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Abstract 

The Strong Consensus (SC) is a variant of the conventional distributed consensus 
problem. The protocol designed for the SC problem requires that the agreed value 
among fault-free processors be one of the fault-free processor's initial value. The SC 
problem is re-examined with the assumption of mixed failure types (also referred to as 
the hybrid fault model). Compared with the features of the existing protocols, the under- 
lying network topologies of the proposed protocol do not have to be fully connected, the 
mixed failure types can be tolerated, and no prior information of the system's faulty sta- 
tus is required. The proposed protocol can tolerate a maximum number of faults to en- 
able each fault-free processor to reach an agreement with a minimum number of 
message exchanges. © 1998 Published by Elsevier Science Inc. All rights reserved. 
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I.  I n t r o d u c t i o n  

The Distributed Consensus problem [1-5] is one of  the most important prob- 
lems in designing a fault-tolerant distributed system. A variant of distributed 
consensus, called the Strong Consensus (SC) problem, was introduced by Ne- 
iger [6]. In the SC problem, each processor A starts with an initial value, be- 
longs to a finite set, V, of  all possible values ([ V] = m). The protocol for the 
SC problem is to enable all fault-free processors to obtain a common value. Af- 
ter the execution of  the protocol, the common value obtained by the fault-free 
processors shall be the value that satisfies the following conditions: 
1. Agreement: All fault-free processors agree on the same common value v, and 
2. strong validity: v is the initial value of  some fault-free processors. 

In practice, most network topologies are not fully connected and network 
processors may be subjected to different types of  failure simultaneously [1]. 
From the standpoint of  disruptive effects, the processor failure types can be di- 
vided into two disjoint subsets: dormant faults and arbitrary faults, termed by 
Meyer and Pradhan [7]. A dormant fault is defined as a fault that does not con- 
taminate the content of a message and produces missing values detectable by 
all fault-free processors. An arbitrary fault refers to the case when the behavior 
of  a fault is not restricted. 

However, the SC protocol proposed by Neiger [6], like most conventional 
consensus protocols [8,9,3], is designed to handle arbitrary faulty processors 
in a fully connected network. Based on the discussion of [10,7,11], the protocol 
of [6] cannot tolerate a maximum number of faults when dormant faults are 
considered because the faulty behaviors of the dormant faults are more consis- 
tent than that of the arbitrary faults. Also, the protocol cannot be applied to a 
nonfully connected network such as the one shown in Fig. 1. 
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Fig. 1. A network with mixed failure types. 
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Some existing protocols [10,7,11] are designed to solve the consensus prob- 
lem with mixed failure types (also referred to as the hybrid fault model). How- 
ever, they will not guarantee the strong validity condition as specified by [6]. 
Moreover,  the major  limitation of  these protocols is that the number  of  arbi- 
trary faulty processors must be known prior to execution of the protocols. 
However, this requirement violates the general assumption of the consensus 
problem - that a fault-free processor does not know which processor is faulty 
[3,5]. Furthermore,  Shin and Ramana than  [12] found that it is impractical to 
run diagnostics to detect all arbitrary faults in a network. Thus, these protocols 
cannot  solve the SC problem with mixed failure types. 

The strategies used in previous research of the consensus problem can be 
classified into two groups: deterministic strategy and nondeterministic strategy 
[13,14]. Each step for executing deterministic strategy is predetermined, such 
as all processors execute the same protocol, and all processors start and stop 
the execution of protocol at the same time. Conversely, certain steps of  a pro- 
tocol are not predefined in the nondeterministic strategy. For  example, a pro- 
cessor can stop the executing of the protocol early when it can decide the 
common value. However, in such a strategy, a processor cannot decide whether 
another processor has stopped early or crashed when no message was received 
from it; thus, the nondeterministic strategy is inappropriate for mixed failure 
types. Hence, the research in the consensus problem with mixed failure types 
(including this paper) concentrates on the deterministic strategy. 

We re-examined the SC problem with mixed failure types in a synchronous 
network I and proposed a protocol that can solve the problem under the fol- 
lowing assumptions: 
1. The underlying network may not be fully connected and the communication 

links in the network are assumed to be fault-free. 
2. Let n be the total number  of  processors. Each processor 's identifier is un- 

ique. A processor does not know the fault status of  another processor. 
3. Let c be the connectivity of the underlying network. Due to the Menger the- 

orem [15], at least c disjoint paths exist between any pair of  processors S and 
R if the connectivity of  the network is c. For  any two paths the only common 
components  are S and R. 

4. Let Pa be the number of  processors subjected to arbitrary faults. 
5. Let Pd be the number  of  processors subjected to dormant  faults. 
6. Let V be the set of  all possible values of  the SC problem, m be the size of  V, 

and each processor uses a predefined enumeration of  the values in 
V: v l ~ v2~ . . . ~ v m. 

1 In a synchronous network, the bounds for processing and communication delay in fault-flee 
components (processors and links) are finite and are known by all fault-free processors [13]. 
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The protocol designed for solving the SC problem with mixed failure types is 
called SCMIX. SCMIX enables all fault-free processors to obtain a common 
value for solving the SC if n > max{mPa + Pd, 3Pa + Pd} and c > 2Pd + Pd. It 
uses a minimum number of message exchanges and can tolerate a maximum 
allowable number of  faulty processors. SCMIX is based on the oral message 
model (one of the deterministic strategy) [3], which has two phases: the message 
exchange phase and the decision making phase. The goal of the message ex- 
change phase is to collect the messages and that of  the decision making phase 
is to compute a common value for solving the SC problem. The formal descrip- 
tions of  these phases are given in Section 3. 

The remainder of  the paper proceeds as follows. In Section 2 we give the 
conditions for the SC problems. Section 3 proposes the detaiI descriptions of 
the proposed protocol. The analysis and evaluation of  SCMIX are presented 
in Section 4. The conclusion is given in Section 5. 

2. The conditions for strong consensus 

In order to solve the SC problem, the number of message exchange rounds 
required and the number of  faulty processors allowed shall first be considered. 

2.1. The number of rounds required by SCMIX 

Since a processor does not know the fault status of  another processor, each 
fault-free processor requires t + 1 rounds 2 to exchange the messages needed to 
reach an agreement [3,6,5], where t =  L(n-1) / (max{m,3})J .  Fischer and 
Lynch [16] also pointed oat that the t + 1 rounds are the minimum number 
of  rounds required to reach a common value when the network's fault status 
is unknown. Therefore, the minimum number of rounds required by SCMIX 
i s t + l .  

2.2. The number of allowable faulty processors by SCMIX 

Essentially, the fault tolerant capabilities of a network depend on the total 
number of processors and the network topology (connectivity). For example, 
every faulty processor can prevent the fault-free processors from achieving 
an agreement if the network topology is a tree. To generalize, the complete 
characterizations of  constraints on failures for the SC problem are shown in 
Theorem 1. The SC protocol that meets Theorem 1 is given in Section 3. 

2 A round denotes the interval of  message exchange between a pair of  processors [7,14]. 
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Theorem 1. For any network with n processors and c connectivity, SC  can be 
achieved if'. 

(1) n > max{mP~ + Pd, 3Pa + Pd}, and 
(2) c > 2Pa + Pd 

Proof. The first constraint specifies the number of processors required and 
follows the concept of  [3,7,17]. Via a time-out mechanism (the approach is 
presented in Section 3), a fault-free processor can detect the occurrence of  a 
dormant fault in a processor and ignore all messages from that processor if no 
message is received from it within a predefined time interval. Then the network 
behaves as a network with n -  Pd processors. The constraint n -  Pd > 3P~, 
namely n > 3Pa + Pd, requires that the SC protocol also solve the consensus 
problem [7,17]. Follow the results of  [7], the constraint n - Pd > mP~, namely 
n > mPa + Pd, is required to solve the SC problem. Thus, 
n > max{mPa + Pa, 3Pa + Pd} is the constraint on the number of processors 
required. 

On the other hand, the second constraint specifies the connectivity required. 
In each round, every processor sends its message to other processors. In order 
to decide whether a processor has sent out its message, by the concept of ma- 
jority, the total number of  arbitrary faulty processors must be less than half of 
c - Pd, namely c > 2P~, + Pd [9]. Otherwise, such a goal cannot be reached. [] 

By Theorem 1, the maximum number of tolerable faulty processors by 
SCMIX is Pa + Pd ifn > max{mPa + Pd, 3Pa + Pd} and c > 2P~ + Pd (the formal 
proof  is shown in Theorem 7). 

3. Basic concept and approaches 

In a nonfully connected network, a processor can act either as sender, receiv- 
er, or relay depending on the message flow. A message, sent from a sender to a 
receiver, may be passed through some relay. The message may be influenced by 
either the sender (dormant or arbitrary fault), some faulty relay, or both. To 
solve the SC problem, SCMIX must therefore completely remove the influences 
of dormant  faulty senders, arbitrary faulty senders, and faulty relays. 

In order to solve the SC problem, based on the oral message model, each 
processor should execute t message exchange rounds (stated in the Section 2) 
to collect the messages. At each round, a processor should broadcast its mes- 
sage to all processors and receive messages from all processors. To remove the 
influence caused by the faulty relays, each processor uses the fault-tolerant vir- 
tual channel (FTVC) protocol to broadcast its message. The formal description 
is presented in Section 3.1. Using FTVC, a fault-free processor can therefore 
detect that a processor Q is faulty if no message is received from Q during 
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one or some rounds. Once a processor Q is detected as faulty, the messages re- 
ceived from Q can be ignored at each subsequent round. Such an approach is 
called the Absent Rule ARsc and its formal definition is presented in Sec- 
tion 3.2. The absent rule can handle the faults, especially the dormant faults, 
that do not send messages as it should be. In [17], we found that the traditional 
majority vote is inappropriate for mixed failure types (also see Section 3.3). As 
a result, a new voting scheme VOTEsc is proposed for solving the SC problem 
with mixed failure types, and the formal description of  VOTEsc is presented in 
Section 3.3. Since the messages received from the faulty processors, detected by 
the absent rule, are ignored, the network behaves like a network with n - P d  
processors. Based on the majority concept, the total number of the tolerable 
faulty processors by SCMIX can be increased. With FTVC protocol, the ab- 
sent rule ARsc and voting function VOTEsc, the proposed protoocol SCMIX 
consists of: the message-exchange phase and the decision-making phase. The 
main functions of these phases are shown in Fig. 2. Using these two phases, 
SCMIX can solve the SC problem. 

Phase [ • Collect the messages to compute a common value for 
Message Exchange 

I strong consensus 

Initialization 
• Create an IG-tree with root E 

Step 1: The f irst  message exchange round 
• Use FTVC to broadcast its initial value 
• Receive the messages sent by all processors and store the received messages to the 

depth 1 of the 1G-tree 
• Apply the absent rule to depth 1 of the 1G-tree 

Step 2: The i-th message exchange round, where i = 2 to t + 1 
• Pack the values stored in depth (i-1) of the IG-tree to the message M 

• Use FTVC to broadcast the message M 
• Receive the messages from all processors 
• According to the structure of the IG-tree, unpack the received messages, and store the 

unpacked messages to depth i of the IG-tree 
• Apply the absent rule to depth i of the IG-tree 

~ IG-tree 

Decision Phase ] • Compute a common value for strong consensus Making 

Step 3: Compute the common value 
• Apply the voting function VOTEsc to the root E of the IG-tree 

Step 4: Output the common value 
• Output the value stored at the root E of the 1G-tree as the comman value 

Fig. 2. The basic approaches of SCMIX. 
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As for the data structure used to collect the messages, each fault-free proces- 
sor maintains a tree structure, called the information gathering tree (IG-tree) [8], 
of depth t + 1. It is organized and labeled as follows. Each vertex of the IG-tree 
is labeled by a non-repeating sequence, :~, of processor identifiers. The root of 
the IG-tree is labeled by the empty sequence E and the parent of a vertex la- 
beled by sequence c~p is labeled ~. Because all sequences are nonrepeating~ 
the root of  the IG-tree has n children, each child of the root has n - 1 children, 
and the vertices at depth t each has n - t leaves as it children. If a vertex is la- 
beled c~p, it is said to correspond to processor p. The root of the IG-tree corre- 
sponds to no processor. Note that each level of an IG-tree contains a round of 
received messages. No repeating processor identifier can avoid the recursive in- 
fluences made by a faulty processor. 

SCMIX is illustrated by an example that shows the complete procedure for 
executing SCMIX on the fault-free processor A in the network shown in Fig. 1. 
The same procedure is executed by each fault-free processor. Suppose that the 
dormant faulty processor F does not send any messages during the entire exe- 
cution of  the protocol and m = 3. When SCMIX is finished, all the fault-free 
processors reach a common value '1' that is the initial value of processor A, 
i.e., the Agreement and Strong Validity condition of the SC problem are both 
satisfied. Hence, SCMIX does solve the SC problem with mixed failure types. 
The procedure of SCMIX on processor A is presented as follows. 
Message exchange phase 
Initialization 
• Create an IG-tree with root E 

In the initial step, processor A creates an IG-tree with roQt E. 
Step l: The first message exchange round 
• Use FTVC to broadcast its initial value 

Processor A uses FTVC to broadcast its initial value to all processors. 
• Receive the messages sent by all processors and store the received messages 

to the depth 1 of the IG-tree 
Although the message passing may be influenced by the faulty processors 

F, H, and I, processor A receives the messages sent by all processors, and stores 
the messages to depth 1 of its IG-tree as shown in Fig. 3(a). That means FTVC 
can remove the influences of the faulty relay processors. For example, A stores 
the value '1' received from processor B in the vertex B, denoted as val(B) = l, 
at depth 1 of  IG-tree as shown in Fig. 3(a). 
• Apply the absent rule ARsc to depth 1 of  the IG-tree 

To remove the influence of a dormant faulty processor, processor A then ap- 
plies ARsc to depth 1 of its IG-tree as shown in Fig. 3(b). Note that the value 
stored as vertex F in the IG-tree is Q3 as shown in Fig. 3(a). That means pro- 
cessor A does not receive any messages from F and uses the value ~ to repre- 
sent the message from F. After the absent rule is applied, processor A will use 
the value ,~/to replace the messages received from F as shown in Fig. 3(b). The 
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Depth 0 Depth 1 

O O A  v.~(A )=1 
E O B  val (B)=I 

O c  val (C)  =1 
O D  v~ (D)=I 
O E val (E)=2 
O F val (F)=¢ ~ 
O G  val (G)=2 
O H va] (H)=o 
O : voJ(: )=o 

: no message received 
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Depth  2 

~ s c  

O A B  val (AB) = I 
O A C  val(AC)= I 
O A D  val (AD) = l 
O A E  val(AE)=l 
O A F  val (AF) =,,¢ 
O A G  val(AG) = I 
O A H  val(AH) =0 
O A I  val( AI)=0 

Depth 0 

O 
E 

O FA val ( FA ) = ~ 1  
O F B  va](FB)= ~41  
O F C  va](FC)= ~,¢1 
O F D  v)I(FD)= .~4/ 
O F E  val(FE)= ;~¢/ 
OFG val(FG)= ~041 
O F H  val (F/./) = 0 
o F I  val( FI )=0 

D e p t h  1 

O A  v~(A )=1 
OB va] (B)=l 
O c  v~ (c)=I 
O D  va1(D)=l 
0 E val (E)=2 
O F  val (F)-~ 
O G val (G)=2 
O H val (H)=o 
0 1 v~(l )=o 

(b) 
Depth  3 

~ ABC vaI(ABC)= 1 
ABD vaI(ABD)= I 
ABE val ( A B E  ) = I 

ABF val (ABF) = .,# 
ABG val (ABG) = I 
ABH val (ABH ) = 0 
ABI val (ABI) = 0 

O FAB val (FaB )= ~ ¢ 2  
OFAC vaI(FAC) = ~ 4  2 
O F A D  vaI(FAD) = ~'¢2 
OFAE val(FAE )= 7(~'¢ 2 
OFAG vaI(FAG) = ~ ¢  2 

' "(~FAH val (FA//) = 0 
OFBI  val(FBl )=0 

01.4 val{iA )=o ~/AB val(/Ao )=o 
O I B  val(lB )=O i ' O I A C  val(lAC)=O 
O I C  val (/C ) = 0 OIAD val(1AD)=O 
O l D  val ( IO)  = 0 [ OlAE val(IAE)=O 
O I E  va l ( lE) -O O l A F  val (/AF ) = ,.¢ 
OIF val ( IF )=A [ OIAG val(1AG)=O 
O I G  val ( IG )=0 J ~ I A H  val(lAH)=l 
0114 val ( tH ) -  I 

(c) 
Fig.  3. S C M I X  solves the  SC p r o b l e m  fo r  p r o c e s s o r  A in the n e t w o r k  m o d e l  s h o w n  in Fig.  1: (a) 

T h e  first r o u n d  IG- t ree .  (b) A f t e r  the  a b s e n t  ru le  is appl ied .  (c) A f t e r  the  message  e x c h a n g e  p h a s e  

(d) A p p l y i n g  the  V O T E s o  
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A O I F  OIAG ~ ~(IAG)=0 
0 o I G  OIAH v'A (/AH) = ~ 
I O I H  

(d) 

Fig. 3 (continued) 

value d will be relayed to all receivers as value ~ / 1  and the value ~ ¢ j  will be 
relayed to all receivers as value N d j + l  (the meaning of  value ~ and . ~ ¢ / w i l l  
be described later), where 1 ~< j ~< t. 
S t e p  2: the second message exchange round 
• Pack the values stored in depth 1 of  the IG-tree to the message M 

Processor A packs the values stored in depth 1 of the IG-tree to the message 
M, namely (1,1,1,1,2, ~ 4 1 ,  2,0,0). Note that the value d is replaced by . ~ d ]  
by using the absent rule. 
• Use FTVC to broadcast the message M 

Using FTVC, processor A broadcasts the massage M to all processors. 
• According to the structure of  the IG-tree, unpack the received messages, and 

store the unpacked messages to depth 2 of  the IG-tree. 
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• Processor A receives the messages sent by all processors, unpacks these messag- 
es, and stores the unpacked messages to the vertices at depth 2 of its IG-tree. 

• Apply the absent rule to depth 2 of  the IG-tree. 
To remove the influence of the detected faulty processors, processor A ap- 

plies the absent rule to depth 2 of  its IG-tree. 
In the third round, processor A executes the same procedure as in the second 

round did. Processor A broadcast,  using FTVC, the messages stored at depth 2 
of  its IG-tree, receives the messages sent by all processors, and stores the received 
messages to depth 3 of  its IG-tree. After the message exchange phase, the mes- 
sages collected in A's IG-tree is presented in Fig. 3(c) (due to space limitations, 
only a part  of  the IG-tree is shown). For  example, the val(ABC) (val(ABC) = 1) 
represents that the message was first sent by processor A to processor B, and then 
processor B relayed this message to processor C. Finally, A received this message 
from C and stored it in vertex ABC as shown in depth 3 of  the IG-tree in 
Fig. 3(c). In this example, 505 (1 + 9 • 8 • 7) vertices are created in the IG-tree. 
Decision making phase 
Step 3: Compute  the common value 
• Apply the voting function VOTEsc to the root E of the IG-tree. 
• Processor A applies the voting function VOTEsc to its IG-tree to compute 

the common value for strong consensus. Note the value ~ '  (excluding the 
last round) is not counted at the time the VOTEs¢ is taken. The value '1' 
is stored in the root E after VOTEsc is applied as shown in Fig. 3(d). 

• Output  the value stored at the root E of the IG-tree as the common value. 
Finally, processor A selects the value '1'  stored in the root of  the IG-tree as 

the common value. 
The detailed descriptions of  the above steps for removing the influences of  

the multiple faulty processors are presented below. 

3.1. Removing the influence of  a faulty relay 

To remove the influence of a faulty relay, a protocol, called FTVC, provides 
a fault-tolerant virtual channel on the physical links in a nonfully connected net- 
work. To illustrate the concept of  FTVC, we first consider the case of  a single 
sender S and a single receiver R. S uses FTVC to send its message ms to R. An- 
alyzing this exchange will enable us to portray the general situation in which 
every sender sends a message to every receiver. For  example, when FTVC is 
applied to the network model shown in Fig. 4(a), receiver R can receive the 
fault-free message sent by sender S; while in the case of  Fig. 4(b), R can posi- 
tively detect that S did not send a message to it even if it does receive the false 
message sent by the arbitrary faulty relay. 

As the Menger theorem [15] states, at least c disjoint paths exist between S 
and R if the connectivity of  the network is c. Hence S is able to send e copies of  
its messages through c disjoint paths to R. The c disjoint paths between S and R 
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0 Fault-free processor 

S e n d e r ~ R e c e i v e r  

(a) 

I~ Dormant faulty processor • Arbitrary faulty processor 

Sender ~ R e R i v e r  S 

(b) 

Fig. 4. An example of the function of FTVC. 

can be predefined as stated in [9,7], and the path information is distributed to 
the relaying processors between S and R. A detailed description of the path 
information distribution is presented in Appendix A. According to the path 
information, a relay processor receives the message (R, S, ms) from a predefined 
immediate predecessor and sends the message to a predefined immediate suc- 
cessor. Since the network is synchronous, the predefined immediate successor 
P of S should have the message sent by S after a predefined time interval 
[13]; otherwise, it knows that S is faulty. When P receives no message from 
S, it will relay the symbol O (O ~ V) to its immediate successor along the pre- 
defined disjoint path between S and R to reflect the faulty status. These are the 
concepts of the transfer rules obeyed by each relay processor. The formal def- 
inition of the transfer rules is presented in Appendix B. 

According to the transfer rules, an arbitrary faulty relay can modify at most 
one message, and a dormant faulty relay can drop at most one message. In the 
worst case, R will receive c - Pa copies of messages sent by S. Applying the ma- 
jority vote MAJ to these messages, R can determine what message was sent by 
S if the constraint on connectivity, namely c > 2Pa + Pd, holds. MAJ has three 
possible outcomes: 

Case 1: ms, if S is fault-free. 
Case 2: O, if S does not send the message to R. 
Case 3: Arbitrary value, if S has an arbitrary fault. 
In case 1, R receives the message ms sent by the fault-free sender S when 

MAJ is applied to the receiver messages. If S does not send the message to R 
(case 2), R will use O as the message sent by S because the major of c - Pa cop- 
ies of messages is O. The third outcome of MAJ implies that the received mes- 
sage is not only contaminated by a faulty relay, but is also contaminated by an 
arbitrary faulty sender. FTVC is unable to remove the influence in such a case; 
hence such an outcome for MAJ shall be an arbitrary value. 

3.2. Removing the influence of a dormant faulty sender 

Each fault-flee sender must send its messages to all receivers in each round 
of the message exchange phase. As mentioned in Section 3.1, a receiver can 
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therefore detect that a sender is faulty if no message is received from the sender 
(the output of  MAJ of  FTVC is •). A fault-free receiver R can detect that a 
sender S is faulty if no message is received from S. If  R receives no message 
from S at the rth round, all messages received from S (directly) at the rth round 
and any subsequent rounds will be replaced by the value d ;  and this value will 
be relayed to the other receivers as value ~ d l .  In each subsequent round, the 
value ~ 4 j  will be relayed to the other receivers as value N d j + l  (~ '  and 
~ ¢ / j  ~ V), where 1 ~<j ~< t. 

Semantically, the value ~4 is represented as an absentee vote, and sender S is 
treated as an absentee. Hence, the voting ticket of S is ignored during the de- 
cision making phase. The value ~ ' j  will be interpreted as the j th  time an ab- 
sent vote is reported. Receiver R will report to all other receivers that S is an 
absentee, and then the faulty sender S will be forced out of the game of agree- 
ment; thus, S has no influence on the others when the voting function VOTEsc 
is taken in the decision making phase. The approach is called the Absent Rule 
(ARsc) and it can be formalized as follows. 

"ARsc: When receiver R receives no message directly from sender S in the 
rth round, then all messages received from S in the rth and any subsequent 
rounds will be replaced by value ~¢, and this value will be relayed to the 
other receivers (if any) as value ~ ¢ 1 .  In each subsequent round, the value 
~ 4 j  will be relayed to the other receivers as value ~ d j + 1 ,  where 
l<~j<~t." 

3.3. Removing the influence of an arbitrary faulty sender 

After the message exchange phase, the messages collected in a fault-free re- 
ceiver's IG-tree are free from the influence of faulty relays and the dormant 
faulty senders. However, the messages may still be contaminated by arbitrary 
faulty senders. In order to reach an agreement, such influences must be re- 
moved in the decision making phase. 

Conventionally, the influence of arbitrary faulty senders is removed by 
means of  a recursive majority vote when only arbitrary faults are considered 
[3,6]. The main concept used in these protocols is majority because a majority 
of the processors in the network are assumed to be fault-free. However, this 
concept is inappropriate for mixed failure types because a majority of  the pro- 
cessors may also fail. Using Fig. 5 as an example, there are four faulty proces- 
sors (three dormant  faulty processors and one arbitrary faulty processor; i.e., 
Pd = 3 and Pa = 1), a greater number than the number of  fault-free processors 
(three). Suppose that m = 3 (the number of  values of  V). The bound on the 
constraints on failures, namely n > max{mPa + P  d, 3Pa +Pd}, holds because 
7 > 3 • 1 + 3. However, the fault-free processors, A,B and C, are unable to 
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v c = l  C D 

Fig. 5. A fully connected network with mixed failure types (n = 7). 

O Fault-free processor 

• Dormant fault 

O Arbitrary fault 

reach agreement when a conventional majority vote is taken. A detailed de- 
scription of this example is presented in Appendix C. Thus, a new voting 
scheme VOTEsc should be proposed to solve the SC problem with mixed fail- 
ure types. 

By the constraint on the number of processors required, namely 
n > max{mP~ + Pd, 3Pa + Pa}, it can tolerate k(-- max{m, 3}) more dormant 
faulty senders because k(Pa - 1) + (Pd + k) = kPa +Pd, where Pa ~> 1 if the net- 
work eliminates one arbitrary faulty sender. This phenomenon can be used 
by VOTEsc to remove the influence of  an arbitrary faulty sender. The basic 
concept of  VOTEsc is as follows. Let P be a fault-free processor and a be 
the vertex at depth i of  P's IG-tree, 1 <.i<~t. If P detects that k ( t -  i +  1)+ 
[(n - 1)modk] children of a have value sJ, it uses the original value stored at 
o, namely val(a), as the output of  VOTEsc to remove the influence of the ar- 
bitrary faulty sender as in the above discussion; otherwise, it uses the most 
common value of children of  a as the output of VOTEsc. 

VOTEsc is always correct if vertex a corresponds to a fault-free or a dor- 
mant faulty sender since each fault-free receiver has the same message sent by 
the sender. On the other hand, the output of VOTEsc may be contaminated 
by Q after our approach is applied if vertex a corresponds to an arbitrary 
faulty sender Q (Q cooperates with other arbitrary faulty senders to prevent 
the fault-free processors from achieving a common value). However, the in- 
fluence of Q can still be removed during upper level voting if 
n > max{mPa +Pd,3Pa +Pd}. Appendix D presents the formal definition of 
VOTEsc. 

4. Analysis and evaluation 

SCMIX removes the influence of  processors subjected to various types of 
failures to enable all fault-free processors to reach a common value to solve 
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the SC problem. Since a fault-free processor cannot know the fault status of the 
other processors, t + 1 rounds are required to reach an agreement. SCMIX us- 
es the approaches stated in Section 3 to remove the multiple faulty compo- 
nents, and these approaches can be presented as the following primitives: 
• FTVC_SEND(m, Q): send the message m to processor Q by using FTVC. 
• FTVC_RECEIVE(m, Q): receive the message m from processor Q by using 

FTVC. 
• ABSENT_RULE(r) :  apply the absent rule ARs¢ to depth r of  the IG-tree. 
• VOTEsc(s): apply the function VOTE to vertex s. 

Some additional primitives should be presented to ensure a thorough solu- 
tion: 
• CREATE(~Q, v): create the vertex ~Q, and set val(aQ) = v. 
• PACK(r,  m): fold depth r of  the IG-tree to the message m. 
• UNPACK(m, r): according the structure of  depth r of  the IG-tree, unfold 

the message. 
• OUTPUT(v):  output the value v. 

Using the above primitives, the formal procedure of  SCMIX is stated as fol- 
lows. 

1. Protocol SCMIX (for each processor P) 
2. begin 
3. /* Initialization */ 

4. CREATE (E, NULL);  
5. /* Message  Exchange  Phase *l 
6. /* The first round */ 
7. for Q E N do 
8. FTVC_SEND(vp, O); 
9. for Q E N do 

10. begin 
11. FTVC_RECEIVE(vq, Q);/* Vq is the initial value of  processor Q 

*/ 

12. CREATE(Q, Vq); 
13. end; 
14. ABSENT_RULE(l ) ;  
15. /* round 2 to round t + 1 */ 
16. f o r r = 2 t o  t + l  do 
17. begin 
18. PACK(r  - 1, m); 
19. for Q c N do 
20. FTVC_SEND(m, Q); 
21. for Q E N do 
22. begin 
23. FTVC_RECEIVE(m, Q); 
24. UNPACK(m, r); 
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25. for a E m do 
26. begin 
27. v = val(o-); 
28. CREATE(aQ,  v) 
29. end 
30. end; 
31. ABSENT_RULE(r )  
32. end; 
33. /* Decision Making Phase */ 
34. OUTPUT(VOTEsc(E) )  
35. end. 

4.1. Correctness 

The goal of  SCMIX is to enable all fault-free processors to reach a common 
value to solve the SC problem; thus, the correctness of  SCMIX can be proven 
from the fact that the common value of each fault-free processor satisfies the 
conditions of  Agreement and Strong Validity. To reach a common agreement, 
each fault-free processor must be insulated from contamination by faulty pro- 
cessors. As stated in Section 3, SCMIX uses FTVC to remove the influences of  
faulty relays during each round of message exchange. To remove the influence 
of dormant  faulty senders, SCMIX applies ARsc  to be received messages after 
each round. Finally, it applies VOTEsc to the messages, received in the mes- 
sage exchange phase, to remove the influence of arbitrary faulty senders. When 
all contamination by faulty processors has been removed, an agreement is 
reached. This is the basic concept for proving the correctness of  SCMIX. 

Since SCMIX uses the IG-tree (based on the oral message model) to collect 
the messages as presented in Section 3, some concepts and terminology used by 
[8] are presented here. A vertex cr is called common, if each fault-free processor 
computes a same value for ~r. In other words, a common value for solving the 
SC problem can be reached if the root of  each fault-free processor's IG-tree is 
common.  To prove the root is common,  the term commonJJ'ontier is defined as 
follows. I f  every root-to-leaf path in an IG-tree contains a common vertex, 
then the collection of common vertices forms a common frontier. By theJi'on- 
tier lemma in [8], the fault-free processor's IG-tree root is common if the com- 
mon frontier exists on each fault-free processor's IG-tree. Hence, a common 
agreement can be reached among the fault-free processors if a common frontier 
does exist in each fault-free processor 's IG-tree. 

To prove the correctness of  FTVC, the output of  MAJ shall be proven free 
from the influence of faulty relays. Thus, we shall prove that a fault-free receiv- 
er can receive a message sent by a fault-free sender, or can detect that the send- 
er did not send a message to it. Accordingly, we first define the consistent vertex 
as follows. 
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Consistent vertex,  vertex ~(~ = •i) in a fault-free receiver's IG-tree is a con- 
sistent vertex if sender i is fault-free or dormant  fault. By the behavior of  i, all 
fault-free receivers receive the identical message sent by i. Although a processor 
does not know which vertex is consistent, the consistent vertices do exist since 
some processors in the network are fault-free or dormant  fault. 

According to the definition of a consistent vertex, all fault-free receivers 
should receive an identical message sent by a sender if the influence of a faulty 
relay is removed. Therefore, the consistent vertices of  an IG-tree are common.  
Since the maximum number  of  arbitrary faulty processors is Pa( ~< t), each root- 
to-leaf path has at least one consistent vertex. Therefore, the common frontier 
does exist in the IG-tree. Thus the root is a common vertex due to the existence 
of a common frontier. A common agreement is reached among all fault-free 
processors; thus, the SC problem with mixed failure types is solved. 

To summarize the semantics for the following lemmas and theorems, Lem- 
ma 1 indicates that a fault-free receiver can receive the message sent by a fault- 
free sender by using FTVC. Lemma 2 shows that a fault-free receiver can detect 
that the sender did not send a message to it by using FTVC. Theorem 2 proves 
the correctness of  FTVC. Lemma 3 states that all consistent vertices in an 
IG-tree are common after the voting function VOTEsc is applied to an IG-tree. 
By the definition of  a common frontier, Lemma 4 shows the existence of  a com- 
mon  frontier in an IG-tree. Based on the frontier lemma [8], Theorem 3 shows 
that the root of  a fault-free processor 's IG-tree is common.  Finally, Theorem 4 
proves that the SCMIX is correct under the constraints on failures stated in 
Section 2. 

Lemma 1. Using FTVC,  faul t - f ree  receiver R can receive message m sent by faul t -  

f r ee  sender S if c > 2Pa + Pd. 

Proof. Using FTVC, fault-free sender S sends c copies of  m to R through c 
disjoint paths. According to the path  information and transfer rules presented 
in Section 3.1, each dormant  faulty relay can drop at most one message. In the 
worst case, R receives at least c -  Pd messages sent by S. By hypothesis, we 
know that c - Pd > 2Pa. Therefore, R can decide the message sent by S when 
the majority vote MAJ is applied to these c -  Pd messages. [] 

Lemma 2. Using FTVC,  faul t - f ree  receiver R can detect that sender S did not send 

a message to it i f  c > 2P~ + Pd. 

Proof. When S does not send a message to R, each fault-free immediate 
successor of  S (along the disjoint paths between S and R) will relay the 
symbol ~3 to R. In the worst case, R receives at least c - (Pa - 1) messages of  
value Q. By hypothesis, we know that c -  (Pd - 1) > 2Pa. Hence, the output 
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of the majority vote MAJ is @, and R notices that S did not send a message 
to it. []  

Theorem 2. F T V C  does remove the influence o f  a faul ty  relay i f  c > 2P~ + Pd. 

Proof. By Lemmas 1 and 2, the message received by R is free from the influence 
of a faulty relay; thus, the theorem is proved. [] 

Lemma 3. All  consistent vertices are common after VOTEsc is" applied to an 
IG-tree i f  n > max{mPa + Pd, 3Pa + Pd}. 

Proof. Suppose that k = max{m, 3}. Each consistent vertex a of  an IG-tree can 
be proven to be common in the following cases. 

Case 1 (o- is a leaf). Fault-free and dormant  faulty senders always send iden- 
tical messages to all receivers. Hence, a is common after VOTEsc is applied to o-. 

Case 2 (a is at depth i, 1 ~< i ~< t). 
Case 2.1. a has at least k*(t - i + 1) + [(n - 1)modk] children, each of which 

has a stored value ~¢. By condition c2 of VOTEsc stated in Appendix D, the 
original value stored at a, namely val(a), is used as the output of  VOTEsc; 
thus, a is common.  

Case 2.2. a has j ( <  k*(t - i +  1) + [(n - 1)modk]) children, each of which 
has a stored value s~¢. According to the structure of  the IG-tree, a has n - i 
children. By hypothesis, we have n -  P ~ -  Pd > 2P~. Since t ~> P~, we have 
n - i ~> n - t I> n - Pa; moreover,  j ~< Pd, we can write n -- i -- j > 2Pa. Hence, 
by condition c3, c4 or c5 of VOTEsc  stated in Appendix D, a is common.  [] 

Lemma 4. A common J~ontier does exist in the IG-tree. 

Proof. By definition, an IG-tree is a tree of  depth t + 1. Since the maximum 
number  of  arbitrary faulty processors is Pa( ~< t), each root-to-leaf path has at 
least one consistent vertex. By Lemma 3, a consistent vertex is common.  
Therefore, a common frontier does exist in an IG-tree. [] 

Theorem 3. The root o f  a fault-free processor's IG-tree is common. 

Proof. Let k = max{m, 3}. According to the structure of  the IG-tree, root E has 
n children. I f  no arbitrary faulty processor exists in the network, namely 
P~ = 0, the message passing is influenced by dormant  faulty processors only. 
These influences are removed by using ARsc;  therefore, E is common.  
Generally, suppose that some senders in the network are subjected to arbitrary 
faults, namely P~ > 0. By hypothesis, we have, 

n - P ~  -P~  > ( k -  1)P... 

Since P~ > 0, we can write, 
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n > n - Pa, =~ n - Pd > n - Pa - Pd > (k - 1 ) P a ,  

n > (k - 1)P~ + Pd. 

Since (k - 1) > 2 (k = max{m, 3}), by majority concept, E is common after 
VOTEsc is applied. []  

Theorem 4. S C M I X  does solve the S C  problem with m i x e d  fai lure types i f  

n > max{mPa + Pd, 3Pa +Pd} a n d c  > 2Pa +Pd- 

Proof. By Theorem 3, the agreement condition is satisfied. That  SCMIX 
satisfies the strong validity condition is shown as follows. Let VFF c_ V be the 
initial values of  the fault-free processors. If  VVF = V, then strong validity is 
trivially satisfied. On the other hand, if lIFE ¢ V, then there are at most 
k - l ( k = m a x { m , 3 } )  values among the fault-free processors. Since 
n > kP.d + Pd, there are at least n - Pa - Pd > (k - 1)Pa fault-free processors. 
Thus, for at least one value in VFF, there are more than Pa fault-free processors 
with that initial value. 

When a fault-free processor applies VOTEsc to the root E of  its IG-tree, it 
first applies VOTEs¢ to the n children of  E. By Lemma 3, each depth 1 vertex 
that corresponds to a fault-free processor outputs the original value stored at 
that vertex, which is the initial value of the corresponding processor. By the 
above observation, some value in VFF is output by VOTEsc for more than 
Pa vertices at depth 1 because n > kPa + Pd and the influence of the dormant 
faults is removed by ARsc. Since all fault-free processors agree on this value, 
strong validity is satisfied. Thus, the theorem is proven. [] 

4.2. Complexi ty  

The SC problem with mixed failure types is solved by SCMIX that is based 
on the oral message model [3]. In this model, all fault-free processors should 
exchange enough messages in order to reach a common value for the SC prob- 
lem. Thus, the time for message passing dominates the entire execution of  
SCMIX and the complexity analysis of  SCMIX is focused on message complex-  
ity. The complexity of  SCMIX is defined in terms of: (1) the number of rounds 
required, (2) the number of  messages required, and (3) the number of  faulty 
components allowed, In this section, we prove that SCMIX is optimal. It uses 
the minimum number of rounds and messages, and tolerates a maximum num- 
ber of  faulty components. 

To solve the SC problem with mixed failure types in a generalized network, 
Theorem 5 shows that SCMIX requires t + 1 rounds and (t + 1)cn 2 messages. 
Theorem 6 shows that SCMIX can solve the problem by using a minimum 
number of  rounds and messages, and Theorem 7 proves that SCMIX can tol- 
erate a maximum number of  allowable faulty processors. 
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Theorem 5. SCMIX requires t + 1 rounds and (t + 1)cn 2 messages to solve the 
SC problem with mixed failure types t f  n > max{mPa +Pd,3Pa +Pd} and 
c > 2Pa + Pd. 

Proof. The message passing is required in the message exchange phase only; 
thus, SCMIX requires t + 1 rounds and this number is the minimum as shown 
by Fischer and Lynch [16]. In each round, a processor packs the values stored 
at the last level of  the IG-tree to a message, and uses FTVC (c copies of  the 
message are sent to a processor) to broadcast the message to all processors. 
Hence, there are cn 2 messages generated in each message exchange round. 
Therefore, the total number of  messages required by SCMIX is (t + 1)cn 2. By 
Theorem 4, SCMIX can enable all fault-free processors to reach an agreement. 
Hence, the theorem is proven. [] 

Theorem 6. SCMIX solves the SC problem with mixed failure types by using a 
minimum number of rounds and messages. 

Proof. If  the system's fault status is unknown, then t + 1 rounds are proven to 
be the lower bound on message passing for reaching an agreement [16]. By 
Theorem 5, at least (t + 1)cn 2 messages are required to reach a common value. 
Hence the theorem is proven. [] 

Theorem 7. The total number of allowable faulty processors by SCMIX, namely 
Pa +Pd, is maximum t fn  > max{mPa + Pd, 3Pa +Pd} andc> 2Pa +Pd. 

Proof. As stated in Section 1, a protocol for the SC problem with mixed failure 
types does exist if the constraints on failures, namely 
n > max{mPa + Pd, 3Pa + Pd} and c > 2Pa + Pd, hold. Otherwise, an agreement 
cannot be reached. If  Pa + Pd is not the maximum number of  allowable faulty 
processors, then other constraints on failures should exist, namely 
n ~< max{mPa + Pd, 3Pa + Pa} or c ~< 2Pa + Pa- However, this stands in con- 
tradiction with Theorem 1. Thus, the theorem is proven. [] 

5. Conclusion 

SCMIX is a protocol for solving the SC problem with mixed failure types in 
a network proven in Theorem 4. We have shown the conditions for an agree- 
ment, namely the number of  processors required and the connectivity required 
as stated in Theorem 1. Since SCMIX is based on the general assumptions of 
mixed failure types and generalized network topology, the protocol of  [6] is a 
special case of  SCMIX as shown in Table 1. From the previous discussion, we 
can present the following results. 
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1. In solving the SC problem for a nonfully connected network, SCMIX is op- 
timal in terms of the number of  rounds required, the number of  messages 
required, and the number of  faulty components allowable as proven in The- 
orems 5-7. 

2. SCMIX does not require a priori knowledge of  processor fault status. 
3. SCMIX is designed to solve the SC problem with the most general assump- 

tions on processors as shown in Table 1. 
4. The FTVC protocol provides a reliable communication mechanism for re- 

moving the influence of faulty relays. 
Since SCMIX was originally designed for handling processor faults, it can- 

not tolerate the maximum number of  allowable faulty components when pro- 
cessors and links can both fail [14]. Our future work will focus on improving 
SCMIX to where it can solve the SC problem with mixed failure types in both 
processors and links. 

Appendix A. Path information 

The path information about each sender and receiver pair is distributed to 
the reply processors between sender and receiver. Each relay processor P main- 
tains tuple (receiver, sender, predecessor, successor) path information such that 
the path (predecessor, P, successor) constitute a subpath of  the path from the 
sender to the receiver. The sender and receiver also need the c neighbors along a 
prescribed set of  processor-disjoint paths. The sender will send c copies of  the 
message formatted (receiver, sender, message) along the c predefined paths to 
the receiver during each round of message passing. 

Appendix B. Transfer rules 

The transfer rules obeyed by a relay processor P are defined as follows: 
R 1: According to the path information described above, P only relays mes- 

sages to its predefined immediate successor if it receives them from its prede- 
fined immediate predecessor. 

R2: Let P be a predefined immediate successor of the sender S. If  after time 
Tk + Tsp, P has not received a message from S, then P will relay the symbol O to 
its predefined immediate successor, where Tk is the starting time of  the kth 
round of  the message exchange phase, and T~p is the upper bound on commu- 
nication time between S and P. 

Semantically, R 1 indicates that a fault-free relay receives messages only from 
its predefined immediate predecessor and sends messages only to its predefined 
immediate successor. R2 is proposed to help R to determine the status of S. 
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Since the network is synchronous, the starting time of each round and the upper 
bound on each link's communication time can be predefined by each fault-free 
processor [13]. At T w after the starting time of the kth round, namely T~ + Tsp, 
the predefined immediate successor P of S should have the message sent by S; 
otherwise, it knows that S is faulty. When P receives no message from S, it re- 
lays the symbol • to its predefined immediate successor to reflect the fault sta- 
tus of S. The properties of path information and transfer rules can be found in 
current network path components such as ATM-based networks [18]. 

Appendix C. Conventional majority vote for mixed failure types 

Fig. 6 shows that an agreement cannot be reached in the network shown in 
Fig. 5 when conventional majority voting is used. When conventional majority 
voting is applied to the internal vertex AB shown in Fig. 6, the output of the 
voting is still contaminated by vertex ABG that corresponds to the arbitrary 
faulty sender G (it sends different messages to different receivers). Although 
the vertices correspond to dormant faulty senders, ABD, ABE, and ABF, they 
are not counted when the vote is taken [10,7,11], and the number of children 
related to the fault-free senders in vertex AB is not greater than that of the ar- 
bitrary faulty senders. Hence, the voting result is dominated by the value stored 
in vertex ABG. Consequently, the fault-free processors, A, B and C, are unable 
to reach an agreement when conventional majority voting is used. 

Appendix D. VOTEsc 

VOTEsc only counts the non-sO values (excluding the last level of the IG- 
tree). Suppose that k = max{m, 3}. For all vertex a at depth i of an IG-tree, 
the output of VOTEsc depends on the following conditions: 

O : Vertex corresponding to a fault-free sender 
t ~  : Vertex corresponding to a dormant tiaulty sender 
• : Vertex corresponding to a arbitrary faulty sender 

0 0 ARC 
AB • ABD 

• ABE 

• ABF 
ABG 

Fig. 6. A subtree of the IG-tree for the network shown in Fig. 5. 
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V O T E s c ( g )  
begin 
if a is a leaf /*  condi t ion cl */ 
then ou tpu t  val(a) 
else begin 

let v be the most  c o m m o n  value o f  VOTEsc(o-p),  for all child p o f  
vertex a stored at depth i o f  IG-tree,  and w be the number  o f  copies 
o f  value v; 
let x = k * (t - i + 1) + [(n - 1)modk]; 
if w ~> x and v = ~ / *  condi t ion c2 */ 
then output  val(a) 
else if v :~ ~ d j ,  where 1 ~< j < t / *  condi t ion c3 */ 
then output  v 
else if v = '~d:~/1 /* condi t ion c4 */ 

then output  value d 
else if v = ~ 4 j  and j 7 £ 1 /* condit ion c5 */ 

then output  ~o~'j 1 
end 

end. 
Note  that  if there is more  than one most  c o m m o n  value in condit ions c3, e4, 

and c5, then the value returned is the one that  appears first in any predefined 
ordering o f  the values o f  V ( V  = {vl ,  v 2 , . . . ,  Vm}). All fault-free processors use 
the same ordering. I f  the mos t  c o m m o n  value is not  unique, the value returned 
is the one that  appears  first in any fixed enumerat ion o f  the values in V. Con-  
ditions cl  and c3 are similar to conventional  majori ty voting. The other  three 
condit ions are used to handle cases o f  mixed failure types. Semantically, con- 
ditions c4 and c5 are used to report  the existence o f  an absentee. When  a ma-  
jori ty o f  processors report  that  an absentee exists, V O T E s c  returns the value ,~  
or ~ d i _ l  to represent the event. As mentioned in Section 3.3, VOTEsc  uses 
val(a) as the output  if condi t ion c2 is satisfied. 

When  V O T E s c  is applied to the vertex AB shown in Fig. 5, condi t ion c2 o f  
VOTEsc  is satisfied and the original value stored in vertex AB is used as the 
output  o f  VOTEsc .  Therefore,  the influence o f  the faulty processor G is re- 
moved  by using V O T E s c  and all fault-free processors can reach a c o m m o n  val- 
ue '1 '  after the decision making phase. 
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