so the unwanted factor will be
2n. removed automatically.

To eliminate such problems and keep the iteration step as low as irAfter the last iteration of modular multiplication operation, we
the original Montgomery algorithm, we propose a modified algorithipost-process Roy taking the result and 1 as input operands to remove
in C-like code as follows: the extra factor, i.eB = MM(R » 2°72, 1). We can observe that if the

Algorithm 1 (The Modified input operand is 1, the higher bit of product(cC.) will be zero, so

Montgomery’s algorithm) the output result of postprocessing will be less than the moddilus

(Inputs): Therefore, we not only remove the unwanted fa@br* of the result
Modulus:N (n-bit binary representation) but also make the result fall in the right range after postprocessing.
Multiplier: A=(ap_1 an_2 -+ a ao)2 The new modified algorithm for computing modular exponentiation
Multiplicand: B (n-bit number) is described below:

(Outputs): Algorithm 2 (The modified modular
Result: R=A*Bx2 *(modN), exponentiation algorithm)

0<R<L 224N <22t (Inputs):
Quotient: Q=(qu-1 Gu_2 Qi Qo2 Modulus: N (n-bit number)
(Algorithm): Exponent: E=(1 ex2 ex—3 -+ €1 eo)2
MM(A, B, N) Message: M (n-bit number)
{ Constant: ¢ = 22%2) pod N
Pl: AxB=C=C;x2"+Co; (Function):
(0<Co, C; <2 Co=(Cai Coz c1 co)2) MM(A, B, N) = A% B 2~ (mod )
P[0] =0; (Outputs):

P2: for (i=10; i<mn; i++) Result: Rlk—1]=M'modN, 0<R<N
{ (algorithm):

qi = (P[i] + ci) mod 2;
/I even or odd ?
Pli+4 1] = (Pli] + qi * N+ ci) div 2

MME(M, E, N, C)

{
M = MM(M, C, N); // pre-processing

/I right shift 1-bit R[0] = M;

} for (1=0; i<k—1; it++)

R = P[n] + Ci; {

Return R; R[i+ 1] = MM(R[i], R[i], N);

if (ex—i—o==1)
In this modified algorithm, similar to Chen’s algorithm, the mod- R[i+ 1] = MM(R[i + 1], M, N);

ular multiplication operation is split into multiplication procedure else
(P1) and Montgomery modular reduction proceduf@?) . In R[i+ 1] =R[i 4+ 1];
P1, we only take the lowem bits (Cy) of the product to do }
the Montgomery reduction instead of whdle bits as in Chen’s Rk — 1] = MM(R[k — 1], 1, N); //
algorithm. The higher. bits (C1) of the product has the same weight post-processing return Rk — 1];

2" asP[n]. We sumC', with P[n] to get the result (wheré[n] is }

the result of theC;, after Montgomery reduction). Though the value This algorithm takes about the same cycles as Montogomery’s
of our result(R = Cy + P[n]) is different from the result R[rn]) algorithm [3], [6] applied to modular exponentiation but needs less
of Montgomery algorithm, they are equivalent in modula This time because of a shorter critical path. The number of modular
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Fig. 1. Architecture of the 512-bit RSA processor.
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multiplications is[log, E | + V(E) - 2, wherev(E) is the number Q

of nonzero bits inE. So, forn-bit RSA modular exponentiation with

equal probability for 0 and 1, the number of modular multiplication a 0
3

mO 0 momI m0m2 moma

m, O m,m, m,m,

is (2n + 2) for the worst case andL.5n + 2) for the average case.
Algorithm 2 takes(2n + 2) x n clock cycles which is shorter than
that in [10] and [11] which nee®2n + 2) x 2n cycles to complete a
modular exponentiation in the worst case. Since cycle time is equal
to that in [10] and [11], our algorithm takes less time to complete
RSA operations and has higher throughput.

0 0o m, 0 m,m,

* Rli]= (mym, m m),
. HARDWARE DESIGN AND REALIZATION Fig. 3. The input data sequence for the squaring operation.

A. Hardware Design

Fig. 1 shows the architecture of a 512-bit RSA processor basggheduling the serial input operand§i] and insert some zeros to
on the modified algorithm. We use four 512-bit linear shift regiseNSure the square operation from failure, as shown in Fig. 3.
ters to store operands needed in computing 512-bit RSA operatiorf) Montgomery Module:The Montgomery module shown in
(M mod N). The operations of the RSA processor are describ&dd- 4 performs the modular reduction by repeating the following
below. In the initial stage, RSA operands are loaded into shift regist@@cedurea; = (Pli]+ci) mod 2, Pli+1] = (P[i]+aixN+ci)/2.
serially through an 8-bit input buffer. While loading messagento €0 = (Gu+1 ¢u cu—1 ==+ c1 co)2 iS then + 2 lower bit of the
the text register, we shift the exponent register until the first nonzepgPduct from the multiplierCy entered the Montgomery module
is the most significant bit and count the number of bits of exponef@€ Pit per cycle from the lower bit to the higher bit in series.
log, E. After the initial stages, we start the multiplier. Once thd he reduction step is a shift-and-add step that is very similar to the
first output bit of the multiplier is ready, we start the Montgomerfasic step of a multiplication. The quotient determination is a parity
module immediately. So the execution time of CPA, multiplier, anfecision on the summation of the intermediate result and the carry.

Montgomery module is almost overlapped. Therefore, the functiddliS can be done simply by an exclusive-gate with inputs of
units of our design are fully utilized during computation. ¢; and the LSB of the intermediate result in the previous iteration.
1) Carry-Propagation Adder and Serial Parallel MultiplierThe After n + 2 iterations, the Montgomery module will add[n +- 2]
carry-propagation adder converts the carry-save form of the outftd then higher bits of the product from the multiplier together.
from the Montgomery module to nonredundant binary form. [fhe result is then sent to the carry-propagation adder for the next

generates one bit output per cycle to the serial-parallel multiplier fgtedular multiplier iteration.

the next iteration. The serial-parallel multiplier shown in Fig. 2 is to 3) Hardware Cost and PerformanceThe total clock cycle of one

realize the multiplication and square of twot 1 bit numbers. It first 912-bit RSA operation in the processor is

generates ths_—|—2 lower bits of a prodl_Jct seriz_illy to the Montgomery 4% 512+ 519 % 2 + ([log, E] + v(E)) % 519

module, then it stops and holds thehigher bit of the product. The

n higher bits of the product will be added with the output of thevherev(E) is the number of 1 bit in the exponent. It takes about 0.39

Montgomery module to get the modular multiplication result. M clock cycles for the average case (equal to 0 or 1 probability) or
The multiplier itself is a linear array type of multiplier with a0.54 M clock cycles for the worst case. The hardware cost analysis of

special input circuit. The linear array shown in Fig. 2 (neglecting ththe design (excluding control and 1/O buffer) is listed in Table. I. The

AND array) is a direct systolic implementation. When the multiplier isize of the controller part that uses 11 states for the counter-based

generating a product of two numbers, the parallel inplitis ready finite state machine is quite small compared with the other part, as

in the text register and another operaf@] can arrive in serial. the final layout shows.

However, if we want to square one number, a serial input of the 4) A 512-Bit Single-Chip RSA ProcessoFig. 5 shows the layout

operand will make the multiplier fail. We solved this problem byof the 512-bit RSA chip. We partition the 512 bit into eight main
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| op[n-1:1]: mod&aqi — k—(:(h—,\\ .

Joptil

| m[n-1:0]: data from multiplier

c[n-1]  s[n-1] c[n-2] s[n-2] e1]  s[1] cfo]  s[0] c'fo] s'10]
| {c[n-1:0],1'b0} {1'b0,s[n-1:0])

u To Carry Propagation Adder

Fig. 4. The circuit of the Montgomery module.

TABLE |
HARDWARE COST ANALYSIS OF OUR DESIGN FOR THE n-BIT RSA ALGORITHM

Register Full Adder AND MUX
Modulus Reg In 0 0 0
Constant Reg In 0 0 1
Exponent Reg 1n 0 0 1
Text Reg 1n 0 0 1
Mont. Module 2n n In 3n
CPA 2n 1 0 2n
Multiplier 4n n 2n 3n
Total 12n 2n 3n 8n
blocks that were described in previous sections. The interconnections TABLE I
of data signals are all locally connected to neighboring blocks. This FEATURES OF THERSA RROCESSOR
design has tried to minimize the effepts of the glopal sngr.wal "”?ﬁ'echnology CMOS 0.6m SPDM
We use a buffered tree structure to drive all global signals mcludmg - 30 CQFP
control signals and clock lines. The tree structure resemble#/the ackage
tree structure. So the gate delay penalty caused by propagating ffite Counts(2 input NAND) 74493
global signals is minimized to 1.5 ns. To include the effect of the wiréhip Size 7996.8um x 6993.9m.
loading, we use a Compass ISM (input slope model) delay model ®uud Rate (512-bit) 164Kbits/s with 125Mhz clock (average case)

estimate the critical path delay 6.06 ns that includes the gate delgy

and wire-loading delay. For a more conservative estimation, we ad':mtml on-chip

an extra 30% delay to the ISM results, so the total delay is 6.0

x 1.3= 7.8 ns, roughly equals to 8 ns. So the chip can operate up BgmPer of cloks (512-bit)

125-MHz clock. (The 30% extra delay is according to our empirical

experiences on the ISM model and physical measurement results.)

The main technical characteristics of the chip are listed in Table 1Pit RSA operation has been greatly reduced by using the radix-32
Some RSA chips presented so far are listed in Table III, which aligchnigue. However, the critical path will also increase, so the clock

gives cost and performance comparisons with our design. All the d&g4€ Will be lower. In our design, a higher clock rate can be applied

are in the worst-case scenario. This table does not include dataP§fause the critical path delay is shorter than others. Therefore, our

[5], 6], [8], and [9] since no detailed chip information is availabledesign is the fastest chip, excluding the design in [7].

The highest baud rate has been achieved in [7] by incorporating the

Chinese Remainder Theorem (CRT) to gain the dpeedup. Our IV. CoNCLUSION

design can also incorporate the CRT to gain such speedup. Howevern this paper, we propose a scheme based on Montgomery's
the CRT is only suitable for the users who know the factorization @figorithm to implement the most widely used RSA cryptosystem.
modulusN. In [12], the number of clock cycles needed in a 512The modified Montgomery’s algorithm efficiently reduces the critical

8-bit parallel, asynchronous

0.39M (average case)
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TABLE 11l
SoME RSA GHIPs PRESENTED SOFAR
v Gate bits # of clocks Technol clock | Baud Rate CRT
€ar | counts cpt:;) (512bits) ecnology | gy | itsis)
M. Shand[7] 1993 100k] 512 N/A] PAMT 40M 600k| Yes
Victor[ 12} 1994 75k 512 0.125M; Tum| 25M 100k}  No
NTTI13] 1994 1054 1024 ™ °‘5“"‘ga‘e;; 40M 20k No
Chen{10]{11] | 1995/96| 77k| 512 1.05M 0.8um| 50M 24.3kf  No
Our design 1996 74k} 512 0.54M 0.6um| 125M 118k No
*Programmable active memory chip
path and operation cycles to increase the throughput rate. This scheme Since
can avoid the final adjustment of residue and save the data format R =P[n] + C;
conversion time. A hardware design of a 512-bit RSA processor Then

was also proposed and implemented based on this algorithm. The
processor has high utilization and is regular to be cascaded for higher
bits. The shortcoming of this design is that the global signals span 512
cells. A conservative analysis has included wire loading to estimate
their effects. The processor takes about 0.54-M clock cycles to finish
a 512-bit RSA encryption (decryption) and delivers a baud rate of
118 kbit/s at 125 MHz in the worst case. The variable encoding
and decoding time for 512-bit RSA operation may not be desirable
in some system designs but can be easily coped in asynchronous
system designs. Besides, since we do not operate with all 512 bit,
this design can save power consumption. (1]

[2
APPENDIX
The following is to verify that our modified Montgomery algorithm [3]
is modulo equivalent to the original Montgomery algorithm:
Verification:
In the for loop,by induction:
J:l

j=i
P[i+ 1] *x 2 = Z(Cj % 29) + N*‘Z(qj % 29)

j=0
0<Pli]<N+1

Jj=n—1

Pl 2" = > (c;#2))+N«Q

j=o
=Co+N%xQ

(4]

(5]

j=0
SO,

(6]

(7]

Rx 2" =P[n| x 2" + C; % 2"
=C*2°4+Co+N%Q
=AxB+N*Q

Hence,

R=AxBx2 *(modN)

0<R< 24N <22t
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Analog Implementation of Fast Min/Max Filtering Fig- 1. Themax calculation flow diagram fon = 8.

S. Siskos, S. Vlassis, and |. Pitas way. The motivation to built these architectures is to construct

extremely fast, simple, and affordable filters that operate directly on
Abstract—An analog implementation of running min/max filters the anglog signal and can be easily mcorporat_ed to smart sensor§ as
based on current-mode techniques is presented in this brief. Switched- Well as into smart cameras. The proposed architectures are essentially
current delay cells and current/voltage two inputs min/max selectors are suited to one dimensional signal filtering (e.g., sound, ECG/EEGS,
used either for current or voltage inputs respectively. The voltage two measurements). However, due to the separability property of the
input Min/Max circuit is designed using current conveyors and a modified  5y/min filtering, the same architectures and their implementation
structure of this is used to implement the running Min/Max filter for . . . . .
can be used for two-dimensional signal (image) processing, by

window sizen = 8. Simulation results demonstrate the feasibility of the - A ‘
proposed implementation, which can be extended to a higher window size. applying them along image rows and columns independently.

Index Terms—Min/Max filters, mixed analog—digital integrated circuits,
nonlinear filters, running filters. Il. FAST STRUCTURES FORRUNNING MAX/MIN FILTERING

The problem of running max/min filtering can be formulated as
follows. Letz;,¢ € Z by an one-dimensional signal. The output of

. . - a max or min filter y;,7 € Z is given b
In the recent years the use of nonlinear filters has exhibited a strong Y g y

growth due to their capabilities to cope with system nonlinearities, yi = T(wiy - impt1) @)
non-Gaussian noise environments and sensor and perceptual system ) ) ) ) . )
nonlinearities [1]. One of the most frequently used classes of nof{heren is the filter length (window size) an#l is themax or min
linear filters is based on order statistics [2]. Let us suppose that @Rerator, respectively. Equation (1) is called “runningdx or min
input samples in the filter window are denoted by, zs. - -, 2 filtering because after each output calculation, the filter window is

If we order them according to their magnitude, we get their ord&fifted one position to the right (i.e., it “runs”).

statistics:z(;) < #(z) < +++ < 2(,y. The minimal input sample is The computatlon'?ll cpmplexﬂy, measu.red in number of compar-
(1) and the maximal input sample ig,,,. The ith-order sample is 1SONS per output point, i€'(n) =n — 1. It is desirable to construct
denoted byr(;), 1 < i < n. The median of the input samplesais,), flltc_ar structures that have a s_mal_ler number of comparisons per output
where n = 2v + 1. Max/min filtering as well as median filtering POINt |n.0rder to spged the filtering process. This is accomplished by
are very frequently used in digital signal and image processing. §'Ploying the “divide-and-conquer” strategy.

particular, maximum and minimun filtering are directly linked to the L€t as suppose that the filter window sizeis a power of two:
gray scale mathematical morphology operatiditation anderosion ™ = 2" It is easily seen thahax or min calculation of» numbers
respectively [3]. Dilation/erosion is essentially a maximum or minjc@ be split into themax or min calculation of two subsequences
mum operation respectively on the samples within the filter windoW! length n/2 each:

Both dilation and erosion have numerous applications, particularly
in digital image filtering, edge detection, region segmentation and
shape analysis. In the following, we shall concentrate our efforts =TT (i timszyn) T(@imgnyz) s tizagn)] (2)

in proposing digital filter architectures that are suitable to max/Mifyis procedure can be repeated recursively until we reach subse-
filtering and that are easily implemented in a hybrid (anal()g/d'g'taauences of length 2 [4]. In this case, thexx or min calculation
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