
Pattern Recognition, Vol. 31, No. 7, pp. 945—952, 1998
(1998 Pattern Recognition Society. Published by Elsevier Science Ltd

All rights reserved. Printed in Great Britain
0031-3203/98 $19.00#0.00

PII: S0031-3203(97)00077-0

FAST FULL SEARCH IN MOTION ESTIMATION BY
HIERARCHICAL USE OF MINKOWSKI’S INEQUALITY

(HUMI)-

JING-YI LU, KUANG-SHYR WU and JA-CHEN LIN*

Department of Computer and Information Science, National Chiao Tung University, Hsinchu,
Taiwan 30010, R.O.C.

(Received 21 March 1996; in revised form 19 November 1996)

Abstract—In this paper, we extend the idea of successive elimination algorithm (SEA) to obtain a fast full
search (FS) algorithm accelerating the block matching procedure of motion estimation. Based on the
monotonic relation between the accumulated absolution distortions (AAD) obtained for distinct layers of
a pyramid structure, the proposed method successfully rejects many impossible candidates considered in
the FS. The derivation of the monotonicity relation repeatedly uses in a four-dimensional vector space the
l
1
-version of Minkowski’s inequality, an inequality which is quite well-known in the field of mathematics.

Simulation results show that the processing speed is faster than that of several well-known fast full search
methods, including the SEA that uses just once the Minkowski’s inequality (in a vector space of 256
dimension when the block size is 16]16). The processing speed of the proposed method is also competitive
with that of the three-step search (TSS), which is often used for block matching in interframe video coding,
although the visual quality performance of TSS is usually a little poorer than that of the FS. (1998
Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved

Motion estimation Block matching Position vector Motion vector
Accumulated absolute distortion Minkowski’s inequality l

1
-norm

1. INTRODUCTION

The block-matching algorithm (BMA) is popularly
used for the motion estimation of interframe video
coding. The ideal approach to BMA is the FS, which
exhaustively searches for a block whose, say, accumu-
lated absolute distortion (AAD) to an input block, is
minimal among all possible blocks within a search
window. Although the FS can find the optimal sol-
tuion, i.e. the best-matched block mentioned above,
the serious computation burden needed will make the
hardware implementation difficult(1) if the window
size becomes large (in the application to HDTV or
super high-resolution TV). Many existing methods
save computation but degrade the visual quality;
examples include the TSS,(2) the orthogonal search,(3)
or the two algorithms introduced in reference (4)
which use alternating patterns. On the other hand, an
elegant algorithm called the successive elimination
algorithm (SEA) was developed recently in reference
(5) by Li and Salari to alleviate the computation
burder of FS while the visual quality was kept to be
identical to that of the FS. Note that SEA used dir-
ectly in a 256-dimensional vector space (if each block
has size 16]16 and is treated as a 256-dimensional
vector) the l

1
-version of Minkowski’s inequality—an

inequality quite well-known in the field of

*Author to whom correspondence should be addressed.
-This study was supported by the National Science Coun-

cil, Republic of China, under contract number: NSC86-2213-
E009-108.

mathematics(6)—to eliminate impossible candidate
vectors. Another technique widely used in industry is
to use the partial distortion elimination(7) (PDE) to
eliminate impossible candidates at certain stages be-
fore completing the evaluation of the distortions from
those impossible candidates to the discussed block.
The PDE technique could also yield the visual quality
identical to that of the FS.

In this paper, we extend the idea of SEA to obtain
a pyramid based fast searching algorithm for the
block matching. The monotonic relation between the
AAD of distinct layers of the pyramid will be derived
in Appendix A using in a four-dimensional vector
space the l

1
-version of Minkowski’s inequality. With

the derived monotonic relation, many impossible can-
didates can be kicked out without doing time-con-
suming computation. The proposed method keeps the
good visual quality, i.e. the minimized AAD error, of
the FS (and hence of the PDE and SEA), while the
processing speed is greatly improved.

2. DEFINITIONS AND THE PROPOSED ALGORITHM

In this section, we define the AAD that will be used to
measure the matching error for the block matching. For
a specified block G of size 2N]2N [G will be referred to
hereafter as the incoming (or input) block] in the current
frame t, the corresponding AAD(x, y) is defined as

AAD(x, y)"
2N

+
i/1

2N

+
j/1

D f t(i, j)!f t~1(i#x, j#y) D .

(1)

945

Fig. 1. The structure of the pyramid.

Here, f t (i, j) represents the gray value at pixel (i, j) of
G in frame t, and f t~1 (i#x, j#y) denotes the gray
value at pixel (i#x, j#y) in frame t!1. As for the
vector (x, y), which is called the position vector, de-
notes the relative displacement of a candidate block
(in the previous frame t!1) to the specified block
G (in the current frame t).

In the BMA, the current frame t is often divided
into non-overlapping blocks of size 2N]2N (16]16 in
this paper, i.e. N"4). The goal of the BMA is to find
for each block G its best position vector (m, n) within
a search window W (in this paper the window size is
(2N`1#1)](2N`1#1)"33]33) such that

AAD(m, n)" min
~2N4x, y42N

AAD(x, y) . (2)

Hereafter, the position vector which is the best among
all 33]33 position vectors M(x, y)N will be called the
‘‘motion vector’’ (for the block G). The basic concept
to obtain the motion vector (m, n) quickly is to elimin-
ate from the candidate space W those position vectors
(x, y) which are impossible to be the best. We first
review below a pyramid structure so that those im-
possible candidates can be eliminated layer by layer.

For every block B, the corresponding pyramid of
(N#1) layers (from layer 0 to layer N) is a sequence
ML

0
, L

1
, . . . ,L

N
N, with each layer defined as follows:

the layer L
N

of size 2N]2N is exactly the original block
B, the L

N~1
of size 2N~1]2N~1 is a size-reduced layer

derived from L
N
, the L

N~2
of size 2N~2]2N~2 is

a size-reduced layer derived from L
N~1

, . . . , and
finally, the layer L

0
, which consists of a single pixel

only, is a size-reduced layer derived from L
1

(see
Fig. 1). For each layer L

k~1
(where 14k4N), each

pixel value f
k~1

(i, j) (where 14i42k~1 and
14j42k~1) is obtained by a summation of the 2]2
corresponding pixel values of L

k
. In other words, the

pixel values are computed by

f
k~1

(i, j)"f
k
(2i!1, 2j!1)#f

k
(2i!1, 2j)

#f
k
(2i, 2j!1)#f

k
(2i, 2j)

for 14i, j42k~1 and 14k4N. (3)

[To save computation, we do not want to divide the
right-hand side of equation (3) by 4, although the
division will make the value of f

k~1
(i, j) staying in the

range 0—255.] Since each layer L
k
can be considered

as a (low-resolution) image (except that the pixel
values are in fact the so-called ‘‘generalized’’ gray
values because they are not in the range 0—255), the
AAD

k
(x, y) between layer L

k
of an input G, and layer

L
k

of the block corresponding to a motion vector
candidate (x, y), can be defined by generalizing equa-
tion (1), namely,

AAD
k
(x, y)"

2k

+
i/1

2k

+
j/1

D f t
k
(i, j)!f *t~1;(x, y)+

k
(i, j) D

for 04k4N. (4)

Here, the f t
k
(i, j) represents the (generalized) gray value

at the (low-resolution) pixel (i, j) in layer L
k
construc-

ted from the 2N]2N block G in frame t; and
f *t~1;(x, y)+
k

(i, j) denotes the (generalized) gray value at
the (low resolution) pixel (i, j) in layer L

k
constructed

from a 2N]2N block in frame t!1, with the center of
that 2N]2N block being (x, y) units away from the
center of the 2N]2N block G.

946 J.-Y. LU et al.

The relation among the AAD of distinct layers is
introduced below. For two arbitrarily given sets
P"Mp

1
, p

2
, . . . , p

z
N and Q"Mq

1
, q

2
, . . , q

z
N of non-

negative real numbers, where P and Q have the same
number of elements, the l

1
-version of the very famous

Minkowski’s inequality

DDP!QDD5DEPE!EQED

[see Theorem 8.13 of reference (6) for the definition
and proof of the infinitely many versions l

1
—l

=
of the

Minkowski’s inequality] implies that

z
+
i/1

Dp
i
!q

i
D"EP!QE5DEPE!EQED

"K
z
+
i/1

Dp
i
D!

z
+
i/1

Dq
i
DK

"K
z
+
i/1

p
i
!

z
+
i/1

q
iK . (5)

This well-known fact can also be interpreted geomet-
rically as: in the l

1
-norm space (also know as the

city-block-norm space), the triangular inequality still
holds (the length of the third edge (p-q-) is not
shorter than the difference of the lengths Ep-El

1
and

Eq-El
1

of the two edges p-"(p
1
, p

2
, . . . , p

z
) and

q-"(q
1
, q

2
, . . . , q

z
). The assumption p

i
50 and

q
i
50 for all i makes Ep-El

1
"+ Dp

i
D"+ p

i
and

EquM El
1
"+ Dq

i
D"+ q

i
when we evaluate the l

1
-norm).

According to inequality (5), the inequality

AAD
k
(x, y)5AAD

k~1
(x, y) for 14k4N (6)

can be proved (the proof is given in Appendix A).
From the pyramid structure and equation (6), we can
efficiently search for the motion vector, i.e. the best
position vector. Without loss of generality, we assume
that a part of the 33]33"1089 position vectors in
W have been inspected; the ‘‘so far’’ best position
vector is stored in (m, n); and the corresponding dis-
tortion AAD(m, n) is stored in AAD

.*/
. Then the

following corollary is always true:

Corollary. If AAD
k
(x, y)5AAD

.*/
for some

k3 M0, 1, . . . , NN, then

AAD(x, y)5AAD
.*/

,

i.e., in the previous frame t!1, the block obtained by
translating the input block (x, y) units will not be
better than the block obtained by translating the
input block (m, n) units.

This corollary comes directly from equation (6):
because AAD

N
(x, y) is in fact AAD(x, y) and

AAD
N
(x, y)5AAD

N~1
(x, y)5. . .5AAD

0
(x, y) al-

ways holds by equation (6), we therefore obtain

AAD(x, y)"AAD
N
(x, y)5AAD

k
(x, y)5AAD

.*/
.

Hence, (x, y) could not be better than (m, n), and thus,
(x, y) should be rejected. Note that the computation of
AAD

k
(x, y) grows when k increases. More precisely,

the computation load of AAD
k
(x, y) is about four

times heavier than that of AAD
k~1

(x, y). Therefore,
the proposed algorithm uses the ‘‘top-down’’ ap-
proach (from L

0
to L

N
) to reject impossible candidates

(x, y) layer by layer. Some are rejected in L
0
, some are

rejected in L
1
, etc. Of course, the overhead to con-

struct the pyramid (the construction is bottom-up,
however) should also be considered. But, we found
that, even with this overhead, the total CPU time is
still saved somewhat using the above corollary.

Note that if we let z"2N]2N"22N in equation (5),
then

AAD(x, y)" +
14i, j42N

D f t (i, j)!f t~1(i#x, j#y) D

5K +
14i, j42N

D f t (i, j)D

! +
14i, j42N

D f t~1(i#x, j#y) DK
by the definition (1) of AAD(x, y). SEA therefore elim-
inates a position vector (x, y) if

K +
14i, j42N

D f t (i, j) D! +
14i, j42N

D f t~1(i#x, j#y) DK
5AAD

.*/

[whereas we eliminate (x, y) if AAD
k
(x, y)5AAD

.*/
for some k3 M0, 1, . . . , NN].

For the reader’s benefit, we give below the algo-
rithm that utilizes the proposed method to eliminate
those ‘‘impossible position vectors’’ for a given G.
Note that the motion vector obtained for the corre-
sponding block (i.e. the block having identical loca-
tion as G) in frame t!1 is used as the initial guess for
the motion vector (m, n) of G of the current frame t.

Algorithm
Goal : Find the motion vector, i.e. the best position

vector within a search window W in the pre-
vious frame t!1 for an incoming block G in
the current frame t.

Input: 1. An incoming block G of size 2N]2N

"16]16 in frame t.
2. 33]33"1089 candidates, i.e. 1089 posi-

tion vectors, in W of frame t!1.
Output: The motion vector (m, n), i.e. the position of

the best-matched block.
Initial conditions: (1) Assume that the pyramids for

all blocks in frame t!1 have
been established. (The over-
head is only about 12 MH op-
erations for the frame of size
M]H, as is shown in Appen-
dix B).

(2) Let the initial guess of the
motion vector (m, n) be the
motion vector obtained for the
corresponding block of G in
frame t!1.

Minkowski’s inequality 947

Table 1. Performance comparison among the five algorithms using different image sequences. NOAE meant the ‘‘number of
AAD evaluations’’ needed for each block, although CPU time was for the whole sequence (150, 300, and 168 frames,

respectively)

NOAE* PSNR(db) AAD value Total
Images Algorithms per block per block per block CPU times

Suzie FS 1089 38.804 650.2 343@30A
PDE 227 38.804 650.2 123@47A
SEA 316 38.804 650.2 108@16A
ours 97 38.804 650.2 38@45A
TSS 33 38.188 721.4 22@40A

Salesman FS 1089 37.553 703.6 855@5A
PDE 237 37.553 703.6 188@13A
SEA 253 37.553 703.6 216@54A
ours 22 37.553 703.6 34@45A
TSS 33 37.457 718.8 55@18A

Claire FS 1089 47.671 231.7 470@0A
PDE 282 47.671 231.7 126@10A
SEA 176 47.671 231.7 88@17A
ours 32 47.671 231.7 26@5A
TSS 33 47.65 233.5 30@11A

*Preprocessing overhead (e.g. building the pyramids) was not included in NOAE, although the overhead for elimination test
(e.g. Step 5 of our algorithm) was included.
sCPU time included all overheads (preprocessing, elimination test, etc.).

Steps:
Step 1: Use Formula (3) to construct the pyramid

for G. [This construction uses additions
only, and the number of additions used is
not more than the additions used in equa-
tion (1). Hence, doing Step 1 takes shorter
CPU time than doing Step 2.]

Step 2: Evaluate the AAD for the initial guess (m, n)
and let AAD

.*/
"AAD(m, n).

Step 3: If all position vectors have been checked,
then go to Step 8.

Step 4: Pick up from the search window W a posi-
tion vector (x, y) which is not processed yet
by Step 5.

Step 5: For k"0 to N do
if (AAD

k
(x, y)5AAD

.*/
for the current

value of k) then delete (x, y) from
W and go to Step 3.

Step 6: Replace the contents of AAD
.*/

and (m, n)
by AAD

N
(x, y) and (x, y), respectively. In

symbol, AAD
.*/

QAAD
N
(x, y), mQx, and

nQy. (This step updates the ‘‘so far’’ min-
imal AAD and the ‘‘so far’’ best position
vector.)

Step 7: Go to Step 3.
Step 8: Print out the final value of (m, n) because its

content now is indeed the motion vector.

3. EXPERIMENTAL RESULTS

In this section, the FS, PDE, SEA, TSS, and the
proposed method are compared. Note that the partial
distortion elimination (PDE) technique widely used in
industry is to check the rth partial AAD

r
+
i/1

2N

+
j/1

D f t(i, j)!f t~1(i#x, j#y) D (7)

for r"1, 2, 3, . . . [see equation (1)] against the current
AAD

.*/
during the matching; should there exists an

r(2N making the partial AAD exceed the current
AAD

.*/
, then quit the summation process in equation

(1) and kick out the impossible candidate vector (x, y)
because it is trivial that the full sum in equation (1)
would certainly be larger than equation (7), and hence
larger than the current AAD

.*/
. Tables 1 and 2 illus-

trate the performance of the FS, PDE, SEA, TSS and
the proposed method by comparing the NOAE (num-
ber-of-AAD-evaluations), total CPU time, AAD and
PSNR values. Table 1 used three 288]352 luminance
video sequences (Suzie, Salesman, and Claire), where-
as Table 2 used three 176]144 luminance video se-
quences (Car phone, Foreman, and Mother-and-
daughter) grabbed from the International Telecom-
munication Union. The total CPU time shown in
Tables 1 and 2 includes the overhead. (Note that the
FS, PDE and TSS have no preprocessing while the
SEA and the proposed method have.) It is easy to see
that the proposed method outperforms the other four
methods. As for the values of AAD or PSNR, it can be
seen that PDE, SEA and the proposed method pro-
duce the same values as those of the FS. This should
be of no surprise because they are just some kinds of
fast implementation of the FS. The TSS, however, has
worse values in both AAD and PSNR, because TSS is
not a kind of FS. (The TSS uses a hard rule to by-pass
many candidates without even giving these candidates
a chance of being checked. Unfortunately, it happens
quite often that some of these candidates by-passed by
TSS are the ones that yield optimized match.)

In the column NOAE in Tables 1 and 2, the works
to evaluate the AAD

k
[defined in equation (4),

04k4N] for our method were all collected to-
gether and expressed in terms of the work needed to

948 J.-Y. LU et al.

Table 2. Same as Table 1 except that other data were used. CPU time was for the whole sequence (382, 400, and 961 frames,
respectively)

NOAE* PSNR(db) AAD value Total
Images Algorithms per block per block per block CPU time-

Car phone FS 1089 36.32 829.44 273@38A
PDE 227 36.32 829.44 55@6A
SEA 190 36.32 829.44 51@11A
ours 21 36.32 829.44 11@55A
TSS 33 36.1 865.28 16@44A

Foreman FS 1089 36.43 793.6 286@21A
PDE 237 36.43 793.6 61@54A
SEA 186 36.43 793.6 54@38A
ours 27 36.43 793.6 12@42A
TSS 33 35.8 896.1 17@44A

Mother & FS 1089 42.74 419.84 602@10A
daughter PDE 182 42.74 419.84 114@14A

SEA 115 42.74 419.84 86@47A
ours 29 42.74 419.84 35@44A
TSS 33 42.71 424.96 43@42A

evaluate AAD
N
. (If we consider the number of pixels

in each layer, we can find that the work of each
evaluation of AAD

N
is approximately the work 41"4

evaluations of AAD
N~1

, or, the work of 42"16
evaluations of AAD

N~2
, etc.) Since AAD

N
is in fact

the traditional AAD defined in equation (1), the col-
lection we just obtained can also be said to be ex-
pressed in terms of the work needed to evaluate the
traditional AAD. Therefore, this number was entered
for out method in the column with the title NOAE. As
for the NOAE of the PDE method, analogous proced-
ure had been used to express the work for the rth
partial AAD [see equation (7)] in terms of that for the
full AAD [see equation (1)]. The detail is trivial and
hence not explained here.

Note especially that, for the image sequence Sales-
man listed in Table 1, averagely speaking [the average
was taken not only between the (288/16)](352/16)
blocks G contained in a frame, but also between the
300 frames of the image sequence], only 22 evalu-
ations of the traditional AAD, i.e. AAD

4
, were needed.

This number is even smaller than that of the TSS. The
advantage still exists even if the overhead is also
included. (In fact, for 300 frames, the total CPU time
used in our workstation was 34 min for the proposed
method, and, 55 min for the TSS.) We explain below
how the number ‘‘22’’ was obtained for the image
sequence Salesman. For a given block G, there were
(33)2"1089 candidate blocks. One of them was used
as the initial guess, and the remaining 1088 candidates
were examined layer by layer. Averagely speaking, the
number of candidates kicked out in layers 0, 1, 2, and
3, were 837, 195 40, and 11, respectively. In other
words, only 1088!837!195!40!11"5 candi-
dates reached Layer 4. Note that, by Step 5 of the
algorithm, if a candidate needs to evaluate AAD

k
,

then, this candidate also needs to evaluate MAAD
0
,

AAD
1
, . . . , AAD

k~1
N. Therefore,

837#195#40#11#5"1088 candidates needed
to evaluate AAD

0
;

195#40#11#5"251 candidates needed to
evaluate AAD

1
;

40#11#5"56 candidates needed to
evaluate AAD

2
;

11#5"16 candidates needed to
evaluate AAD

3
;

and 5 candidates needed to
evaluate AAD

4
.

Since an evaluation of AAD
4

equals, as stated in the
previous Section, 41"4 evaluations of AAD

3
, or

equivalently, 42"16 evaluations of AAD
2
, etc., we

have

1088/44#251/43#56/42#16/4#5"21

evaluations of AAD
4
. Together with the AAD evalu-

ation used for the initial guess (see Step 2 of the
algorithm), we have 21#1"22 evaluations of
AAD

4
.

For the reader’s benefit, we also listed in Table 3 the
computational cost needed for each frame. Here, we
assume that there are B"(M/16)](H/16) blocks in
the frame; and hence, there are about 1089B position
vectors to be processed. Since MH"256B, 4MH and
12MH appearing in Table 3 for SEA and our methods
equal 1024B and 3072B, respectively. Also note that if
the image sequence is the Salesman, then the Mm

j
N4
j/0

mentioned in Table 3 for our method are m
0
"1088B,

m
1
"251B, m

2
"56B, m

3
"16B, and m

4
"5B#

1B"6B, respectively, by the paragraph right
above. (The 1B appearing in m

4
is due to the

AAD["AAD
4
] evaluation of the initial guess, as

stated at the end of last section.) Therefore,

4
+
j/0

4jm
j
"2"256C

1088B

256
#

251B

64
#

56B

16
#

16B

4

#

5B#1B

1 D

Minkowski’s inequality 949

Table 3. Computation cost per frame (Assume there are B" 1
16

M#1
16

H blocks; hence, about 1089B position vectors and
each vector is 256-dim.)

Methods ! Abso. value # Compare Remarks

FS 256]1089B 256]1089B 255]1089B 1088B

PDE
16

16
+
j/1

jn
j

16
16
+
j/1

jn
j

16
+
j/1

(16j!1)n
j

16
+
j/1

jn
j

(1)

(256]1089B (256]1089B (255]1089B '1089B

SEA 0 0 4MH 0 (2a)
#1088B #1088B #0 #1088B (2b)
#256P #256P #255P #1P (2c)

ours 0 0 12MH 0 (3a)

#

4
+
j/0

4jm
j

#

4
+
j/0

4jm
j

#

4
+
j/0

(4j!1)m
j

#

4
+
j/0

4jm
j

(3b)

TSS 256]33B 256]33B 255]33B 32B (4)

Note. (1) Note +16
j/1

n
j
"1089B. Here, n

j
(14j415) is the number of position vectors that was

eliminated by the PDE test after summing up only j of the 16 rows, and n
16

corresponds to the number of vectors that need the
total evaluations of AAD.
(2a) For l

1
-norm set-up (4MH"1024B).

(2b) For l
1
-norm elimination test.

(2c) For the AAD evaluations of the P position vectors not eliminated by the l
1
-norm test. (Note P41089B. In fact, P seldom

exceeds 350B.)
(3a) For pyramids set-up (12MH"256]12B)
(3b) For the kick-out test (AAD

j
, j"0, 1, 2, 3) and traditional AAD ("AAD

4
) evaluation. Note m

j
is the number of position

vectors that need to evaluate AAD
j
. Also note m

0
"(1089!1)B"1088B'm

1
'm

2
'm

3
'm

4
. (See the Salesman example

given in the last two section of the text. Note m
1
"251B, m

2
"56B, m

3
"16B, m

4
"5B#1B"6B, and

+4
j/0

4jm
j
+256]22B there by the text around equation (8).)

(4) The authors of reference (5) used 33 of the 1089 position vectors as TSS candidates for each block. We also used 33 here.

"256[4.25B#3.92B#3.5B#4B#6B]

+256]22B

;256]1089B (8)

indicates that the subtractions, absolute value evalu-
ations, and additions needed for ours are much less
than those for FS. As for the comparison operations,
although FS used fewer comparisons, this advantage
of FS is nothing to the whole work if we notice that
just the number of subtractions used by FS
(256]1089B) is much greater than the total opera-
tions (including the comparisons) needed by ours
[256](22B]4#12B)"256]100B].

4. CONCLUSIONS

In this paper, the idea of SEA is extended to obtain
a fast searching algorithm for the block matching of
motion estimation. With the image reconstruction
quality identical to that of the full search, the pro-
posed method uses the monotonicity property (6) of
the AAD relation between adjacent layers of the pyr-
amid structure to alleviate the search burden of the
FS. Note that the derivation of the monotonicity
property (6) used in a four-dimensional vector space
the l

1
-version of Minkowski’s inequality which is

quite well-known in the field of mathematics. The
experiment results showed that the proposed method
really reduced the computations needed. The method
outperformed both the SEA method (which applied
the l

1
-version of Minkowski’s inequality to a 256-

dimensional vector space if block size is 16]16) and

the PDE method commonly used in industry. More-
over, the computation speed was competitive with
(often even better than) that of the TSS, although the
TSS usually obtained non-optimal position vector
only. As a final remark, note that the AAD we tried to
minimize [see equation (1)] is in fact a kind of l

1
-norm

which is easier-to-compute than the mean square er-
ror (MSE) that many researchers used.

Acknowledgement—The authors wish to thank the reviewer
for giving helpful suggestions.

APPENDIX A

The statement AAD
k`1

(x, y)5AAD
k
(x, y) holds for

all k3 M0, 1, . . . ,N!1N.

Proof. By (3)— (5), we get

AAD
k`1

(x, y)"
2k`1

+
i/1

2k`1

+
j/1

D f t
k`1

(i, j)!f *t~1; (x, y)+
k`1

(i, j) D

(A1)

"

2k

+
i/1

2k

+
j/1
A

1
+
a/0

1
+
b/0

D f t
k`1

(2i!a, 2j!b)

!f *t~1; (x, y)+
k`1

(2i!a, 2j!b)DB (A2)

5

2k

+
i/1

2k

+
j/1
K

1
+
a/0

1
+
b/0

f t
k`1

(2i!a, 2j!b)

!

1
+
a/0

1
+
b/0

f *t~1; (x, y)+
k`1

(2i!a, 2j!b) K
(A3)

950 J.-Y. LU et al.

Fig. 2. Some of the (M!15)](H!15) pyramids in the previous frame t!1. Assume that the image size
is M]H, and the block size (the size of the pyramid base) is 16]16.

"

2k

+
i/1

2k

+
j/1

D f t
k
(i, j)!f *t~1; (x, y)+

k
(i, j)D

"AAD
k
(x, y).

The derivation of equation (A2) from equation (A1) is
just a change of the indices so that the 2k`1]2k`1

pixels in equation (A1) are decomposed into 2k]2k

groups with each group having four adjacent pixels.
The derivation of equation (A3) from equation (A2) is
again by the Minkowski’s inequality (in the four-di-
mensional vector space). K

APPENDIX B

If each image frame is of size M]N, and if each block
G is of size 16]16, then the overhead of constructing
all the needed pyramids in frame t!1 is about 12MH
operations (more definitely, about 12MH additions).

Proof. We discuss here the overhead to construct ‘‘all’’
pyramids in the previous frame t!1 (each pyramid
will be used by some blocks G of the current frame t).
As shown in Fig. 2, if the base of each pyramid
contains 16]16 pixels, then, to construct the
(M!15)](H!15) pyramids (some pyramids might
have partially overlapping bases, see Fig. 2) for an
M]H image frame (frame t!1), the computations of
the (generalized) pixel values of the four layers
(¸

0
—¸

3
) are required. (The pixel values of each ‘‘base’’

layer ¸
4

has no need to compute, because each base
layer coincides with a portion of the given image
frame t!1, and each pixel value is thus known.) Note
that in each layer L

k~1
(where 14k44), each pixel

value f
k~1

(i, j) (where 14i42k~1 and 14j42k~1)
is obtained by a summation of the 2]2 correspond-
ing pixel values of L

k
, and the summation of the 2]2

pixel values needs only three additions [see equation
(3)]. Therefore, the total computation to obtain these
(generalized) pixel values for the M]H image frame is
3](total number of generalized pixels).

If we consider all generalized pixels in layer 3, then,
due to the overlap of pyramid bases, there are
(M!1)](H!1) generalized pixels (all pyramids to-
gether) in layer ¸

3
for frame t!1. Similarly, there are

(M!3)](H!3), (M!7)](H!7), (M!15)]
(H!15) generalized pixels (all pyramids together)
in ¸

2
, ¸

1
, ¸

0
, respectively. The total number of gen-

eralized pixels is therefore (M!1)(H!1)#
(M!3) (H!3)# (M!7) (H!7)# (M!15)
(H!15), and the total number of operations to get
their (generalized) pixel values are thus

º"3[(M!1)(H!1)#(M!3)(H!3)

#(M!7)(H!7)#(M!15)(H!15)]

"12MH!78M!78H#852

+12MH. K

REFERENCES

1. L. W. Lee, J. F. Wang, J. Y. Lee and J. D. Shie, Dynamic
search-window adjustment and interlaced search for
block-matching algorithm, IEEE ¹rans. Circuits System
»ideo ¹echnol. 3(1), 85—87 (1993).

2. T. Koga, K. Iinuma, A. Hirano, Y. Iijima and T. Ishiguro,
Motion compensated interframe coding for video conf.
Proc. Nat. ¹elecommun. Conf., New Orleans, LA, pp.
G5.3.1—G.5.3.5 (1981).

3. A. Puri, H. M. Hang and D. L. Schilling, An efficient
block-matching algorithm for motion compensated cod-
ing, Proc. IEEE ICASSP, pp. 25.4.1—25.4.4 (1987).

4. B. Liu and A. Zaccarin, New fast algorithms for the
estimation of block motion vectors, IEEE ¹rans. Circuits
System »ideo ¹echnol. 3(2), 148—157 (1993).

5. W. Li and E. Salari, Successive elimination algorithm for
motion estimation, IEEE ¹rans. Image Process. 4(1),
105—107 (1995).

6. R. L. Wheeden and A. Zygmund, Measure and Integral:
An Introduction to Real Analysis, Vol. 131. Marcel
Dekker, New York (1977).

7. ITU-T Recommendation H.263 software implementa-
tion, Digital Video Coding Group at Telenor R&D
(1995).

Minkowski’s inequality 951

About the Author—JING-YI LU was born in 1971 in Taiwan, Republic of China. She received her B.S.
degree in 1994 and M.S. degree in 1996, both from the Computer and Information Science Department of
National Chiao Tung University, Taiwan. Her recent research interests include image processing and signal
processing.

About the Author—KUANG-SHYR WU was born in 1963 in Taiwan, Republic of China. He received his B.
S. degree in 1988 from National Chung Cheng Institute of Technology, Taiwan. Since 1994 he has been
studying toward the Ph.D. degree and he is currently a Ph.D. candidate in the Computer and Information
Science Department of Chiao Tung University. His recent research interests include image processing and
document analysis.

About the Author—JA-CHEN LIN was born in 1955 in Taiwan, Republic of China. He received his B.S.
degree in computer science in 1977 and M.S. degree in applied mathematics in 1979, both from National
Chiao Tung University, Taiwan. In 1988 he received his Ph.D. degree in mathematics from Purdue
University, U.S.A. In 1981—1982, he was an instructor at National Chiao Tung University. From 1984 to
1988, he was a graduate instructor at Purdue University. He joined the Department of Computer and
Information Science at National Chiao Tung University in August 1988, and is currently an Associate
Professor there. His recent research interests include pattern recognition, image processing, and parallel
computing. Dr Lin is a member of the Phi-Tau-Phi Scholastic Honor Society, the Image Processing and
Pattern Recognition Society, and the IEEE Computer Society.

952 J.-Y. LU et al.

