
Para I I el ism exploit at ion in su persca lar
multiprocessing

N.-I? LU
C.-P. C h u ng

zdexing terms: Parallel processing, Multiprocessing systems, Superscalar multiprocessing

Abstract: To exploit more parallelism in
programs, superscalar multiprocessor systems,
which exploit both fine-grained and coarse-
grained parallelism, have been the trend in
designing high-speed computing systems.
Recently, the authors have developed a simulator
for evaluating superscalar multiprocessor systems.
This simulator models both a superscalar
processor that can exploit instruction-level
parallelism, and a shared-memory multiprocessor
system that can exploit task-level parallelism.
This simulator was used to run four applications
chosen from the SPLASH-2 benchmark suite, and
collected some performance data to investigate
the parallelism exploitation capability of the
superscalar multiprocessor systems in various
configurations. It was observed that the
instruction-level and task-level parallelism in
programs can be exploited well by a moderate
degree of superscalar processing and a high
degree of multiprocessing. For example, the
speedup of a 32-way multiprocessor with eight-
issue processors can be over 200 relative to a
single-issue uniprocessor.

1 Introduction

To exploit more parallelism in programs, superscalar
multiprocessor systems have been the trend in design-
ing high-speed computing systems. Examples of such
systems include Cray Superserver 6400 [l], Cray T3D
System [2], Kendall Square Research KSR-1 [3], and
Sun SparcCenter 2000 [4]. While superscalar processing
exploits the instruction-level parallelism (ILP) within a
processor, multiprocessing exploits task-level parallel-
ism among processors. Superscalar multiprocessor sys-
tems provide enormous computing power by exploiting
both fine-grained and coarse-grained parallelism in
programs.

In designing a multiprocessor system, performance
projection is an important task in making the multi-
processor architecture decisions. Three methods are
0 IEE, 1998
IEE Proceedings online no. 19981955
Paper received 29th September 1997
The authors are wth the Department of Computer Science and Informa-
tion Engmeenng, National Chiao Tung University, Hsinchu, Taiwan
30050, Republic of China

commonly used to verify a multiprocessor system; pro-
totyping, analytical modelling and simulation. Proto-
typing can predict most accurately the behaviour of the
system, but it is in general the most time-consuming
and costly. This is often done only at the last stage of
system verification. Analytical modelling uses the sim-
plified parameter set or probability distribution to
model a system. However, due to the complexity of real
systems, modelling is often too simple and naive to
even approximate the actual system. In contrast, simu-
lation can model the system at a variety of levels of
detail, so that different aspects of the system can be
studied in the desired detail. Simulation also allows the
study of the behaviour of many design alternatives in a
very short turn-around time and at a relatively low
cost, reducing the development time and effort of the
system.

Currently, there are many multiprocessor simulators
available. Examples are Proteus [5] , RPPT [6], Tango-
Lite [7] and MINT [8]. However, these multiprocessor
simulators model only the RISC processors with single
instruction issuing, static scheduling and blocking
loads. In contrast, current superscalar processors
exploit high levels of instruction-level parallelism
through techniques such as multiple instruction issue,
dynamic scheduling, speculative execution and non-
blocking memory access. Therefore, we believed that
developing a simulator for performance evaluation of
superscalar multiprocessor systems is absolutely neces-
sary. After building such a superscalar multiprocessor
simulator, we also used this simulator to run a number
of benchmark programs to investigate the parallelism
exploitation capability of the superscalar multiproces-
sor systems.

2 Superscalar multiprocessor simulator

We developed our superscalar multiprocessor simulator
based on the MINT [8]. In this section, the MINT is
first introduced and then the superscalar multiproces-
sor simulator, the SMINT (superscalar MINT), is pre-
sented in detail.

2. I MINT: RISC multiprocessor simulator
Our superscalar multiprocessor simulator is based on
MINT [SI, a RISC multiprocessor simulator that sup-
ports the MIPS R3000 instruction set. MINT is a pro-
gram-driven simulator as shown in Fig. 1. MINT
controls the scheduling of processes so that the inter-
leaving of memory references is the same as it would be
on the simulated machine. In general, a program-
driven simulator can be partitioned into two main

255 IEE Proc -Comput Digit Tech, Vol 14S, No 4, July 1998

parts; a memory reference generator (also called the
'front end'), and a target system simulator (also called
the 'back end'). The memory reference generator mod-
els the execution of an application program on some
number of processors. When the program performs an
interested operation, typically the generation of a mem-
ory reference, the front end sends an event to the back
end. The back end models the system interconnect and
the memory hierarchy. When the operations for an
event complete, the back end signals the front end that
some process can continue.

RISC core
(MIPS R3000

instruction setl

memory hierarchy
(cache,memory and

interconnection
network1

target system memory reference events
generator simulator I MINT 1 process control

(front endl (back endl

Fig. 1 MINT simulator, a program driven simulator

inititaiisation of simulation environment
(Queue, ShrMem, ... I

initialisation of thread and task for

I

I get start task from task queue I

execute the corresponding function of the task
4

resume the
A I

I ! / fetch and execute the next i A instruction of the corresponding thread

core

I
I L

I I I

I / I do cycle counting to update thread's time,
convert the event into a task

insert the task into the task aueue' and

I / I I change the thread into the wai'ting state 1

I

get next task with the smallest
time-stamp from task queue

I
7

I print simulation results I
&

Fig.2 Simulation flow of MINT

Fig. 2 shows the detailed execution flow of MINT. In
the beginning, MINT initialises the simulation environ-
ment and allocates a thread, which represents the proc-
essor execution, and a task, which represents the back
end simulation, for the start processor (PEO). After
simulation initialisation, MINT executes the first task

256

to wake up the first thread to execute processor
instructions until an event is generated. Then, the gen-
erated event is converted into a corresponding task,
and this task is inserted into the task aueue to wait for
scheduling. In the simulation, a task may create other
tasks or fork threads to simulate multiprocessor execu-
tion. When a task completes, it may resume the execu-
tion of the corresponding thread or execute another
task with the smallest time stamp. MINT runs until the
task queue is empty, and an empty task queue means
that the simulation is completed. Finally, MINT out-
puts the simulation results. Currently, MINT only sup-
ports MIPS R3000 RISC core. When linked to a
proper back end that describes the memory hierarchy,
MINT can simulate the multiprocessor system built
with single-issue RISC processors.

superscalar memory hierarchy
RISC core (cache,memory and

(MIPS R3000 interconnection
instruction setl networkl

memory reference events target system
generator simulator

process control superscalar

(front endl (back endl

Fig . 3 SMINT simulator

2.2 SMINT Superscalar multiprocessor
sim ula tor
To enable accurate simulation of multiprocessor sys-
tems using superscalar processors, we modified MINT
to support superscalar processing. We call the modified
simulator SMINT (superscalar MINT). SMINT uses
the same MIPS R3000 instruction set as MINT and
supports a variety of ILP features of contemporary
superscalar microprocessors (Fig. 3). The processor
core of SMINT has the following features:
(a) Superscalar execution; multiple instructions can be
issued, executed and retired per cycle
(b) Dynamic instruction scheduling; instructions can be
issued and executed out-of-order
(e) Register renaming; antidependencies and output
dependencies can be eliminated
(d) Dynamic branch prediction and speculative execu-
tion; branch prediction enables the instruction schedul-
ing window to grow beyond basic block boundaries.

interconnection network

A A

/ . . \ ' I

I

\ _ _ _ _ - - - - - - - - - -)

Fig. 4 Superscalar multiprocessor system

When linked to a proper back end that describes the
memory hierarchy, SMINT can simulate the multiproc-
essor system built with superscalar processors. Fig. 4

~

I

I

IEE Proc -Comput Digit Tech Vol 145, No 4 July 1998

shows an example of a superscalar multiprocessor sys-
tem that SMINT can simulate. In this system, an inter-
connection network connects all the processing nodes.
A processing node is composed of a superscalar proces-
sor, an instruction cache, a data cache, a shared mem-
ory module and a network interface.

Fig. 5 illustrates the processor microarchitecture that
can be modelled by SMINT. The instruction control
unit is the central controller of the superscalar proces-
sor. It handles instruction address generation, instruc-
tion fetching, interrupts, etc. In every cycle, it can fetch
instructions from the instruction cache into the instruc-
tion window, decode the fetched instructions and dis-
patch the issuable instructions to the functional units
for execution. Before dispatching instructions, the
instruction control unit must detect data dependencies
or resource conflicts among these instructions. In addi-
tion, the processor allows execution of instructions past
unresolved conditional branches. A branch target
buffer (BTB) with two-bit saturation counters is used
to perform conditional branch prediction and support
speculative execution.

;
i
I

Fig. 5 Superscalar processor modelled by SMINT
do cycle counting to update thread's time,

insert the task into the task queud and
change the threod into the waiting state

convert the event into o task

To guarantee correct in-order execution results, the
superscalar processor uses a reorder buffer to support
precise interrupts and speculative execution. In addi-
tion to eliminating storage conflicts through register
renaming, the reorder buffer is used to buffer specu-
lated results and allow the processor to execute instruc-
tions past unresolved conditional branches. While the
register file contains the in-order state data, the reorder
buffer contains the look-ahead state data. If an excep-
tion occurs, the contents of the reorder buffer past the
exception point are discarded, and the processor reverts
to accessing the in-order state data in the register file
after the exception handling. The processor then
refetches and re-executes the correct instructions to
generate correct in-order results. In the superscalar
processor model, the execution time for all instructions
is assumed to be one cycle. The processor with super-
scalar degree n is assumed to have n homogeneous
function units, and it can fetch up to n instructions,
execute up to n instructions and retire up to n instruc-
tions per cycle.

Fig. 6 shows the detailed simulation flow of SMINT.
To support superscalar processing, the major modifica-
tions of MINT to SMINT include the superscalar proc-
essor core and the task scheduler for superscalar
processing. The original MINT has about 23,000 lines
of C codes; the modified SMINT adds more than

IEE Proc -Comput Digit Tech, Vol 145, No 4, July 1998

10,000 lines to the MINT code to implement supersca-
lar processing. The simulation flow of SMINT is simi-
lar to the flow of MINT, except in the execution of
threads. When the SMINT resumes a thread, the super-
scalar processor core will fetch, execute and retire
instructions dynamically until the thread needs to gen-
erate an event. The event may be a look-ahead or an
in-order memory access. As a result, the corresponding
task can be look-ahead or in-order so that dynamic
scheduling of processor executions and back end func-
tions can be simulated. Currently, the superscalar proc-
essor core is well tested, and we are attempting to
modify the task scheduler to support different memory
consistency models and implement speculative memory
access.

inititolisotion of simulation environment
(Queue, ShrMem, ... 1

I

the stort processor (PE01
initiolisation of thread and task for

I
I

1

get stort tosk from task queue

l-
execute the corresponding function of the task

L

resume the

get next task with the smollest
time-stomp from task queue 1 +-------
I print simulation results I

Fig. 6 Simulation flow ojSMINT

3 Benchmark programs

In this Section, we describe the benchmark programs
we used. The SPLASH-2 [9] benchmark program is
widely accepted in studying centralised and distributed
shared-address-space multiprocessors. The original
SPLASH-2 programs are annotated by ANL macros
[101 for multiprocessor execution. After expanding the
macros into C codes by UNIX utility m4 (the macro file
is c . m 4 . sgi), the benchmark programs are compiled
into MIPS object codes by cc of SGI IRIX System
V.3. Then, the object codes are fed into our superscalar

251

multiprocessor simulator to produce simulation results.
Fig. 7 outlines our simulation flow.

benchmark programs

r i I R I X System V.3

I SPLASH-2)
+ - - c.m L.sgi

t
MIPS object codes

t

Y
simulation results

Fig.7 Execution flow of the simulation

SPLASH-2 consists of a mixture of complete applica-
tions and computational kernels. It currently has eight
complete applications and four kernels, which represent
a variety of computations in scientific, engineering and
graphics computing. In this research, we chose the fol-
lowing programs as our benchmarks:

3. I FFT
The FFT kernel is a complex 1-D version of the radix-
dn six-step FFT algorithm described in [ll], which is
optimised to minimise interprocessor communication.
The data set consists of the n complex data points to be
transformed, and another n complex data points
referred to as the roots of unity. Both sets of data are
organised as dn x dn matrices partitioned so that every
processor is assigned a contiguous set of rows, which
are allocated in its local memory. Communication
occurs in three matrix transpose steps, which requires
all-to-all interprocessor communication. Every proces-
sor transposes a contiguous submatrix of (dnlp) x (dn/
p) from every other processor and transposes one sub-
matrix locally. The transpositions are blocked to
exploit cache line reuse. To avoid memory hotspotting,
submatrices are communicated in a staggered fashion,
with processor i transposing first a submatrix from
processor i + 1, then one from processor i + 2, etc.

3.2 LU
The LU kernel factors a dense matrix into the product
of a lower triangular and an upper triangular matrices.
The dense n x n matrix A is divided into an N x N
array of B x B blocks (n = NB) to exploit temporal
locality on submatrix elements. To reduce communica-
tion, block ownership is assigned using a 2-D scatter
decomposition, with blocks being updated by the proc-
essors that own them. The block size B should be large
enough to keep the cache miss rate low, and small
enough to maintain good load balance. Fairly small

block sizes (B = 8 or B = 16) strike a good balance in
practice. Elements within a block are allocated contigu-
ously to improve spatial locality, and blocks are allo-
cated local to processors that own them.

3.3 Ocean
The Ocean application studies large-scale ocean move-
ments based on eddy and boundary currents and is an
improved version of the Ocean program in SPLASH
[12]. The major diffcrences are:
(i) it partitions the grids into square-like subgrids
rather than groups of columns to improve the commu-
nication-to-computation ratio
(ii) grids are conceptually represented as 4-D arrays,
with all subgrids allocated contiguously and locally in
the nodes that own them
(iii) it uses a red-black Gauss-Seidel multigrid equation
solver [13], rather than an SOR solver.

3.4 Radix
The integer radix sort kernel is based on the method
described in [14]. The algorithm is iterative, performing
one iteration for each radix Y digit of the keys. In each
iteration, a processor passes over its assigned keys and
generates a local histogram. The local histograms are
then accumulated into a global histogram. Finally,
each processor uses the global histogram to permute its
keys into a new array for the next iteration. This per-
mutation step requires all-to-all communication. The
permutation is inherently sender-determined, so keys
are communicated through writes rather than reads.

In summary, Table 1 lists the code sizes of the bench-
marks, and Table 2 provides the input problem sizes of
the benchmarks that we used.

Table 2: Input problem sizes of benchmarks

Benchmark Problem size

FFT 64K points

LU
Ocean 1 3 0 ~ 1 3 0 o c e a n

Radix 256K integers, radix 1024

256 x 256 matrix, 16 x 16 blocks

4 Simulation results

In this Section, we present the simulation results of
parallelism exploitation collected by SMINT. To avoid
the performance impact caused by the memory system,
we assumed that the memory system is perfect (PRAM
model [15]), so that all memory references complete in
a single cycle. To exploit parallelism at different levels,
we simulated the systems in (a) multiprocessing (b)
superscalar processing (c) superscalar multiprocessing
configurations as follows:

Table 1: Code sizes of SPLASH-2 benchmarks (in instruction words)

Benchmark Integer Floating Load Store Branch Jump Sysca ' l& Total sync

FFT 6146 (51.3%) 272 (2.3%) 2075 (17.3%) 1319 (11.0%) 1409 (11.8%) 726 (6.1%) 35 (0.3%) 11982 (100%)
LU 6282 (51.9%) 194 (1.6%) 2053 (17.0%) 1295 (10.7%) 1503 (12.4%) 691 (5.7%) 76 (0.6%) 12094 (100%)

Ocean 16922 (44.7%) 1819 (4.8%) 10431 (27.6%) 3891 (10.3%) 3427 (9.1%) 1247 (3.3%) 105 (0.3%) 37842 (100%)

Radix 5621 (52.9%) 148 (1.4%) 1750 (16.5%) 1090 (10.3%) 1334 (12.5%) 664 (6.2%) 27 (0.3%) 10638 (100%)

258 IEE Proc -Comput Digit Tech, Vol 145, No 4, July 1998

4. 'I Multiprocessing
Fig. 8 shows the speedup of multiprocessor systems
with single-issue RISC processors. (Only the parallelis-
able portions of the benchmarks are measured.) From
this Figure, one can see that all the benchmarks, except
LU, can achieve a near linear speedup. When 32 proc-
essors are used, the speedup of FFT, Ocean and Radix
are 29.67, 25.12 and 26.68, respectively. To explain why
LU fails to achieve a near-linear speedup, Figs. 9-12
show the dynamic instruction mixes of the benchmarks.
As the number of processors grows, LU spends much
time in blocking due to synchronisation. Therefore, LU
fails to achieve a near-linear speedup. For all the other
benchmarks, the blocking time also restrains them from
having a perfect linear speedup. Among these bench-
marks, FFT obtains the highest speedup due to the
least blocking time.

1 2 4 8 1 6 3 2

number of PES
Fig. 11 Dynamic instruction mixes for Ocean

radix 8 , 6 O O r - , , , ,

1 2 4 8 1 6 3 2
number of PES

Dynamic instruction mixes foy Radix Fig. 12

0 8 16 21 32
number of PES

Fig.8 Speedup due to multiprocessing + FFT
0 LU
A Ocean
x Radix

1 2 4 8 1 6 3 2
number of PES

Fig.9 Dynamic instruction mixes for FFT

c 7000

shared store 2 6 0 0 0

+Fo 5000 shared load
g z 4000 E private store

prlvate load U $ 3 0 0 0

V-

.-
P) d

5 :: 2 0 0 0 - 5" 1000
U 0
: 1 2 4 8 1 6 3 2

number of PES
Fig. 10 Dynamic instruction mixes for LU

4.2 Superscalar processing

4.2.1 Instruction-level parallelism: To exploit
the ultimate instruction-level parallelism of the bench-
marks, we assume an ideal superscalar processor that
has perfect branch prediction and infinite instruction
window size. Fig. 13 shows the achievable IPCs
(instructions per cycle) of the benchmarks on the
assumed superscalar processor with varied superscalar
processing degrees. It is observed that the sustained
IPCs of the benchmarks range from 4.29 (Radix), 6.25
(FFT) and 10.48 (Ocean) to 12.08 (LU), and further
gain in IPC is little when the superscalar processing
degree is greater than 16. In the following, we study the
impact of branch prediction accuracy and limited
instruction window size on the instruction-level paral-
lelism.

5 x I +
U

...... ..efJ

01 I I I I I I
1 2 L 8 16 32 6L

superscolor processing degree
Fig. 13 Instruction-level parallelism offour benchmarks on a supersca-
lar processor with peifect branch prediction and infinite instruction window
size + FFT, 0 LU, A Ocean, x Radix

4.2.2 Branch prediction affecting instruction-
level parallelism: SMINT models BTB with 2-bit
saturation counters. Figs. 1 &21 show the performance

259 IEE ProcComput. Digit. Tech, Vol. 145, No. 4, July 1998

of the various BTB designs. It is observed that 256
BTB entries with two-way set associativity are suffi-
cient to reduce the BTB miss ratio to zero and achieve
the maximum prediction accuracy for all the bench-
marks. The maximum prediction accuracies are 90.4%,
90.9%, 96.5% and 99.9% for FFT, LU, Ocean and
Radix, respectively. (Thus, a two-way set associative
BTB with 256 entries is assumed in the following simu-

0.1, FFl

0.

._ 0.2 + E 0,31

I 'a- . - . - .& . - . - .&- . - . - .I-. - . - .

I I I I I J

m
0.1

0
16 32 6L 128 256 512 1026

BTB size
BTB miss ratio against BTB size and organisation for FFT Fig. 14

4 one-way: 0 two-way; A four-way; x eight-way

LU
O . 7 -

16 32 61 128 256 512 102L
BTB size

BTB miss ratio against BTB size and organisation for LU Fig. 15
4 one-way; 0 two-way; A four-way; x eight-way

0.16r ocean

e
.E 0.08
E
m

o.oll \
0
16 32 61, 128 256 512 1021

BTB size
BTB miss ratio against BTB size and organisation for Ocean Fig. 16

4 one-way; 0 two-way; A four-way: x eight-way

0.006 radix

I

-. 0.001 e " t
v) ._
E
m

'. k 0.002 '.

lations.) Fig. 22 shows the impact of branch prediction
on the instruction-level parallelism. The sustained IPCs
of FFT, LU and Ocean drop to 5.96, 10.74 and 9.63
due to imperfect branch prediction, respectively. How-
ever, Radix retains the same IPC (4.29) due to its
99.9% prediction accuracy.

FFT

2

2
L

0.8
C
.-
Y " ._
-U

16 32 61 128 256 512 1021
BTB size

Fig. 18 + one-way; 0 two-way; A four-way; x eight-way
Prediction accuracy against BTB size and organisation for FFT

I I I I I I I
16 32 61 128 256 512 102L

BTB size
Fig. 19
4 one-way: 0 two-way; A four-way; x eight-way

Prediction accuracy against BTB size and organisation for LU

1.0

/

._
U

16 32 6L 128 256 512 1021
BTB size

Fig. 20
Ocean
4 one-way: 0 two-way; A four-way; x eight-way

Prediction accuracy against BTB size and organisation for

1.OOOr radix

.- a
0.992

16 32 61 128 256 512 1021
BTB size

Fig. 21
Radix
4 one-way; 0 two-way; A four-way; x eight-way

Prediction accuracy against BTB size and orgunisation for

IEE Proc.-Comput. Digit. Tech., Vol. 145, No. 4, July 1998

l2 r

a,

U x
-
L
a, a
VI C 0

U 3 L

VI C

.-

I

.-

01 I I I I , 1

1 2 4 8 16 32 64
superscolor processing degree

Fi 22 Instruction level parallelism ojthe four benchmarks on a super-
sc%r processor with ;56-entry, two-way set associative and two-bit satu-
ration counter BTB prediction + FFT; 0 LU; A Ocean; x Radix

4.2.3 Instruction window size affecting
instruction-level parallelism: Fig. 23 shows the
effect of instruction window size on the exploitable
instruction-level parallelism. In general, the larger the
instruction window, the more the exploitable instruc-
tion-level parallelism. However, the instruction window
is very costly, and its circuit complexity grows tremen-
dously as its size increases. Furthermore, the increased
exploitable instruction-level parallelism is very insignifi-
cant after the instruction window size grows above a
certain threshold. From Fig. 23, it is observed that an
instruction window size of 128 is sufficient to exploit
the most instruction-level parallelism. For this reason,
in the following simulations we assume an instruction
window size of 128.

speedup calculations. Let m be the multiprocessing
degree and n be the superscalar processing degree. We
define the multiprocessing speedup as

(1)
execution time of n-issue uniprocessor

execution time of m-way multiprocessor
with n-issue processors

SpeedUpsuperscaiar processzng (m, n)

- -

execution time of m-way multiprocessor
with one-issue processors

execution time of m-way multiprocessor
with n-issue processors

(2) - -

S p e e d w o V e r a ~ ~ (m , n)

(3)
- execution time of one-issue uniprocessor

execution time of m-way multiprocessor
with n-issue processors

-

The idealised multiprocessing, superscalar processing
and overall speedups can be m, n and m * n, respec-
tively. However, these ideal speedups are hardly achiev-
able due to synchronisation blocking, load imbalance
in multiprocessing, limited instruction-level parallelism,
branch misprediction, etc.

a
3 D

a, a

(5,

VI m a U

.-

2 a

E

.-
I -
7

a,

" x

L a,

-

a
VI
C 0

U 3 L

VI

._
c

I

c

01 I I I I I I I

1 2 L 8 16 32 6 L 128 256 512
size of instruction window

Fig. 23 + FFT 0 LU; A Ocean; x Radix
Eflect of instruction window size on instruction-level parallelism

4.3 Superscalar multiprocessing
In this Subsection, we present the simulation results
about parallelism exploitation in the superscalar multi-
processor systems. Based on the simulation results of
Section 4.2, we define the superscalar processor for
constructing superscalar multiprocessing systems as fol-
lows: It is an n-issue superscalar processor with n
homogeneous functional units, a two-way set associa-
tive BTB of 256 entries and a 128-entry instruction
window.

Assume that the execution time of the sequential por-
tions of all benchmarks are excluded in the following

IEE Pro(-Comput Digit Tech, Vol 145 No 4, July 1998

0 L 8 12 16 20 24 28 32
number of PES

Fig. 24 + n = 1; U n = 2; A n = 4; x n = 8; -x- n = 16; - - x - n = 32
Multiprocessing speedups of FFT in superscalar multiprocessing

LU
a

a
m

I I I I I

0 4 8 12 16 20 24 28 32
number of PES

Fig. 25
+ n = 1; 0 n = 2; A n = 4; x n = 8; + n = 16; en = 32

Multiprocessing speedups of LU in superscalar multiprocessing

Figs. 24-27 show the multiprocessing speedups of the
benchmarks. For the FFT, the multiprocessing speedup
remains an invariant as the superscalar processing
degree increases. This is because FFT spends little time
in being blocked (as shown in Figs. 9-12), so that as
the processor element becomes more capable of exploit-
ing instruction-level parallelism, the multiprocessing
speedup can still be maintained. However, the multi-
processing speedups of LU and Ocean are lowered as

26 1

the processor element becomes more capable of exploit-
ing instruction-level parallelism, indicating that the
systems with such processor elements will spend more
time in blocking relatively. As for the Radix, the multi-
processing speedup increases slightly as the superscalar
processing degree increases. This phenomenon can be
explained as follows. The Radix has less instruction-
level parallelism (see Fig. 13) and near 100% branch
prediction accuracy (see Fig. 21), so that the instruction
window is often full in a high-degree superscalar proc-
essor. Therefore, as the number of processors increases,
the more instruction windows in the processors will be
able to exploit more instruction-level parallelism, so
that the multiprocessing speedup increases.

.............. A A

Y U

v 0

-
A A

: OL I I I I J

0 4 8 12 16 20 24 28 32
number of PES

Fig. 28
processing
+ n = 1 ; U n = 2; A n = 4; x n = 8; + n = 16; 0 n = 32

Superscalar processing speedups of FFT in superscalar multi-

321- oceon

a 121- LU

0 4 8 12 16 20 24 28 32
numberof PES

Fig. 26
ing

Multiprocessing speedups of Ocean in superscalar multiprocess-

+ n = 1; 0 n = 2; A n = 4; x n = 8; + n = 16; n = 32

radix 32 r

0 4 8 12 16 20 24 28 32
number of PES

Fig. 27
ing

Multiprocessing speedups of Radix in superscalar multiprocess-

4 n = 1; 0 n = 2; A n = 4; x n = X; + n = 16; O n = 32

Figs. 28-3 1 show the superscalar processing speedup
of the benchmarks. The superscalar processing speedup
of FFT remains an invariant as the multiprocessing
degree varies. This result shows that in FFT the exploi-
tation of instruction-level parallelism is independent of
the exploitation of task-level parallelism. However, the
superscalar processing speedups of LU and Ocean
degrade as the number of processor elements increases.
This is because blocking time constrains not only task-
level parallelism but also instruction-level parallelism.
As for the Radix, the superscalar processing speedup of
the system with high-issue processors (n 2 8) increases
slightly as the multiprocessing degree increases. The
reason for this phenomenon is the same as that stated
in the last paragraph. The greater the number of
instruction windows, the greater the exploitable instruc-
tion-level parallelism.

262

0 4 8 12 16 20 24 28 32
number of PES

Fig. 29
processing
4 n = 1; 0 n = 2; A n = 4; x n = 8; + n = 16; O n = 32

Superscalar processing speedups of LU in superscalar multi-

0. 7 U

aJ a ffl

m

m ffl

v

.-

e a
L O - s

2
L ai Q

...A..

0 4 8 12 16 20 24'+ 28 32
number of PES

+ n

a
3 U

aJ
ffl

cm c
VI

a

._

2
e a
s
L
0 -

L aJ a
7 m

Fig. 30
processing

Superscalar processing speedups of Ocean in superscalar multi-

= 1; 0 n = 2; A n = 4; x n = 8; + n = 16; O n = 32

radix

.... a..A.. A

........... 4- .-.-.-.-.-.-.

0 4 8 12 16 20 24 28 32
number of PES

Fig. 3 1
processing + n = 1; U n = 2; A n = 4; x n = 8; + n = 16; O n = 32

Superscalar processing speedups of Radix in superscalar multi-

Figs. 32-35 show the overall speedups of the bench-
marks. It is observed that the parallelism, both
instruction-level and task-level, is fully exploited in

IEE Proc.-Comput. Digit. Tech., Vol. 145, No. 4, July 1998

superscalar multiprocessing. The sustained overall spee-
dups of the FFT, LU, Ocean and Radix are 211.5,
30.4, 180.5 and 126.4, respectively. In summary, the
FFT has the highest task-level parallelism and a sub-
stantial instruction-level parallelism so that it achieves

FFT

200

150
3 U
a

VI -
e 100 2

50

0
0 4 8 12 16 20 24 28 32

number of PES
Fig. 32
* n = 1; 0 n = 2; A n = 4; x n = 8; + n = 16; en = 32

Overall speedups of FFT in superscalar multiprocessing

LU

a
3 U

a, a VI - - e
>

0 4 8 12 16 20 24 28 32
number of PES

Fig. 33
+ n = 1; 0 n = 2 ; A n = 4; x n = 8; + n = 16; en = 32

Overall speedups of LU in superscalar multiprocessing

2 0 0 r oceon

- c.3
160- / '..'

3 U
a

8 1 2 0 - a

2 8 0 -

VI - -
>

0 4 8 12 16 20 24 28 32
number of PES

Fig. 34 Overall speedups of Ocean in superscalar multiprocessing
* n = 1; 0 n = 2; A n = 4; x n = 8; + n = 16; en = 32

1 radix

0 L 8 12 16 20 2L 28 32
number o f PES

Fig. 35
e n = 1; U n = 2; A n = 4; x n = 8; + n = 16; en = 32

IEE Puoc.-Comput. Digit. Tech., Vol. 145, No. 4, July 1998

Overall speedups of Radix in superscalar multiprocessing

the highest overall speedup. Although the LU has the
highest instruction-level parallelism, it shows the lowest
overall speedup due to insufficient task-level parallel-
ism.

4.4 Discussion
To obtain an insight into parallelism exploitation in the
benchmark programs individually, we identify the two
types of parallelism of the benchmark programs in
Table 3. With high task-level parallelism and moderate
instruction-level parallelism, the FFT achieves the high-
est overall speedup. For this type of program, we sug-
gest that a system with a moderate degree of
superscalar processing and a high degree of multiproc-
essing be used to exploit the most instruction-level and
task-level parallelism in programs. For example, a 32-
way multiprocessor with eight-issue processor elements
can speed up the FFT by over 200 times relative to a
single-issue uniprocessor (as shown in Fig. 32).

Table 3: Parallelism classification of the benchmarks

Benchmark Task-level Instruction-level
parallelism parallelism

FFT high moderate

LU low high

Ocean moderate high

Radix moderate low

The LU has the lowest task-level parallelism (its sus-
tained multiprocessing speedup is only about four).
However, its inherent instruction-level parallelism is
nearly 12. For the LU, superscalar processing is more
beneficial than multiprocessing. From Fig. 33, it can be
observed that the overall speedup of a four-issue uni-
processor can easily outperform a 32-way multiproces-
sor with one-issue processors. For this type of
program, we suggest that superscalar processing is
more appropriate than multiprocessing in exploiting
parallelism in programs.

Both the Ocean and the Radix have moderate task-
level parallelism. Yet the Ocean has high instruction-
level parallelism, whereas the Radix has low instruc-
tion-level parallelism. If two programs have the same
task-level parallelism, their instruction-level parallelism
determines the overall speedup. As a result, the Ocean
achieves higher overall speedup than the Radix does
(see Figs. 34 and 35). However, the superscalar process-
ing speedup of the Ocean degrades more sharply than
that of the Radix as the multiprocessing degree
increases (see Figs. 30 and 31). So, we conclude that a
system with a moderate degree of superscalar process-
ing and a high degree of multiprocessing is appropriate
for programs with moderate task-level parallelism.

In summary, we observed that exploiting task-level
parallelism via multiprocessing is much more efficient
than exploiting instruction-level parallelism via super-
scalar processing for the set of benchmark programs
that we chose. In the m-way multiprocessing, the spee-
dup can be almost linear for most of the benchmarks
programs. In contrast, the inherent instruction-level
parallelism of benchmarks ranges from only 4.29 to
12.08. Obviously, increasing the multiprocessing power
gains more performance than increasing the superscalar
processing power in general. Furthermore, instruction-
level parallelism is also constrained by task-level paral-
lelism in superscalar multiprocessing. As a superscalar

263

multiprocessor system design guideline, we suggest that
the parallelism in programs can best be exploited by a
moderate degree of superscalar processing and a high
degree o f multiprocessing.

5 Conclusions and future work

In this paper, we investigated the parallelism exploita-
tion in superscalar multiprocessor systems. To enable
accurate simulation of superscalar multiprocessor sys-
tems behaviour, we developed a simulator, called
SMINT, for superscalar multiprocessor systems. The
SMINT models both a superscalar processor that can
exploit instruction-level parallelism, and a shared-mem-
ory multiprocessor system that can exploit task-level
parallelism. With this simulator, we ran four applica-
tions chosen from the SPLASH-2 benchmark suite to
examine the parallelism exploitation capabilities in the
systems o f multiprocessing, superscalar processing, and
superscalar multiprocessing. We found that the paral-
lelism in programs can best be exploited by a moderate
degree of superscalar processing and a high degree of
multiprocessing. For example, the speedup of a 32-way
multiprocessor with eight-issue processor elements can
be over 200 relative to a single-issue uniprocessor.

In this paper, we assumed a perfect memory system
(the PRAM model). We will study the impact of mem-
ory system design on superscalar multiprocessor sys-
tems in the future. Furthermore, we intend to study a
variety of architectural alternatives of superscalar mul-
tiprocessor systems, such as a single-chip multiproces-
sor and multiprocessor clusters, to further identify the
different levels of parallelism and locality in programs.
These research topics concerning superscalar multi-
processor systems will also include the tradeoffs of par-
allelism exploitation and locality management, the
impact of ILP processors on memory consistency mod-
els and the implementation of speculative memory
access techniques.

6

1

2

3
4

5

6

I

8

9

References

Cray superserver CS6400 product (Cray Research, Inc., Eagan,
MN, USA, 1993)
Cray/T3D technical summary (Cray Research Inc., Eagan, MN,
USA, October 1993
KSR technical summary (Kendall Square, Research, 1993)
CEKLEOV, M.: ‘SPARCcenter 2000: Multiprocessing for the
~O’S!’. Proceedings of Compcon Spring 93, San Fransisco, CA,
USA, February 1993, pp. 345-353
BREWER, E.A., DELLAROCAS, C.N., COLBROOK, A., and
WEIHL, W.E.: ‘Proteus: A high-performance parallel architecture
simulator’. Technical Report MIT/LCS 516, Massachusetts Insti-
tute of Technology, Cambridge, MA, USA, September 1991
COVINGTON, R.C., MADALA, S., MEHTA, V., JUMP, J.R.,
and SINCLAIR, J.B.: ‘The Rice parallel processing testbe-
d’,ACM SIGMETRICS international conference on Measurement
and modeling of computer systems, Sante Fe, NM, USA, 1988, pp.
4-1 1
DAVIS, H., GOLDSCHMIDT, S.R., and HENNESSY, J.: ‘Mul-
tiprocessor simulation and tracing using Tango’. Proceedings of
199 1 international conference on Parallel processing, Austin, TX,
USA, 1991, Vol. 11, pp. 99-107
VEENSTRA, J.E., and FOWLER, R.J.: ‘MINT tutorial and user
manual’. Technical report 452, University of Rochester, Roches-
ter, New York, USA, June 1993
WOO, S.C., OHARA, M., TORRIE, E., SINGH, J.P., and
GUPTA, A.: ‘The SPLASH-2 programs: Characterization and
methodological considerations’. Proceedings of the 22nd annual
international svmposium on Comauter architecture, Santa Margh-
erita, Ligure, ftal?, June 1995, pp. 24-36

10 BOYLE, J., BUTLER, R., DISZ, T., BLICKFELD, B., LUSK,
E., and OVERBEEK, R.: ‘Portable programs for parallel proces-
sors’ (Holt, Rinehart and Winston, 1987)

11 BAILEY, D.H.: ‘FFT’s in external or hierarchical memory’, J.
Supercomput., 1990, 4, (lo), pp. 23-35

12 SINGH, J.P., WEBER, W.-D., and GUPTA, A.: ‘SPLASH:
Stanford parallel applications for shared memory’, Computer
Archit. News, 1992, 20, (l), pp. 5 4 4

13 BRANDT, A.: ‘Multi-level adaptive solutions to boundary-value
problems’, Math. Comput., 1977, 31, (138), pp. 333-390

TON, C.G., SMITH, S.J., and ZAGHA, M.: ‘A comparison of
sorting algorithms for the connection machine CM-2’. Proceed-
ings of the symposium on Parallel algorithms and architectures,
Hilton Head, South Carolina, USA, July 1991, pp. 3-16

15 FORTUNE, S., and WYLLIE, J.: ‘Parallelism in random access
machines’. Proceedings of the 10th ACM symposium on Theory
of computing, San Diego, CA, USA, May 1978, pp. 114-118

14 BLELLOCH, G.E., LEISERSON, C.E., MAGGS, B.M., PLAX-

264 IEE Proc.-Comput. Digit. Tech, Vol. 145, No. 4, July 1998

