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Abstract: To exploit more parallelism in 
programs, superscalar multiprocessor systems, 
which exploit both fine-grained and coarse- 
grained parallelism, have been the trend in 
designing high-speed computing systems. 
Recently, the authors have developed a simulator 
for evaluating superscalar multiprocessor systems. 
This simulator models both a superscalar 
processor that can exploit instruction-level 
parallelism, and a shared-memory multiprocessor 
system that can exploit task-level parallelism. 
This simulator was used to run four applications 
chosen from the SPLASH-2 benchmark suite, and 
collected some performance data to investigate 
the parallelism exploitation capability of the 
superscalar multiprocessor systems in various 
configurations. It was observed that the 
instruction-level and task-level parallelism in 
programs can be exploited well by a moderate 
degree of superscalar processing and a high 
degree of multiprocessing. For example, the 
speedup of a 32-way multiprocessor with eight- 
issue processors can be over 200 relative to a 
single-issue uniprocessor. 

1 Introduction 

To exploit more parallelism in programs, superscalar 
multiprocessor systems have been the trend in design- 
ing high-speed computing systems. Examples of such 
systems include Cray Superserver 6400 [l], Cray T3D 
System [2], Kendall Square Research KSR-1 [3], and 
Sun SparcCenter 2000 [4]. While superscalar processing 
exploits the instruction-level parallelism (ILP) within a 
processor, multiprocessing exploits task-level parallel- 
ism among processors. Superscalar multiprocessor sys- 
tems provide enormous computing power by exploiting 
both fine-grained and coarse-grained parallelism in 
programs. 

In designing a multiprocessor system, performance 
projection is an important task in making the multi- 
processor architecture decisions. Three methods are 
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commonly used to verify a multiprocessor system; pro- 
totyping, analytical modelling and simulation. Proto- 
typing can predict most accurately the behaviour of the 
system, but it is in general the most time-consuming 
and costly. This is often done only at the last stage of 
system verification. Analytical modelling uses the sim- 
plified parameter set or probability distribution to 
model a system. However, due to the complexity of real 
systems, modelling is often too simple and naive to 
even approximate the actual system. In contrast, simu- 
lation can model the system at a variety of levels of 
detail, so that different aspects of the system can be 
studied in the desired detail. Simulation also allows the 
study of the behaviour of many design alternatives in a 
very short turn-around time and at a relatively low 
cost, reducing the development time and effort of the 
system. 

Currently, there are many multiprocessor simulators 
available. Examples are Proteus [5] ,  RPPT [6], Tango- 
Lite [7] and MINT [8]. However, these multiprocessor 
simulators model only the RISC processors with single 
instruction issuing, static scheduling and blocking 
loads. In contrast, current superscalar processors 
exploit high levels of instruction-level parallelism 
through techniques such as multiple instruction issue, 
dynamic scheduling, speculative execution and non- 
blocking memory access. Therefore, we believed that 
developing a simulator for performance evaluation of 
superscalar multiprocessor systems is absolutely neces- 
sary. After building such a superscalar multiprocessor 
simulator, we also used this simulator to run a number 
of benchmark programs to investigate the parallelism 
exploitation capability of the superscalar multiproces- 
sor systems. 

2 Superscalar multiprocessor simulator 

We developed our superscalar multiprocessor simulator 
based on the MINT [8]. In this section, the MINT is 
first introduced and then the superscalar multiproces- 
sor simulator, the SMINT (superscalar MINT), is pre- 
sented in detail. 

2. I MINT: RISC multiprocessor simulator 
Our superscalar multiprocessor simulator is based on 
MINT [SI, a RISC multiprocessor simulator that sup- 
ports the MIPS R3000 instruction set. MINT is a pro- 
gram-driven simulator as shown in Fig. 1. MINT 
controls the scheduling of processes so that the inter- 
leaving of memory references is the same as it would be 
on the simulated machine. In general, a program- 
driven simulator can be partitioned into two main 
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parts; a memory reference generator (also called the 
'front end'), and a target system simulator (also called 
the 'back end'). The memory reference generator mod- 
els the execution of an application program on some 
number of processors. When the program performs an 
interested operation, typically the generation of a mem- 
ory reference, the front end sends an event to the back 
end. The back end models the system interconnect and 
the memory hierarchy. When the operations for an 
event complete, the back end signals the front end that 
some process can continue. 
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Fig. 1 MINT simulator, a program driven simulator 
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Fig.2 Simulation flow of MINT 

Fig. 2 shows the detailed execution flow of MINT. In 
the beginning, MINT initialises the simulation environ- 
ment and allocates a thread, which represents the proc- 
essor execution, and a task, which represents the back 
end simulation, for the start processor (PEO). After 
simulation initialisation, MINT executes the first task 
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to wake up the first thread to execute processor 
instructions until an event is generated. Then, the gen- 
erated event is converted into a corresponding task, 
and this task is inserted into the task aueue to wait for 
scheduling. In the simulation, a task may create other 
tasks or fork threads to simulate multiprocessor execu- 
tion. When a task completes, it may resume the execu- 
tion of the corresponding thread or execute another 
task with the smallest time stamp. MINT runs until the 
task queue is empty, and an empty task queue means 
that the simulation is completed. Finally, MINT out- 
puts the simulation results. Currently, MINT only sup- 
ports MIPS R3000 RISC core. When linked to a 
proper back end that describes the memory hierarchy, 
MINT can simulate the multiprocessor system built 
with single-issue RISC processors. 
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Fig . 3  SMINT simulator 

2.2 SMINT Superscalar multiprocessor 
sim ula tor 
To enable accurate simulation of multiprocessor sys- 
tems using superscalar processors, we modified MINT 
to support superscalar processing. We call the modified 
simulator SMINT (superscalar MINT). SMINT uses 
the same MIPS R3000 instruction set as MINT and 
supports a variety of ILP features of contemporary 
superscalar microprocessors (Fig. 3). The processor 
core of SMINT has the following features: 
(a) Superscalar execution; multiple instructions can be 
issued, executed and retired per cycle 
(b) Dynamic instruction scheduling; instructions can be 
issued and executed out-of-order 
(e)  Register renaming; antidependencies and output 
dependencies can be eliminated 
(d) Dynamic branch prediction and speculative execu- 
tion; branch prediction enables the instruction schedul- 
ing window to grow beyond basic block boundaries. 
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Fig. 4 Superscalar multiprocessor system 

When linked to a proper back end that describes the 
memory hierarchy, SMINT can simulate the multiproc- 
essor system built with superscalar processors. Fig. 4 
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shows an example of a superscalar multiprocessor sys- 
tem that SMINT can simulate. In this system, an inter- 
connection network connects all the processing nodes. 
A processing node is composed of a superscalar proces- 
sor, an instruction cache, a data cache, a shared mem- 
ory module and a network interface. 

Fig. 5 illustrates the processor microarchitecture that 
can be modelled by SMINT. The instruction control 
unit is the central controller of the superscalar proces- 
sor. It handles instruction address generation, instruc- 
tion fetching, interrupts, etc. In every cycle, it can fetch 
instructions from the instruction cache into the instruc- 
tion window, decode the fetched instructions and dis- 
patch the issuable instructions to the functional units 
for execution. Before dispatching instructions, the 
instruction control unit must detect data dependencies 
or resource conflicts among these instructions. In addi- 
tion, the processor allows execution of instructions past 
unresolved conditional branches. A branch target 
buffer (BTB) with two-bit saturation counters is used 
to perform conditional branch prediction and support 
speculative execution. 

; 
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I 

Fig. 5 Superscalar processor modelled by SMINT 
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To guarantee correct in-order execution results, the 
superscalar processor uses a reorder buffer to support 
precise interrupts and speculative execution. In addi- 
tion to eliminating storage conflicts through register 
renaming, the reorder buffer is used to buffer specu- 
lated results and allow the processor to execute instruc- 
tions past unresolved conditional branches. While the 
register file contains the in-order state data, the reorder 
buffer contains the look-ahead state data. If an excep- 
tion occurs, the contents of the reorder buffer past the 
exception point are discarded, and the processor reverts 
to accessing the in-order state data in the register file 
after the exception handling. The processor then 
refetches and re-executes the correct instructions to 
generate correct in-order results. In the superscalar 
processor model, the execution time for all instructions 
is assumed to be one cycle. The processor with super- 
scalar degree n is assumed to have n homogeneous 
function units, and it can fetch up to n instructions, 
execute up to n instructions and retire up to n instruc- 
tions per cycle. 

Fig. 6 shows the detailed simulation flow of SMINT. 
To support superscalar processing, the major modifica- 
tions of MINT to SMINT include the superscalar proc- 
essor core and the task scheduler for superscalar 
processing. The original MINT has about 23,000 lines 
of C codes; the modified SMINT adds more than 
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10,000 lines to the MINT code to implement supersca- 
lar processing. The simulation flow of SMINT is simi- 
lar to the flow of MINT, except in the execution of 
threads. When the SMINT resumes a thread, the super- 
scalar processor core will fetch, execute and retire 
instructions dynamically until the thread needs to gen- 
erate an event. The event may be a look-ahead or an 
in-order memory access. As a result, the corresponding 
task can be look-ahead or in-order so that dynamic 
scheduling of processor executions and back end func- 
tions can be simulated. Currently, the superscalar proc- 
essor core is well tested, and we are attempting to 
modify the task scheduler to support different memory 
consistency models and implement speculative memory 
access. 
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Fig. 6 Simulation flow ojSMINT 

3 Benchmark programs 

In this Section, we describe the benchmark programs 
we used. The SPLASH-2 [9] benchmark program is 
widely accepted in studying centralised and distributed 
shared-address-space multiprocessors. The original 
SPLASH-2 programs are annotated by ANL macros 
[ 101 for multiprocessor execution. After expanding the 
macros into C codes by UNIX utility m4 (the macro file 
is c . m 4 .  sgi), the benchmark programs are compiled 
into MIPS object codes by cc of SGI IRIX System 
V.3. Then, the object codes are fed into our superscalar 
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multiprocessor simulator to produce simulation results. 
Fig. 7 outlines our simulation flow. 
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Fig.7 Execution flow of the simulation 

SPLASH-2 consists of a mixture of complete applica- 
tions and computational kernels. It currently has eight 
complete applications and four kernels, which represent 
a variety of computations in scientific, engineering and 
graphics computing. In this research, we chose the fol- 
lowing programs as our benchmarks: 

3. I FFT 
The FFT kernel is a complex 1-D version of the radix- 
dn six-step FFT algorithm described in [ll],  which is 
optimised to minimise interprocessor communication. 
The data set consists of the n complex data points to be 
transformed, and another n complex data points 
referred to as the roots of unity. Both sets of data are 
organised as dn x dn matrices partitioned so that every 
processor is assigned a contiguous set of rows, which 
are allocated in its local memory. Communication 
occurs in three matrix transpose steps, which requires 
all-to-all interprocessor communication. Every proces- 
sor transposes a contiguous submatrix of (dnlp) x (dn/ 
p )  from every other processor and transposes one sub- 
matrix locally. The transpositions are blocked to 
exploit cache line reuse. To avoid memory hotspotting, 
submatrices are communicated in a staggered fashion, 
with processor i transposing first a submatrix from 
processor i + 1, then one from processor i + 2, etc. 

3.2 LU 
The LU kernel factors a dense matrix into the product 
of a lower triangular and an upper triangular matrices. 
The dense n x n matrix A is divided into an N x N 
array of B x B blocks (n = NB) to exploit temporal 
locality on submatrix elements. To reduce communica- 
tion, block ownership is assigned using a 2-D scatter 
decomposition, with blocks being updated by the proc- 
essors that own them. The block size B should be large 
enough to keep the cache miss rate low, and small 
enough to maintain good load balance. Fairly small 

block sizes (B  = 8 or B = 16) strike a good balance in 
practice. Elements within a block are allocated contigu- 
ously to improve spatial locality, and blocks are allo- 
cated local to processors that own them. 

3.3 Ocean 
The Ocean application studies large-scale ocean move- 
ments based on eddy and boundary currents and is an 
improved version of the Ocean program in SPLASH 
[12]. The major diffcrences are: 
(i) it partitions the grids into square-like subgrids 
rather than groups of columns to improve the commu- 
nication-to-computation ratio 
(ii) grids are conceptually represented as 4-D arrays, 
with all subgrids allocated contiguously and locally in 
the nodes that own them 
(iii) it uses a red-black Gauss-Seidel multigrid equation 
solver [13], rather than an SOR solver. 

3.4 Radix 
The integer radix sort kernel is based on the method 
described in [14]. The algorithm is iterative, performing 
one iteration for each radix Y digit of the keys. In each 
iteration, a processor passes over its assigned keys and 
generates a local histogram. The local histograms are 
then accumulated into a global histogram. Finally, 
each processor uses the global histogram to permute its 
keys into a new array for the next iteration. This per- 
mutation step requires all-to-all communication. The 
permutation is inherently sender-determined, so keys 
are communicated through writes rather than reads. 

In summary, Table 1 lists the code sizes of the bench- 
marks, and Table 2 provides the input problem sizes of 
the benchmarks that we used. 

Table 2: Input problem sizes of benchmarks 

Benchmark Problem size 

FFT 64K points 

LU 
Ocean 1 3 0 ~ 1 3 0 o c e a n  

Radix 256K integers, radix 1024 

256 x 256 matrix, 16 x 16 blocks 

4 Simulation results 

In this Section, we present the simulation results of 
parallelism exploitation collected by SMINT. To avoid 
the performance impact caused by the memory system, 
we assumed that the memory system is perfect (PRAM 
model [15]), so that all memory references complete in 
a single cycle. To exploit parallelism at different levels, 
we simulated the systems in (a) multiprocessing (b) 
superscalar processing (c) superscalar multiprocessing 
configurations as follows: 

Table 1: Code sizes of SPLASH-2 benchmarks (in instruction words) 

Benchmark Integer Floating Load Store Branch Jump Sysca ' l& Total sync 

FFT 6146 (51.3%) 272 (2.3%) 2075 (17.3%) 1319 (11.0%) 1409 (11.8%) 726 (6.1%) 35 (0.3%) 11982 (100%) 
LU 6282 (51.9%) 194 (1.6%) 2053 (17.0%) 1295 (10.7%) 1503 (12.4%) 691 (5.7%) 76 (0.6%) 12094 (100%) 

Ocean 16922 (44.7%) 1819 (4.8%) 10431 (27.6%) 3891 (10.3%) 3427 (9.1%) 1247 (3.3%) 105 (0.3%) 37842 (100%) 

Radix 5621 (52.9%) 148 (1.4%) 1750 (16.5%) 1090 (10.3%) 1334 (12.5%) 664 (6.2%) 27 (0.3%) 10638 (100%) 
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4. 'I Multiprocessing 
Fig. 8 shows the speedup of multiprocessor systems 
with single-issue RISC processors. (Only the parallelis- 
able portions of the benchmarks are measured.) From 
this Figure, one can see that all the benchmarks, except 
LU, can achieve a near linear speedup. When 32 proc- 
essors are used, the speedup of FFT, Ocean and Radix 
are 29.67, 25.12 and 26.68, respectively. To explain why 
LU fails to achieve a near-linear speedup, Figs. 9-12 
show the dynamic instruction mixes of the benchmarks. 
As the number of processors grows, LU spends much 
time in blocking due to synchronisation. Therefore, LU 
fails to achieve a near-linear speedup. For all the other 
benchmarks, the blocking time also restrains them from 
having a perfect linear speedup. Among these bench- 
marks, FFT obtains the highest speedup due to the 
least blocking time. 
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4.2 Superscalar processing 

4.2.1 Instruction-level parallelism: To exploit 
the ultimate instruction-level parallelism of the bench- 
marks, we assume an ideal superscalar processor that 
has perfect branch prediction and infinite instruction 
window size. Fig. 13 shows the achievable IPCs 
(instructions per cycle) of the benchmarks on the 
assumed superscalar processor with varied superscalar 
processing degrees. It is observed that the sustained 
IPCs of the benchmarks range from 4.29 (Radix), 6.25 
(FFT) and 10.48 (Ocean) to 12.08 (LU), and further 
gain in IPC is little when the superscalar processing 
degree is greater than 16. In the following, we study the 
impact of branch prediction accuracy and limited 
instruction window size on the instruction-level paral- 
lelism. 

5 x I +  
U 

...... ..e ....... .fJ 

01 I I I I I I 
1 2 L 8 16 32 6L 

superscolor processing degree 
Fig. 13 Instruction-level parallelism offour benchmarks on a supersca- 
lar processor with peifect branch prediction and infinite instruction window 
size + FFT, 0 LU, A Ocean, x Radix 

4.2.2 Branch prediction affecting instruction- 
level parallelism: SMINT models BTB with 2-bit 
saturation counters. Figs. 1 &21 show the performance 
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of the various BTB designs. It is observed that 256 
BTB entries with two-way set associativity are suffi- 
cient to reduce the BTB miss ratio to zero and achieve 
the maximum prediction accuracy for all the bench- 
marks. The maximum prediction accuracies are 90.4%, 
90.9%, 96.5% and 99.9% for FFT, LU, Ocean and 
Radix, respectively. (Thus, a two-way set associative 
BTB with 256 entries is assumed in the following simu- 
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lations.) Fig. 22 shows the impact of branch prediction 
on the instruction-level parallelism. The sustained IPCs 
of FFT, LU and Ocean drop to 5.96, 10.74 and 9.63 
due to imperfect branch prediction, respectively. How- 
ever, Radix retains the same IPC (4.29) due to its 
99.9% prediction accuracy. 
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4.2.3 Instruction window size affecting 
instruction-level parallelism: Fig. 23 shows the 
effect of instruction window size on the exploitable 
instruction-level parallelism. In general, the larger the 
instruction window, the more the exploitable instruc- 
tion-level parallelism. However, the instruction window 
is very costly, and its circuit complexity grows tremen- 
dously as its size increases. Furthermore, the increased 
exploitable instruction-level parallelism is very insignifi- 
cant after the instruction window size grows above a 
certain threshold. From Fig. 23, it is observed that an 
instruction window size of 128 is sufficient to exploit 
the most instruction-level parallelism. For this reason, 
in the following simulations we assume an instruction 
window size of 128. 

speedup calculations. Let m be the multiprocessing 
degree and n be the superscalar processing degree. We 
define the multiprocessing speedup as 

(1) 
execution time of n-issue uniprocessor 

execution time of m-way multiprocessor 
with n-issue processors 
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The idealised multiprocessing, superscalar processing 
and overall speedups can be m, n and m * n, respec- 
tively. However, these ideal speedups are hardly achiev- 
able due to synchronisation blocking, load imbalance 
in multiprocessing, limited instruction-level parallelism, 
branch misprediction, etc. 
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4.3 Superscalar multiprocessing 
In this Subsection, we present the simulation results 
about parallelism exploitation in the superscalar multi- 
processor systems. Based on the simulation results of 
Section 4.2, we define the superscalar processor for 
constructing superscalar multiprocessing systems as fol- 
lows: It is an n-issue superscalar processor with n 
homogeneous functional units, a two-way set associa- 
tive BTB of 256 entries and a 128-entry instruction 
window. 

Assume that the execution time of the sequential por- 
tions of all benchmarks are excluded in the following 
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Figs. 24-27 show the multiprocessing speedups of the 
benchmarks. For the FFT, the multiprocessing speedup 
remains an invariant as the superscalar processing 
degree increases. This is because FFT spends little time 
in being blocked (as shown in Figs. 9-12), so that as 
the processor element becomes more capable of exploit- 
ing instruction-level parallelism, the multiprocessing 
speedup can still be maintained. However, the multi- 
processing speedups of LU and Ocean are lowered as 
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the processor element becomes more capable of exploit- 
ing instruction-level parallelism, indicating that the 
systems with such processor elements will spend more 
time in blocking relatively. As for the Radix, the multi- 
processing speedup increases slightly as the superscalar 
processing degree increases. This phenomenon can be 
explained as follows. The Radix has less instruction- 
level parallelism (see Fig. 13) and near 100% branch 
prediction accuracy (see Fig. 21), so that the instruction 
window is often full in a high-degree superscalar proc- 
essor. Therefore, as the number of processors increases, 
the more instruction windows in the processors will be 
able to exploit more instruction-level parallelism, so 
that the multiprocessing speedup increases. 
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Figs. 28-3 1 show the superscalar processing speedup 
of the benchmarks. The superscalar processing speedup 
of FFT remains an invariant as the multiprocessing 
degree varies. This result shows that in FFT the exploi- 
tation of instruction-level parallelism is independent of 
the exploitation of task-level parallelism. However, the 
superscalar processing speedups of LU and Ocean 
degrade as the number of processor elements increases. 
This is because blocking time constrains not only task- 
level parallelism but also instruction-level parallelism. 
As for the Radix, the superscalar processing speedup of 
the system with high-issue processors (n  2 8) increases 
slightly as the multiprocessing degree increases. The 
reason for this phenomenon is the same as that stated 
in the last paragraph. The greater the number of 
instruction windows, the greater the exploitable instruc- 
tion-level parallelism. 
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Figs. 32-35 show the overall speedups of the bench- 
marks. It is observed that the parallelism, both 
instruction-level and task-level, is fully exploited in 
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superscalar multiprocessing. The sustained overall spee- 
dups of the FFT, LU, Ocean and Radix are 211.5, 
30.4, 180.5 and 126.4, respectively. In summary, the 
FFT has the highest task-level parallelism and a sub- 
stantial instruction-level parallelism so that it achieves 
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the highest overall speedup. Although the LU has the 
highest instruction-level parallelism, it shows the lowest 
overall speedup due to insufficient task-level parallel- 
ism. 

4.4 Discussion 
To obtain an insight into parallelism exploitation in the 
benchmark programs individually, we identify the two 
types of parallelism of the benchmark programs in 
Table 3. With high task-level parallelism and moderate 
instruction-level parallelism, the FFT achieves the high- 
est overall speedup. For this type of program, we sug- 
gest that a system with a moderate degree of 
superscalar processing and a high degree of multiproc- 
essing be used to exploit the most instruction-level and 
task-level parallelism in programs. For example, a 32- 
way multiprocessor with eight-issue processor elements 
can speed up the FFT by over 200 times relative to a 
single-issue uniprocessor (as shown in Fig. 32). 

Table 3: Parallelism classification of the benchmarks 

Benchmark Task-level Instruction-level 
parallelism parallelism 

FFT high moderate 

LU low high 

Ocean moderate high 

Radix moderate low 

The LU has the lowest task-level parallelism (its sus- 
tained multiprocessing speedup is only about four). 
However, its inherent instruction-level parallelism is 
nearly 12. For the LU, superscalar processing is more 
beneficial than multiprocessing. From Fig. 33, it can be 
observed that the overall speedup of a four-issue uni- 
processor can easily outperform a 32-way multiproces- 
sor with one-issue processors. For this type of 
program, we suggest that superscalar processing is 
more appropriate than multiprocessing in exploiting 
parallelism in programs. 

Both the Ocean and the Radix have moderate task- 
level parallelism. Yet the Ocean has high instruction- 
level parallelism, whereas the Radix has low instruc- 
tion-level parallelism. If two programs have the same 
task-level parallelism, their instruction-level parallelism 
determines the overall speedup. As a result, the Ocean 
achieves higher overall speedup than the Radix does 
(see Figs. 34 and 35). However, the superscalar process- 
ing speedup of the Ocean degrades more sharply than 
that of the Radix as the multiprocessing degree 
increases (see Figs. 30 and 31). So, we conclude that a 
system with a moderate degree of superscalar process- 
ing and a high degree of multiprocessing is appropriate 
for programs with moderate task-level parallelism. 

In summary, we observed that exploiting task-level 
parallelism via multiprocessing is much more efficient 
than exploiting instruction-level parallelism via super- 
scalar processing for the set of benchmark programs 
that we chose. In the m-way multiprocessing, the spee- 
dup can be almost linear for most of the benchmarks 
programs. In contrast, the inherent instruction-level 
parallelism of benchmarks ranges from only 4.29 to 
12.08. Obviously, increasing the multiprocessing power 
gains more performance than increasing the superscalar 
processing power in general. Furthermore, instruction- 
level parallelism is also constrained by task-level paral- 
lelism in superscalar multiprocessing. As a superscalar 
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multiprocessor system design guideline, we suggest that 
the parallelism in programs can best be exploited by a 
moderate degree of superscalar processing and a high 
degree o f  multiprocessing. 

5 Conclusions and future work 

In this paper, we investigated the parallelism exploita- 
tion in superscalar multiprocessor systems. To enable 
accurate simulation of superscalar multiprocessor sys- 
tems behaviour, we developed a simulator, called 
SMINT, for superscalar multiprocessor systems. The 
SMINT models both a superscalar processor that can 
exploit instruction-level parallelism, and a shared-mem- 
ory multiprocessor system that can exploit task-level 
parallelism. With this simulator, we ran four applica- 
tions chosen from the SPLASH-2 benchmark suite to 
examine the parallelism exploitation capabilities in the 
systems o f  multiprocessing, superscalar processing, and 
superscalar multiprocessing. We found that the paral- 
lelism in programs can best be exploited by a moderate 
degree of superscalar processing and a high degree of 
multiprocessing. For example, the speedup of a 32-way 
multiprocessor with eight-issue processor elements can 
be over 200 relative to a single-issue uniprocessor. 

In this paper, we assumed a perfect memory system 
(the PRAM model). We will study the impact of mem- 
ory system design on superscalar multiprocessor sys- 
tems in the future. Furthermore, we intend to study a 
variety of architectural alternatives of superscalar mul- 
tiprocessor systems, such as a single-chip multiproces- 
sor and multiprocessor clusters, to further identify the 
different levels of parallelism and locality in programs. 
These research topics concerning superscalar multi- 
processor systems will also include the tradeoffs of par- 
allelism exploitation and locality management, the 
impact of ILP processors on memory consistency mod- 
els and the implementation of speculative memory 
access techniques. 
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