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Abstract: The paper presents a new fuzzy logic 
control (FLC) approach which leads to a 
stereophonic reproduction controller for 
localising an auditory image in the desired 
direction and at the expected distance. Since an 
auditory event is usually less precisely resolved 
than the physical sound space, the auditory event 
need not coincide with a physical sound source, 
and can occur at a position where nothing is 
visible to a listener. It turns out that controlling 
the auditory image is more difficult than the 
localisation of a sound image. Unlike the 
conventional sound image localisation approach, 
our fuzzy logic controller can take account of 
knowledge in human auditory perception. The 
ambiguous human auditory perception in 
conjunction with the spatial reverberation from 
the surrounding environment can be represented 
by a number of fuzzy-set values. From these 
fuzzy representations, the auditory image 
localisation controller characterises the function 
of how control outputs depend on control inputs 
as fuzzy implications or associations. 
Furthermore, the overall stereophonic 
reproduction controller can be realised by a 45- 
rule fuzzy associative memory (FAM) system. 
The performance of FLC-based auditory image 
localisation is verified in a number of 
experiments. 

1 introduction 

Listening to music and other acoustic signals is to have 
a continuum of sound locations. This includes the 
direct signals from the locations of the sources and the 
indirect or reverberant signals in the surrounding envi- 
ronment. Nevertheless, the number of source locations 
is determined and limited by the number and location 
of the loudspeakers. In stereophonic reproduction of 
music recorded in an enclosed space, the directional 
and distance cues of the various recorded sound 
sources are, to some extent, preserved. This would give 
illusion of location in an illusory sound space. Sounds 
~~ 
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are commonly perceived as arriving from specific direc- 
tions, usually coinciding with the physical location of 
the sound source. The illusory perception may also 
carry with it a strong impression of the acoustical set- 
ting of the sound event, which normally is related to 
the dimensions, locations and sound-reflecting proper- 
ties of the structures surrounding the listener and the 
physiology of the brain. The objective sound, as in 
sound event, refers to a physical source of sound, while 
the objective auditory identifies a perception. Thus the 
perceived location of an auditory event usually coin- 
cides with the physical location of the source. Under 
certain circumstances, however, the two locations may 
differ slightly or even substantially. The difference is 
then attributed to other parameters having nothing to 
do with the physical direction of the sound waves 
impinging on the ears of the listener, such as subtle 
aspects of a complex sound event or the processing of 
the sound signals within the brain. 

The intent of this paper is to give some focus to the 
problem of synthesising (a sound source in an auditory 
space and then localising it at a specific position in 
concert halls. The localisation is the rule by which the 
location of an auditory event (e.g. its direction and dis- 
tance) is related to a specific attribute of a sound event. 
The cues of the sound localisation come from the com- 
parison of the sounds at the two ears and the analysis 
of the difference between them. The two major param- 
eters used to characterise sounds arriving from differ- 
ent horizontal angles are interaural amplitude 
difference (IAD) and interaural time difference (ITD). 
For the conventional s i  ereophonic reproduction sys- 
tem, the listener would perceive a single auditory event 
midway between the two loudspeakers when the loud- 
speakers are radiating coherent sounds with identical 
levels and timing. The phantom or auditory sound 
source results from the slumming localisation with IAD 
and ITD which is the basis for the present system of 
two-channel stereophonic recording and reproduction 
[l-31. The impressions of the auditory source move- 
ment between the loudspeakers can be convincingly 
demonstrated by tuning either interchannel time or 
amplitude differences. In other words, both the inter- 
channel time and amplitude differences of the stereo- 
phonic system are perceived as ITD and IAD, 
respectively. Moreover, [ 1, 31 showed that the direction 
of an auditory image is a function of both the inter- 
channel time and amplitude differences. From the psy- 
chophysical standpoint, this function becomes more 
complicated, since the human perception system that 
evaluates the signals presented to the ears and that 
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determines the direction of the auditory events cannot 
be regarded as linear. Moreover, it is difficult to 
describe the nonlinear function by an accurate expres- 
sion because the localisation blur is introduced to the 
auditory event [I]. Thus, the attempts at determining 
the appropriate settings of both the interchannel time 
and amplitude differences in order to manipulate the 
localisation of auditory events are unlikely to achieve 
the image size and positional precision associated with 
the events. Sakamoto et al. [4] proposed a technique to 
localise a sound image in a desired direction from a lis- 
tener by manipulating the head-related acoustic trans- 
fer functions on IAD and ITD. Actually, IAD and 
ITD provide the auditory system only with information 
on whether a sound source is to the left or right of lis- 
tener. The adjustment of both IAD and ITD cannot 
suffice to place the sound source at a desired distance. 
According to a hypothesis for the psychoacoustic 
mechanism of distance perception of Peter Craven 
[5, 61, the apparent distance of sounds is derived by 
ITD, the values of both channel amplitude gains, and 
the relative amplitude ratio of the early reflection or 
reverberant sound to direct sound. [5] showed that the 
artificial distance cue can be achieved by the adjust- 
ment of both channel gains and interchannel delay 
without doing the recomputation of the early reflec- 
tions every time. This implies that these gains and time 
delay can control the distribution and amplitude of 
direct and reverberant signals between the loudspeakers 
to provide the angular and distance information [6]. 
However, their model did not include the human audi- 
tory perception knowledge, and would degrade the per- 
formance of localisation cue. To tackle this difficulty, 
this paper presents the fuzzy logic localisation control 
systems, which provide a systematic and efficient 
framework for incorporating with fuzzy linguistic infor- 
mation from human auditory perception [7-lo]. Fuzzy 
logic control (FLC) is a model-free approach (i.e. it 
does not require a mathematical model of the auditory 
system in conjunction with the acoustic properties of 
the room acoustics). The essential part of the FLC is a 
set of linguistic control rules related by the dual con- 
cept of fuzzy implication and the compositional rule of 
inference. In essence, the FLC provides an algorithm 
which can convert the linguistic control strategy based 
on the acoustic properties of the illusory auditory space 
into an automatic localisation control strategy. 
Recently, some fuzzy logic chips were designed [ I l l  to 
speed up the fuzzy implication and inference processes 
to achieve real-time localisation. 

fuzzy rule 
base - 

2 
localisation 

Fuzzy control for an auditory image 

defuzzification of 
output variables 

In stereophonic reproduction systems, the position of 
an auditory image is a function of both the right/left 
channel gains and interchannel time difference. How- 
ever, the function becomes an expression of unknown 
form when the sound reproduction system involves the 
human auditory perception. Controlling the localisa- 
tion of the auditory image by traditional controllers 
becomes a difficult task because the controller usually 
requires an explicit mathematical model of how control 
outputs depend on control inputs. The math-model 
controllers represent system uncertainty with probabil- 
ity distributions. Probability models describe system 
behaviour with the first-order and second-order statis- 
tics. They usually describe unmodelled effects and 
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auditory 

location 

measurement imperfection with additive noise proc- 
esses. Mathematical state and measurement models 
make it difficult to add nonmathematical human audi- 
tory perception knowledge to the system. Fuzzy con- 
trollers differ from classical math-model controller. 
Fuzzy controllers do not require a mathematical model 
of how control outputs functionally depend on control 
inputs. Fuzzy controllers also differ in the type of 
uncertainty they represent and how they represent it. 
The fuzzy approach represents ambiguous human audi- 
tory perception as partial implications and fuzzy set 
descriptions-fuzzy associations. 

Fig. 1 illustrates the architecture of a stereophonic 
reproduction system in conjunction with the fuzzy 
auditory image localisation controller. Two input 
variables 6 and r exactly describe the desired auditory 
image position in the horizontal plane, where 8 and r 
represent the angle and distance from the listener to the 
phantom sound source, respectively. The gR, gL and d 
specify the fuzzy controller output variables, which are 
the inputs applied to the audio system, where gR, gL 
and d denote rightileft channel gains and interchannel 
time difference, respectively. The goal of the fuzzy 
controller was to make the listener perceive the 
resulting auditory image of the audio signal at a 
desired location. 

engin 

I - 
audio 
signal left channel 0 

listening 
room 

localisation controller 
location 

( 8 ~ )  
Fig. 1 Block diagram of controlling location of auditory image 

8 
virtual sound source 

Fig. 2 Fuzzy logic auditory image loca lisation control system 

2. I Basic architecture of fuzzy logic control 
systems 
Fig. 2 shows the basic configuration of an FLC which 
comprises four principal components: a fuzzification 
interface, a fuzzy rule base, an inference engine, and a 
defuzzification interface. The fuzzification interface 
converts the input values of the desired sound location 
into suitable linguistic values which may be viewed as 
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terms of fuzzy sets. The fuzzy rule base comprises a 
knowledge of the application domain and the attendant 
control goals. It consists of a fuzzy database and a 
linguistic (fuzzy) control rule base. The fuzzy database 
is used to define linguistic control rules and fuzzy data 
manipulation in an FLC. The control rule base 
characterises the control goals and control policy by 
means of a set of linguistic control rules. The inference 
engine is a decision-making logic mechanism of an 
FLC. It has the capability of simulating human 
auditory perception based on fuzzy concepts and of 
inferring fuzzy control actions employing fuzzy 
implication and the rules of inference in fuzzy logic. 
The defuzzification interface converts fuzzy control 
decisions into crisp nonfuzzy (i.e. physical) control 
signals. These control signals are applied to both the 
channel gains and time delay of the controller to 
achieve the expected auditory image location. 

A fuzzy set A in a universe of discourse, U is charac- 
terised by a membership function mA, which takes val- 
ues in the interval [0, 11; that is, mA : U + [O,l]. Thus, 
a fuzzy set A in U may be represented as a set of 
ordered pairs. Each pair consists of a generic element U 

and its grade of membership function; that is, A = { ( U ,  
ma(u))/u E U}.  A linguistic variable is characterised by 
a quintuple (x, T(x), U, G, hf) in which x is the name 
of the variable; T(x) denotes the term set of x, that is, 
the set of names of linguistic values of x, with each 
value being a fuzzy variable denoted generically by x 
and ranging over a universe of discourse U which is 
associated with the base variable U ;  G is a syntactic rule 
for generating the name, X ,  of values of x; and M is a 
semantic rule for associating with each X its meaning, 
@(X) which is a fuzzy subset of U. A particular X, that 
is a name generated by G, is called a term. It should be 
noted that the base variable U can also be vector val- 
ued. If x indicates the linguistic variable for the gain of 
right channel, then its term set T(x) may be chosen as 
{zero (ZE), negative medium (NM), negative big (NB), 
negative very big (NV)}. In addition, g,  represents the 
base variable for the right channel gain in dB with its 
own universe of discourse GR = {gRl - 12dB 5 gR  < 
OdB}. Thus M may assign a fuzzy set to the name of 
any term belonging to T(x), for example, @(NM) = 

m N d g R )  is a triangular-shaped function shown in 
Fig. 6. 

The fuzzification interface in Fig. 2 is a mapping 
from an input space to fuzzy sets in a certain input 
universe of discourse. So, for a specific value u,(t) at 
time instant t ,  it is mapped to the fuzzy set TiL with 
degree mJL (u,(t)) and to the fuzzy set TX”, with degree 
m i  (u,(t)), and so on, where Til is the name ofjth term 
or fuzzy-set value belonging to the term set T(x,). In 
the stereophonic sound localisation system, there are 
two input base variables (i.e. u1 and u2), and three 
output base variables, vl, v2, and v3 correspond to 0, r ,  
and gL, gR, d, respectively. Their corresponding term 
sets and membership functions will be determined in 
Section 3. 

{(gR, mNM(gR))lgR E GR} when X is NM, where 

2.2 FAM system implementations of the 
inference engine and fuzzy rule base 
The FAM system shown in Fig. 3 consists of a bank of 
fuzzy associative memory (FAM) rules or associations 
operating in parallel, and operating to degrees. The 
fuzzy system defines a mapping between an input fuzzy 
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Cartesian product, T(xl) x T(x2) x ... T(x,), defined in 
the crisp product space Xl x X2 x ... X, and a single 
output term set To?). Thus a fuzzy system is a transfor- 
mation FS : T(xl, x2, ... x,) = T(xl), x ... T(x,) + Tb). 
Usually, the number of FAM rules y1 in the system can- 
not be larger than (PI, x p2 x ... x pm x q), where p z  is 
number of the fuzzy-set values of T(x,), 1 I i I m, and 
q is number of the fuzzy-set values of Tb).  Each FAM 
rule is a MIS0 (multi-input and single-output) set-level 
implication and denoted by (Ti, ,  Ti2 ... Tim ; T’J It 
represents ambiguous expert knowledge on the learned 
input-output transformation. A FAM rule can also 
summarise the behaviour of human perception system. 
Each input fuzzy set A(E T(xl) x T(x2) ... T(x,)) to the 
FAM system activates each stored FAM rule from the 
fuzzy rule base to a different degree. According to the 
correlation minimum inference discussedn above, each 
FAM rule produces the output fuzzy set, Tyl, clipped at 
the firing strength, w, determined by the input condi- 
tions, FAM rules and their assyiated membership 
functions (i.e. M;,(xJ), 1 25 i 5 m). Ty” is called the par- 
tially activated version olf Tyz. The corresponding out- 
put fuzzy set Ty, combin5s these partially activated 
fuzzy sets Tyl ,  T:, ... Tym. Ty equals a weighted 
bounded sum of the partially activated sets: 

T n  

i=l 
m 

i= I 

or equivalently: 
m 

z= 1 

The partially activated output fuzzy sets pyl invoke the 
fuzzy version of the central limit theorem as the 
number of FAM rule increases. This tends to produce 
a symmetric, unimodal output fuzzy set Ty. The output 
fuzzy set Ty is then defuzzified to generate an exact 
numeral output by computing the fuzzy controid of Ty 
with respective to the output universe of discourse Y. 

FAM rule 1 

\ d 

- 
Fig. 3 FAM system architecture 

2.3 FAM-rule generaltion by differential 
competitive learning 
As mentioned above, the FAM system is the kernel of 
the fuzzy auditory image localisation controller. 
However, the user generally did not know how many 
FAM rules and their accurate expressions needed in 
performing the controller. Recently, several methods 
[8, 91 have been proposed to generate those FAM rules 
from numerical data. One of the promising methods 
which is called the competitive adaptive vector 
quantisation (AVQ) algorithm would be adopted to 
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our design methodology. The AVQ algorithm can 
adaptively estimate the unknown FAM rules from the 
input-output data of the audio system. More details of 
the competitive AVQ will be discussed in the next 
Section. 

Suppose that the p,(= IT(x,)I) fuzzy sets, Ti, ,  T:, , ... 
TIL quantise the zth input universe of discourse, X,, 
where IT(x,)l denotes the number of terms of x, (i.e. the 
fuzzy partition of input state linguistic variable xJ, 1 5 
i I m, and the qJ(= 1TCYJ)I) fuzzy sets, TJJ,  ..., TZ quan- 
tise the jth output universe of discourse, YJ, 1 I J 5 1. 
These quantising fuzzy sets may form a number of 
FAM cells which partition the input-output product 
space. In other words, this is called the fuzzy partition 
of input and output spaces. 

The fuzzy Cartesian product Tiz x T& x ... Tim x 
TJ  defines the FAM cell which corresponds to a possi- 
bfi MIS0 FAM rule (T i l ,  Ti2, ..., Tim; TjJ). The 
number of all possible FAM cells is (pl x p2  ... x pm x 
q]). Since the FAM cell may correspond to a FAM rule 
which is not active in the controller, the number of 
active FAM rules is usually less than (PI x p 2  x ... x p ,  
x qJ). For a 1-output system, the total number of all 
possible active FAM rules can not be larger than (PI x 

For simplicity, a simple two-input one-output case is 
chosen to emphasise and to clarify the ideas of generat- 
ing the FAM rules by performing the competitive AVQ 
algorithm on a set of input-output data pair. Suppose 
that there is a stream of input-output data pairs gener- 
ated from a product space Xl x X2 x Y, that is, 

P2 ... x P m  x 41 x ..’ 41). 

( 3 )  

where xl@, x2(,) are input samples at sample time i, and 
y@) is the output sample at sample time i. 

The unsupervised competitive AVQ learning algo- 
rithm distributes the k synaptic quantisation vectors 
ml, m2, ... m, in XI x X2 x Y. Learning distributes them 
to different FAM cells. If there is at least one synaptic 
vector cluster around the centroid of a FAM cell, the 
FAM cell would correspond to an active FAM rule. 
The key idea is that cluster equals rule. Sometimes, the 
numbers of synaptic vectors clustered about two differ- 
ent centroidal FAM rules may also be difficult. There- 
fore, it is desirable to determine the most-frequent 
FAM rules or only the FAM rules with at least some 
minimum frequency in order to reduce the cost of 
implementalion. Suppose there are n FAM-rule centro- 
ids and k > n. Suppose k,  synaptic vectors around the 
ith centroid, and k l  + k2 + ... + k, = k.  The frequency 
of the ith FAM rule is defined by: 

ki f .  - - 
z -  k (4) 

As a result, the number of quantisation vectors in each 
FAM cell measures the frequency of each possible 
FAM rule. 

2.4 Stochastic competitive learning 
algorithms 
Product-space clustering is a form of stochastic 
adaptive vector quantisation. Adaptive vector 
quantisation (AVQ) [8] systems adaptively quantise 
pattern clusters in Z(= Xl x X2 x ... x X, x Y) c RN, 
where z = [xl, x2, ..., x,, y] E 2 and N = m + 1. 
Stochastic competitive learning systems are neural 
AVQ systems. Neurons compete for the activation 
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induced by randomly sampled patterns. The pattern 
space Z is quantised adaptively by the corresponding 
synaptic fan-in vectors. The k columns of the synaptic 
connection matrix M are specified by the k synaptic 
vectors ms. M interconnects the N inputs or linear 
neurons in the input neuronal field F,, to the k 
competing nonlinear neurons in the output field, Fo. 

The AVQ system compares the current vector ran- 
dom sample z(t)  in Euclidean distance to the k columns 
of the synaptic connection matrix M, with the k synap- 
tic vectors ml(t) ... mk(t). If thejth synaptic vector mJ(t) 
is closest to z(f), thejth output neuron ‘wins’ the com- 
petition for activation at time t ,  The nearest or ‘win- 
ning’ synaptic vectors is updated by some scaled form 
of z(t)  - mJ{f). ‘Losers’ remain unchanged: m,(t + 1) = 
m,(t). A cost-effective AVQ algorithm based on the dif- 
ferential competitive learning algorithm can be found 
in [lo]. 

3 
pairwise comparison methods 

Undoubtedly, the membership functions of the terms 
or fuzzy-set values associated with both the input and 
oulput lingiustic variables play an important role in 
FLC systems. For the fuzzification process, the 
evaluation of a subjective value from the crisp input 
value should be determined on the basis of the 
membership functions associated with the input 
linguistic variables. The crisp control signals to the 
plant are determined by performing the defuzzification 
process on the basis of the membership functions 
associated with the output linguistic variables. This 
means that the performance of an FLC system is 
greatly dependent on the accuracy of the estimation of 
those membership functions. To determine such 
membership functions, we first need to know how 
many fuzzy-set values or terms belong to the term set 
of each linguistic variable. Next, we may determine the 
shape, centre, and width of the membership function of 
each term for every linguistic variable. According to 
the characteristics of human auditory perception, it is 
assumed that the membership function of each term is 
a triangle-shaped function. The peak location of the 
triangle-shaped function corresponds to the centre of 
the membership function associated with a term. 
Hence, the determination of the centre of each term is 
equivalent to the problem of localising the peak of the 
triangle-shaped function. Since the membership 
function is triangle shaped, it allows the width of the 
function to be determined by the points resulted from 
intersecting with its adjacent terms. These intersection 
points can also be interpreted as the maximum 
ambiguity or fuzziness between the term and its 
adjacent terms whose degrees are all equal to 0.5. 

The peak location of each term is estimated by 
making pairwise comparison of the elements of the 
universe of discouse. [12, 131 showed that the popular 
pairwise comparison is probably the best way to 
determine whether differences exist between two 
auditory events. Fig. 4 illustrates the configuration of 
the equipment layout for pairwise comparison 
experiment in a standard 3*3*4-m3 listening room with 
two Roger 315 loudspeakers. A loudspeaker is mounted 
on the relative reference point. The other one is 
movable and can be moved to a point which is a 
candidate peak location. A test sound stimuli was 
presented in both loudspeakers. This test sound stimuli 

Estimation of the membership functions by 
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current 
absolute relative 
reference reference 
location Point 

I speaker 

.4 Experiment for determining membership functions by puirwise 
comparison method 

Table 1: Data for human perceptual direction angle dis- 
crimination 

Student LE LC CE RC RI 

A 25 11 0 13 23 

B 25 13 0 10 23 

C 25 10 0 15 27 

D 23 11 0 12 34 

E 24 13 0 10 26 

F 23 13 0 13 26 

G 25 9 0 13 24 

H 24 9 0 8 24 

I 22 13 0 11 24 

J 22 11 0 9 20 

median 24 11 0 11.5 24 

CE = centre, LC = left centre, LE = left, RC = right centre, RI = 
right, 

is chosen as six-sec male vocal music : Track 6 'Impact 
2' from Japan Audio Society Co., Ltd., GP-1086 which 
was generated by a Spectral sound workstation with 
16-bit analogue input and output at sampling rate 
44.1kHz. The polar coordinate (8, r )  can exactly 
describe the location or point in the horizontal plane 
with respect to the listener, where 8 and r are the 
direction angle and distance of a sound source. The 
absolute reference point is set to be (Oo, ro) = (O", 3m). 
At the begining, a loudspeaker is fixed in the current 
relative reference location coinciding with the absolute 
reference location. For determining the peak locations 
of terms of the linguistic variable 'direction angle 8.' 
over the region of -30" 4 8 4 30", the movable 
loudspeaker which was initially mounted on the 
relative reference point should be moved clockwise 
(right direction) or counterclockwise (left direction) for 
every angle increment A 8  = 1" or -1" and then 
compared with the sound from the loudspeaker at the 
relative reference point, where positive values of 8 
represent a clockwise rotation (right-direction), and 
negative values of 8 represent counterclockwise 
rotations (left-direction). Notice that the distance of the 
movable loudspeaker remains at a normal distance ro = 
3m and the peak location of the initial term called CE 
(CEnter) is 0", corresponding to the absolute reference 
point. Once the movable loudspeaker reaches the peak 

IEE Proc-Control Theory Appl., Vol. 14S, No. 4, July 1998 

location of the adjacent term called the LC (left centre) 
for the left-side or RC (right centre) for the right side, 
the listener can clearly discriminate the difference 
between the sound directions of both loudspeakers. 
Experiments were conducted with ten listeners, all 
male, aged 21-25 years. Six listeners were graduate 
students, and four listeners were undergraduate 
students. The peak location data of both terms LC and 
RC are shown in the second column and the fourth 
column of Table 1, respectively. The actual peak 
locations of both terms can be estimated by a median 
filter which is a well-known robust estimator to 
location [14]. Let the n observation zI,  1 4 i I n be 
arranged on ascending order of magnitude and then 
written as: 

Z(1) I X ( 2 )  5; 733) I . . . I q n )  (5) 
where zo) is the so-called ith order statics. The median 
of zL, i = 1,2, ..., n is defined as: 
median ( { z ~ } : ~ ~ )  

Hence, the peak locations of LC and RC are estimated 
as 11" and 11.5", respectively. Next, the current relative 
reference point is now set to be either the estimated 
peak point (ll', 3m) for LC or (11.5", 3m) for RC. 
Similarly, the peak location of the adjacent term with 
respect to the current reference term, which is either 
LC or RC, can be determined by the same technique. 
The peak locations of both the new adjacent terms 
called the LE (LEft) for left-side and RI (Right) for 
right-side are all identical to 24". 

b 

-3Oct24.0 -11.0 0 11.5 24.030.0 

e 
Fi .5 

T(0) = {LE, LC, CE, RC, Rl}  

Membership functions for fuzzy-set values of input linguistic vuri- 
ab% 

As mentioned above, the width of membership func- 
tions of a term can be determined by finding the maxi- 
mum ambiguity points between the term and its 
adjacent terms. For example, the maximum ambiguity 
point for the left-side of a test term is determined by 
discriminating the direction difference between the 
sound from the loudspeaker mounted on the peak 
point of the test term and the other sound from the 
loudspeaker which is initially placed at the peak point 
of the left adjacent term and then moved toward the 
test term for every angle increment A 8  = 1". If the mov- 
able loudspeaker reaches the maximum ambiguity 
point, the listener cannot distinguish the direction dif- 
ference between them. It is found that the ambiguity 
point is always identical to the midpoint between the 
peak points of two terms. As a result, the membership 
functions of the term set, T(8) = { LE,LC,CE,RC,RI f ,  
of the linguistic variable, 'direction angle' 8, are illus- 
trated in Fig. 5. Similarly, the term set of the distance, 
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r ,  over the region of, 2m I r I 4m, can be obtained 
from the data shown in Table 2 and is identical to 
{ NE(near), NO(normal), FA(far) }. The diagram- 
matic representation of those terms is shown in Fig. 6. 

Table 2: Data for human perceptual distance discrimina- 
tion 

Student NE NO FA 

A 
B 

C 

D 
E 

F 
G 
H 
I 

J 

2.4 3 3.7 

2.3 3 3.4 

2.7 3 3.4 

2.2 3 3.7 

2.4 3 3.5 

2.4 3 3.4 

2.3 3 4.2 

2.5 3 3.8 

2.4 3 3.7 

2.4 3 3.5 

median 2.4 3 3.6 

NE = near NO = normal FA = far 

1 .o 

2 0.5 

0 
2.0 2.4 3.0 3.6 4.0 

Membership functions for fuzzy-set values of input linguistic vari- 
r 

Fi .6 
ab!r 
T(0) = {NE (near), NO (normal), FA (far)} 

The peak locations of the terms associated with the 
input variables, interchannel time difference d left chan- 
nel gain gL and right channel gR, can be determined by 
placing two loudspeakers at the leftmost point (-30", 
3m), and the rightmost point (30", 3m), and then tuning 
either the time difference or gain levels of both chan- 
nels. Positive values of d mean that the right channel 
signal is faster than the left channel signal. Negative 
values of d represent that the left one is faster than the 
right one. The universe of discourse for d is D = {d' 
- 40 i d i 403, where the unit of d is 1/44 100 second. 
It is assumed that the maximum gain levels of both 
gR and gL are OdB. The universe of discourse for both 
gL and gR are identical and given by GL = {gLl - 12 i 
gL 2 0)  and GR = {gRI - 12 I gR I 0}, where the unit of 
both gL and gR is 1dB. The iterative procedure of 
determining the peak point of the current term of d is 
performed by changing the interchannel time difference 
and then comparing with the sound resulted from the 
peak point of the previous term, which has been 
already determined. Notice that the peak point of an 
initial term called the SM(smal1) is 0. If it reaches the 
peak point of current term, the listener will feel that 
there is a significant change between them. However, 
we found that it is difficult to find the maximum ambi- 
guity point between a term and its adjacent term. 
Hence, we use a good rule of thumb that adjacent 
terms should overlap approximately 25% to determine 
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the width of the associated membership functions [8]. 
From the above discussion, the diagrammatic represen- 
tation of the term set, T(d) = { NB(negative big), 
NM(negative medium), SM(small), PM(positive 
medium) PB(positive big)} is illustrated in Fig. 7. Simi- 
larly, the diagrammatic representation of the term set, 
T(gL) or T(gR) = {ZE(ZEro), NS(negative small), 
NM(negative medium), NB(negative big), NV(negative 
very big)} is shown in Fig. 8. 

1 .o 

2 0.5 

n 
-40 -16 0 16 40 

d sound sample 
Fi .7 Membership finetions forfuzzy-set values of output linguistic var- 
iabyes 
T(d) = {NB (negative big), NM (negative medium), SM (small), PM (positive 
medium), PB (positive big) 

4 

dB 
Fig. 8 Membership functions for fuzzy-set values of output linguistic var- 
iables 
T ( ~ ) L  {ZE (ZEro), NS (negative small), NM (negative medium), NB (negative 
big), NV (negative very big)} 

/ 

3 m  

Fig. 9 Experimental layout for FAM rule generation 

4 
rules of auditory image localisation systems 

Product-space clustering to generate FAM 

As discussed in Section 2.4, it is known that the differ- 
ential competitive AVQ is able to estimate the 
unknown FAM rules from training data. Laboratory 
experiment illustrated in Fig. 9 was conducted to gener- 
ate those training data. A LOGO loudspeaker is 
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mounted on the absolute reference point, ( O O ,  3m), and 
the other two Roger 315 loudspeakers are placed at the 
leftmost point, (-30", 3m) and rightmost point (30°, 
3m), respectively. The listener was instructed to indicate 
the direction and distance of an auditory image 
resulted from both the Roger 3/5 loudspeakers by com- 
paring with the sound from the reference LOGO loud- 
speaker. This idea is based on the pointer methods [I] 
that are the most widely used in determining points of 
perceptual quality for spatial attributes of auditory 
events. However, the direction of an auditory event 
cannot be determined from what the subject indicates 
by pointing unless the relationship between the physi- 
cally measurable direction of the pointer and the direc- 
tion of the perceptual event corresponding to the 
pointer is known. A common method is to have the 
subject displace a movable sound source (loudspeaker) 
so that the auditory event appears in an agreed direc- 
tion or at an agreed distance. Unfortunately, this 
method is not cost-effective for our laboratory. The 
modified method is that a listener is asked to point out 
the direction and distance of the auditory image by 
referring to the scale of both the direction angle and 
distance indicated on the floor and then comparing 
with a fixed reference sound source (LOGO loud- 
speaker). The procedure of generating the training data 
can be summarised as (i) select randomly and uni- 
formly five gain levels from both the universes of dis- 
course of gR and gL, (i.e. GR and GL), and five time 
differences from the universe of course of d, D, respec- 
tively. Thus, there are 125 (= 5 x 5 x 5) possible set- 
tings to the spectral sound workstation. By inputting 
the 6 s test sound stimuli into the workstation accord- 
ing to 125 settings, there would be 125 auditory image 
events, (ii) ten students are instructed to indicate the 
location of each auditory event and then compare with 
the fixed reference sound source after 1s. As a result, 
we will have 1250 training data for the generation of 
FAM rules. 

The training vectors [e, r ,  d, g,, g,lT define points in 
a five-dimensional input-output product space X ,  x X,  
x D x GR x GL. 8 had five fuzzy set values or terms: 
LE, LC, CE, RC, and RI. r had three terms: NE, NO, 
and FA. d had five terms: NB, NM, SM, PM, and PB. 
Both the gR and gL had identical five terms: ZE, NS, 
NM, NB, and NV. So there were 1875 (5 x 3 x 5 x 5 x 
5)  FAM cells. The space X ,  = (-30" I 6 I 30") is 
divided into five almost-uniform intervals: [-30, -17.51, 
[-17.5, -5.51, [-5.5, 5.751, [5.75, 17.751, and [17.75, 301. 
Each interval represents its associated fuzzy set value of 
five terms, LE, LC, CE, RC, and RI. This choice corre- 
sponded to the nonoverlapping intervals of the fuzzy 
membership function graph in Fig. 5. Similarly, the 
space X ,  = {2 5 r 5 4) can be divided into three almost- 
uniform intervals : [2, 2.71, [2.7, 3.31 and [3.3, 41 which 
corresponded, respectively, to NE, NO, and FA. D = 
{ 4 0  I d I 40) is divided into five uniform intervals: 
[40 ,  -241, [-24, -81, [-8, 81, [8, 241 and [24, 401, which 
corresponded, respectively, to NB, NM, SM, PM and 
PB. Both GR = (-12 I gR I 0) and GL = (-12 I gL I O }  
are divided into same five nonuniform intervals: 
[-12, 10.51, [-10.5, -7.51, [-7.5, 4.51, [AS, -1.51, and 
[-1.5, 01. 

We performed product-space clustering with the ver- 
sion of DCL discussed in Section 2.4 The number of 
synaptic vectors k may be chosen as the number of 
FAM cells and equals 1875. Thus, the dimension of the 
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synaptic connection matrix M becomes a huge number, 
5 x 1875. This will increase greatly the complexity of 
computing DCL algorithm. To reduce the complexity, 
one may eliminate the infeasible FAM rules by observ- 
ing the feature of auditory events. The number of pos- 
sible feasible FAM rules is estimated to be less than 50. 
Hence, we used 50 synaptic vectors of quantisation to 
estimate the FAM rules. The DCL algorithm classified 
each of the 1250 training input-output data vectors 
into one of the 50 FAM cells. We added a FAM rule 
to the FAM system if a DCL-trained synaptic vector 
fell into the IFAM cell. 

150 -40 -30 -20 -10 0 10 20 30 40 50 

input data distribution when gR=NM, gL=NB, d=NM 
Fig. 10 Input datu dutribution when gR = NM, gL = NB, and d = NM 

Fig. 10 shows the input sample distribution [e, rIT 
which is the two-dimensional projection of the five- 
dimensional input-output product space when d = 
NM, gR = NM, and gL = NB. Performing DCL on this 
input sample distributioin, it yields a synaptic vector 
which fell into a projected FAM cell, [5.75, 17.751 x 
[3.3, 41, where [5.75, 17.751 and [3.3, 41 correspond to 8 
= RC and r = FA, respectively. This clustered FAM 
cell corresponds to an MIMO FAM rule, (RC, FA; 
NM, NM, NB). Since the three outputs of an MIMO 
rule are independent, this rule can be decomposed into 
three MISO FAM rules (RC, FA; NM) for output var- 
iable d, (RC, FA; NM) for gR, and (RC, FA; NB) for 
gL. For the five-dimensional product space, it is found 
that most FAM cells do not generate FAM rules. DCL 
distributed the 50 synaptic vectors to the most frequent 
15 FAM cells. According to the above discussion, we 
have 45 MISO FAM rudes which are represented by 
three FAM-bank matrices and their corresponding con- 
trol surfaces shown in Figs. 11, 12, 13, 14, 15 and 16, 
respectively. The control surfaces are used to define the 
input-output transformation of a control system. 

e 
LE LC CE RC RI 

r NO 

Fig. 1 1 
when output vuriuble is g, 

FAM bunk for fuzzy auditory image localisation control system 

Fig. 12 Corresponding control surface for conditions in Fig. I 1  
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NM NM NM NB NV 

NS NS NS NM NB 

Fig. 14 Corresponding control suvface for conditions in Fig. 13 

NE 

e 
LE LC CE RC RI 

ZE ZE ZE NS NM 

r NO 

NM ZE 

Fig. 15 
when output variable is d 

FAA4 bank for fuzzy auditory image localisation control system 

set of rule 1 results in the shaded trapezoid shown in 
Fig. 17. Similarly, the firing strengths for FAM rules, 
R2, R3, and R4 are w2 = 0.1, w3 = 0.3 and w4 = 0.1, 
respectively. Applying each firing strength to the 
consequent fuzzy set of its associated rule would result 
in a similar trapezoid with different size. By 
superimposing the resulting memberships over each 
other and using the bounded sum operator, the 
membership function for the combined conclusion of 
these rules is found (as shown the lower right-hand side 
of Fig. 17). Furthermore, using the fuzzy centroid 
defuzzification, the defuzzified value for the 
conclusion is found as gL = 4.94dB. Similarly, by 
applying the same correlation-minimum inference 
procedure to the right channel gain and interchannel 
time difference, gR and d can be found as -3.75dB and 
6 time units, respectively. For the desired input (-22", 
2.7m), it can be found that the crisp control signals gL, 
gK and d are -1.5dB, -7.5dB and -32 time units, 
respectively. A test sound stimuli is applied to the 
Spectral sound workstation according to the resulted 
crisp control signals. Ten students are instructed to 
indicate the direction and distance of the resulting 
auditory events according to the reference direction 
angle and distance labelled on the floor. To improve 
the accuracy of identifying both direction and distance, 
one may compare the estimated location with a fixed 
reference sound source. The resulted data for both 
cases are shown in Table 3. The deviation between the 
desired location (4", 3.lm) and the mean average of 
those data, (7.8", 2.75m) is 3.8" for 8 and 0.35m for r .  
Similarly, the deviation for the other desired auditory 
location, (-22", 2 . 7 ~ )  is 3" and 0 . 1 3 ~ .  Figs. 18 and 19 
show a typical example of the experiments in the above 
fuzzy sound localisation. 

I 

Fig. 16 Corresponding control suYface for conditions in Fig. I5 

5 Performance verification of FLC-based 
auditory image localisation 

To evaluate the performance of controlling auditory 
localisation by the proposed 45-rule FLC system, two 
different desired input auditory locations (4", 3. lm) 
(near to the forward axis and outside the reference 
ring) and (-22", 2.7m) (near to the leftmost axis and 
inside the reference ring) are considered in our system. 
Fig. 17 shows an example of correlation-minimum 
inference for the four FAM rules of left channel gain 
gL followed by centroid defuzzification of the combined 
output fuzzy sets when the desired input (4", 3.h) is 
applied to the FLC system. These four FAM rules are 
R1 : (CE, NO; NS), R2 : (CE, NE; NM), R3 : (RC, 
NO; NM), and R4 : (RC, NE; NB). The antecedent of 
each FAM rule cojoins 8 and r fuzzy-set values. The 
scalar firing strength w, of the ith FAM rule's 
consequent equals the minimum of both the antecedent 
conjuncts' values. For example, from Fig. 17, the FLC 
system activates the consequent fuzzy set NS of the 1st 
FAM rule (CE, NO; NS) to degree w1 = min (0.6, 0.8) 
= 0.6. Moreover, applying w1 to the consequent fuzzy 
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fuzzy centroid m- 
I 

Fig. 17 
gL followed by centroid defuzzification 

Correlution-minimum inference of four activated FAM rules of 

In normal hearing, the precision with which we are 
able to identify the direction and distance of sounds 
depends on a number of factors. The measure of 
precision is called localisation blur, the smallest 
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Fig. 18 Typical experiment in standard listening room 

Fig. 19 Typical experiment in standard listening room (continued) 

displacement of the sound event that produces a just- 
noticeable difference (JND) in the corresponding 
auditory event. The concept of localisation blur 
characterises the fact that auditory space (the 
perception) is less precisely resolved than the physical 
sound space [l, 21. Hence, the deviations between the 
resulting auditory image locations and the expected 
sound locations are acceptable. 

6 Conclusions 

In this paper, we presented a novel fuzzy logic 
controller design methodology for constructing the 
auditory image localisation controllers in the 
stereophonic reproduction system. The fuzzy logic 
controller does not require an accurate mathematical 
model of the system under control and is capable of 
incorporating the human auditory perception into the 
controllers. We have shown that the human auditory 
perception knowledge can be represented by a bank of 
45 FAM rules which is the essential part of FLC-based 
localisation system. These 45 FAM rules were 
generated by the DCL clustering technique on the basis 
of 1250 training data obtained from ten human 
listeners. The fuzzy-set values of each linguistic variable 
associated with the FAM rules were derived by 
applying the pairwise comparison method to auditory 
events. Thus, it results in three FAM banks and their 
corresponding fuzzy control surfaces in order to yield 
the appropriate settings of interchannel time delay and 
both channel gains of the reproduction system and 
achieve the desired auditory image localisation. Two 
experimental tests were conducted to demonstrate that 
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the accuracy of the proposed 45-rule localisation 
controller is allowable in accordauce with the JND of 
human localisation blur. 

Table 3: Data for the evaluation of the FLC-based audi- 
tory image localisation 

Student direction, deg. distance, m 

A 5 2 8  

B 6 2 4  
B 11 2 4  

D 10 3 1  

E 8 3 0  

F 9 2 3  
G 10 2 8  

H 7 2 9  

I 4 2 8  
J 8 2 7  

mean 7.8 2 75 

desired 4 3 1  
error 3.8 0 35 

Student direction, deg. distance, m 

A -2 5 2 8  

B -23 2 6  

B -23 2 4  

D -27 2 4  

E -2 5 2 6  
F -2 4 2 2  

G -26 2 9  

H -27 2 6  
I -2 4 2 4  

J -2 6 2 8  

mean -26 2 6  

desired -22 2 57 

error 3 0 13 
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