
I N F O R M A T I O N
SCIENCES

a n II¢l~rNA~O~a~ fOU'~A~

ELSEVIER Journal of Information Sciences 108 (1998) 157 180

Reaching strong consensus in the
presence of mixed failure types

Hin-Sing Siu a,., Yeh-Hao Chin b, Wei-Pang Yang c
~' Department of Industrial Engineering and Management, Mingchi Institute o[" Technology,

Taipei, Taiwan 24306, ROC
b Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan 30043, ROC

c Department of Computer and Information Science, National Chiao Tung University, Hsinehu,
Taiwan 30050, ROC

Received 10 October 1995; received in revised form 24 May 1997; accepted 26 August 1997

Abstract

The Strong Consensus (SC) is a variant of the conventional distributed consensus
problem. The protocol designed for the SC problem requires that the agreed value
among fault-free processors be one of the fault-free processor's initial value. The SC
problem is re-examined with the assumption of mixed failure types (also referred to as
the hybrid fault model). Compared with the features of the existing protocols, the under-
lying network topologies of the proposed protocol do not have to be fully connected, the
mixed failure types can be tolerated, and no prior information of the system's faulty sta-
tus is required. The proposed protocol can tolerate a maximum number of faults to en-
able each fault-free processor to reach an agreement with a minimum number of
message exchanges. © 1998 Published by Elsevier Science Inc. All rights reserved.

Keywords." Byzantine agreement; Distributed consensus; Fault-tolerant distributed
system; Mixed failure types; Nonfully connected network; Strong consensus

* Corresponding author. E-mail: hssiu@ccsun.mit.edu.tw, fax: 886 2 29041914.

0020-0255/98/$19.00 © 1998 Published by Elsevier Science Inc. All rights reserved.
PII: S 0 0 2 0 - 0 2 5 5 (97) 1 0 0 5 4 - 8

158 H.-S. Siu et al. / Journal o f lnjormation Sciences 108 (1998) 157-180

I. I n t r o d u c t i o n

The Distributed Consensus problem [1-5] is one of the most important prob-
lems in designing a fault-tolerant distributed system. A variant of distributed
consensus, called the Strong Consensus (SC) problem, was introduced by Ne-
iger [6]. In the SC problem, each processor A starts with an initial value, be-
longs to a finite set, V, of all possible values ([V] = m). The protocol for the
SC problem is to enable all fault-free processors to obtain a common value. Af-
ter the execution of the protocol, the common value obtained by the fault-free
processors shall be the value that satisfies the following conditions:
1. Agreement: All fault-free processors agree on the same common value v, and
2. strong validity: v is the initial value of some fault-free processors.

In practice, most network topologies are not fully connected and network
processors may be subjected to different types of failure simultaneously [1].
From the standpoint of disruptive effects, the processor failure types can be di-
vided into two disjoint subsets: dormant faults and arbitrary faults, termed by
Meyer and Pradhan [7]. A dormant fault is defined as a fault that does not con-
taminate the content of a message and produces missing values detectable by
all fault-free processors. An arbitrary fault refers to the case when the behavior
of a fault is not restricted.

However, the SC protocol proposed by Neiger [6], like most conventional
consensus protocols [8,9,3], is designed to handle arbitrary faulty processors
in a fully connected network. Based on the discussion of [10,7,11], the protocol
of [6] cannot tolerate a maximum number of faults when dormant faults are
considered because the faulty behaviors of the dormant faults are more consis-
tent than that of the arbitrary faults. Also, the protocol cannot be applied to a
nonfully connected network such as the one shown in Fig. 1.

ve=l

f

t
v~=2

B

A

" S H

Vc= l
@ : Fault-flee processor

0 : Crashed process~

• : Byzantine faulty processor

Fig. 1. A network with mixed failure types.

H.-S. Siu et al. / Journal of Information Sciences 108 (1998) 15~180 159

Some existing protocols [10,7,11] are designed to solve the consensus prob-
lem with mixed failure types (also referred to as the hybrid fault model). How-
ever, they will not guarantee the strong validity condition as specified by [6].
Moreover, the major limitation of these protocols is that the number of arbi-
trary faulty processors must be known prior to execution of the protocols.
However, this requirement violates the general assumption of the consensus
problem - that a fault-free processor does not know which processor is faulty
[3,5]. Furthermore, Shin and Ramana than [12] found that it is impractical to
run diagnostics to detect all arbitrary faults in a network. Thus, these protocols
cannot solve the SC problem with mixed failure types.

The strategies used in previous research of the consensus problem can be
classified into two groups: deterministic strategy and nondeterministic strategy
[13,14]. Each step for executing deterministic strategy is predetermined, such
as all processors execute the same protocol, and all processors start and stop
the execution of protocol at the same time. Conversely, certain steps of a pro-
tocol are not predefined in the nondeterministic strategy. For example, a pro-
cessor can stop the executing of the protocol early when it can decide the
common value. However, in such a strategy, a processor cannot decide whether
another processor has stopped early or crashed when no message was received
from it; thus, the nondeterministic strategy is inappropriate for mixed failure
types. Hence, the research in the consensus problem with mixed failure types
(including this paper) concentrates on the deterministic strategy.

We re-examined the SC problem with mixed failure types in a synchronous
network I and proposed a protocol that can solve the problem under the fol-
lowing assumptions:
1. The underlying network may not be fully connected and the communication

links in the network are assumed to be fault-free.
2. Let n be the total number of processors. Each processor 's identifier is un-

ique. A processor does not know the fault status of another processor.
3. Let c be the connectivity of the underlying network. Due to the Menger the-

orem [15], at least c disjoint paths exist between any pair of processors S and
R if the connectivity of the network is c. For any two paths the only common
components are S and R.

4. Let Pa be the number of processors subjected to arbitrary faults.
5. Let Pd be the number of processors subjected to dormant faults.
6. Let V be the set of all possible values of the SC problem, m be the size of V,

and each processor uses a predefined enumeration of the values in
V: v l ~ v2~ . . . ~ v m.

1 In a synchronous network, the bounds for processing and communication delay in fault-flee
components (processors and links) are finite and are known by all fault-free processors [13].

160 H.-S. Siu et al. / Journal o f lnformation Sciences 108 (1998) 157-180

The protocol designed for solving the SC problem with mixed failure types is
called SCMIX. SCMIX enables all fault-free processors to obtain a common
value for solving the SC if n > max{mPa + Pd, 3Pa + Pd} and c > 2Pd + Pd. It
uses a minimum number of message exchanges and can tolerate a maximum
allowable number of faulty processors. SCMIX is based on the oral message
model (one of the deterministic strategy) [3], which has two phases: the message
exchange phase and the decision making phase. The goal of the message ex-
change phase is to collect the messages and that of the decision making phase
is to compute a common value for solving the SC problem. The formal descrip-
tions of these phases are given in Section 3.

The remainder of the paper proceeds as follows. In Section 2 we give the
conditions for the SC problems. Section 3 proposes the detaiI descriptions of
the proposed protocol. The analysis and evaluation of SCMIX are presented
in Section 4. The conclusion is given in Section 5.

2. The conditions for strong consensus

In order to solve the SC problem, the number of message exchange rounds
required and the number of faulty processors allowed shall first be considered.

2.1. The number of rounds required by SCMIX

Since a processor does not know the fault status of another processor, each
fault-free processor requires t + 1 rounds 2 to exchange the messages needed to
reach an agreement [3,6,5], where t = L(n-1) / (max{m,3})J . Fischer and
Lynch [16] also pointed oat that the t + 1 rounds are the minimum number
of rounds required to reach a common value when the network's fault status
is unknown. Therefore, the minimum number of rounds required by SCMIX
i s t + l .

2.2. The number of allowable faulty processors by SCMIX

Essentially, the fault tolerant capabilities of a network depend on the total
number of processors and the network topology (connectivity). For example,
every faulty processor can prevent the fault-free processors from achieving
an agreement if the network topology is a tree. To generalize, the complete
characterizations of constraints on failures for the SC problem are shown in
Theorem 1. The SC protocol that meets Theorem 1 is given in Section 3.

2 A round denotes the interval of message exchange between a pair of processors [7,14].

H,-S. Siu et aL / Journal o f lnformation Sciences 108 (1998) 15~180 161

Theorem 1. For any network with n processors and c connectivity, SC can be
achieved if'.

(1) n > max{mP~ + Pd, 3Pa + Pd}, and
(2) c > 2Pa + Pd

Proof. The first constraint specifies the number of processors required and
follows the concept of [3,7,17]. Via a time-out mechanism (the approach is
presented in Section 3), a fault-free processor can detect the occurrence of a
dormant fault in a processor and ignore all messages from that processor if no
message is received from it within a predefined time interval. Then the network
behaves as a network with n - Pd processors. The constraint n - Pd > 3P~,
namely n > 3Pa + Pd, requires that the SC protocol also solve the consensus
problem [7,17]. Follow the results of [7], the constraint n - Pd > mP~, namely
n > mPa + Pd, is required to solve the SC problem. Thus,
n > max{mPa + Pa, 3Pa + Pd} is the constraint on the number of processors
required.

On the other hand, the second constraint specifies the connectivity required.
In each round, every processor sends its message to other processors. In order
to decide whether a processor has sent out its message, by the concept of ma-
jority, the total number of arbitrary faulty processors must be less than half of
c - Pd, namely c > 2P~, + Pd [9]. Otherwise, such a goal cannot be reached. []

By Theorem 1, the maximum number of tolerable faulty processors by
SCMIX is Pa + Pd ifn > max{mPa + Pd, 3Pa + Pd} and c > 2P~ + Pd (the formal
proof is shown in Theorem 7).

3. Basic concept and approaches

In a nonfully connected network, a processor can act either as sender, receiv-
er, or relay depending on the message flow. A message, sent from a sender to a
receiver, may be passed through some relay. The message may be influenced by
either the sender (dormant or arbitrary fault), some faulty relay, or both. To
solve the SC problem, SCMIX must therefore completely remove the influences
of dormant faulty senders, arbitrary faulty senders, and faulty relays.

In order to solve the SC problem, based on the oral message model, each
processor should execute t message exchange rounds (stated in the Section 2)
to collect the messages. At each round, a processor should broadcast its mes-
sage to all processors and receive messages from all processors. To remove the
influence caused by the faulty relays, each processor uses the fault-tolerant vir-
tual channel (FTVC) protocol to broadcast its message. The formal description
is presented in Section 3.1. Using FTVC, a fault-free processor can therefore
detect that a processor Q is faulty if no message is received from Q during

162 H.-S. Siu et al. / Journal o f lnformation Sciences 108 (1998) 157-180

one or some rounds. Once a processor Q is detected as faulty, the messages re-
ceived from Q can be ignored at each subsequent round. Such an approach is
called the Absent Rule ARsc and its formal definition is presented in Sec-
tion 3.2. The absent rule can handle the faults, especially the dormant faults,
that do not send messages as it should be. In [17], we found that the traditional
majority vote is inappropriate for mixed failure types (also see Section 3.3). As
a result, a new voting scheme VOTEsc is proposed for solving the SC problem
with mixed failure types, and the formal description of VOTEsc is presented in
Section 3.3. Since the messages received from the faulty processors, detected by
the absent rule, are ignored, the network behaves like a network with n - P d
processors. Based on the majority concept, the total number of the tolerable
faulty processors by SCMIX can be increased. With FTVC protocol, the ab-
sent rule ARsc and voting function VOTEsc, the proposed protoocol SCMIX
consists of: the message-exchange phase and the decision-making phase. The
main functions of these phases are shown in Fig. 2. Using these two phases,
SCMIX can solve the SC problem.

Phase [• Collect the messages to compute a common value for
Message Exchange

I strong consensus

Initialization
• Create an IG-tree with root E

Step 1: The f irst message exchange round
• Use FTVC to broadcast its initial value
• Receive the messages sent by all processors and store the received messages to the

depth 1 of the 1G-tree
• Apply the absent rule to depth 1 of the 1G-tree

Step 2: The i-th message exchange round, where i = 2 to t + 1
• Pack the values stored in depth (i-1) of the IG-tree to the message M

• Use FTVC to broadcast the message M
• Receive the messages from all processors
• According to the structure of the IG-tree, unpack the received messages, and store the

unpacked messages to depth i of the IG-tree
• Apply the absent rule to depth i of the IG-tree

~ IG-tree

Decision Phase] • Compute a common value for strong consensus Making

Step 3: Compute the common value
• Apply the voting function VOTEsc to the root E of the IG-tree

Step 4: Output the common value
• Output the value stored at the root E of the 1G-tree as the comman value

Fig. 2. The basic approaches of SCMIX.

H.-S. Siu et al. /Journal o f ln/ormation Sciences 108 (1998) 157 180 163

As for the data structure used to collect the messages, each fault-free proces-
sor maintains a tree structure, called the information gathering tree (IG-tree) [8],
of depth t + 1. It is organized and labeled as follows. Each vertex of the IG-tree
is labeled by a non-repeating sequence, :~, of processor identifiers. The root of
the IG-tree is labeled by the empty sequence E and the parent of a vertex la-
beled by sequence c~p is labeled ~. Because all sequences are nonrepeating~
the root of the IG-tree has n children, each child of the root has n - 1 children,
and the vertices at depth t each has n - t leaves as it children. If a vertex is la-
beled c~p, it is said to correspond to processor p. The root of the IG-tree corre-
sponds to no processor. Note that each level of an IG-tree contains a round of
received messages. No repeating processor identifier can avoid the recursive in-
fluences made by a faulty processor.

SCMIX is illustrated by an example that shows the complete procedure for
executing SCMIX on the fault-free processor A in the network shown in Fig. 1.
The same procedure is executed by each fault-free processor. Suppose that the
dormant faulty processor F does not send any messages during the entire exe-
cution of the protocol and m = 3. When SCMIX is finished, all the fault-free
processors reach a common value '1' that is the initial value of processor A,
i.e., the Agreement and Strong Validity condition of the SC problem are both
satisfied. Hence, SCMIX does solve the SC problem with mixed failure types.
The procedure of SCMIX on processor A is presented as follows.
Message exchange phase
Initialization
• Create an IG-tree with root E

In the initial step, processor A creates an IG-tree with roQt E.
Step l: The first message exchange round
• Use FTVC to broadcast its initial value

Processor A uses FTVC to broadcast its initial value to all processors.
• Receive the messages sent by all processors and store the received messages

to the depth 1 of the IG-tree
Although the message passing may be influenced by the faulty processors

F, H, and I, processor A receives the messages sent by all processors, and stores
the messages to depth 1 of its IG-tree as shown in Fig. 3(a). That means FTVC
can remove the influences of the faulty relay processors. For example, A stores
the value '1' received from processor B in the vertex B, denoted as val(B) = l,
at depth 1 of IG-tree as shown in Fig. 3(a).
• Apply the absent rule ARsc to depth 1 of the IG-tree

To remove the influence of a dormant faulty processor, processor A then ap-
plies ARsc to depth 1 of its IG-tree as shown in Fig. 3(b). Note that the value
stored as vertex F in the IG-tree is Q3 as shown in Fig. 3(a). That means pro-
cessor A does not receive any messages from F and uses the value ~ to repre-
sent the message from F. After the absent rule is applied, processor A will use
the value ,~/to replace the messages received from F as shown in Fig. 3(b). The

164 H.-S. Siu et al. / Journal o f In format ion Sciences 108 (1998) 1 5 ~ 1 8 0

Depth 0 Depth 1

O O A v.~(A)=1
E O B val (B)=I

O c val (C) =1
O D v~ (D)=I
O E val (E)=2
O F val (F)=¢ ~
O G val (G)=2
O H va] (H)=o
O : voJ(:)=o

: no message received

(a)

Depth 0 Depth 1

val (A)= 1
o o
E a

val(B)= l
o
B

va](C)=]
O ~ -
C

v~l(D)= I
O--- - "
D

val(E)=2
O ~ •
E

val(F) = ,4

o
F

val(G) = 2

O - - - •
G

val(/-/) = o
O - - - - -
H

val(1)=o
~ O

1

Depth 2

~ s c

O A B val (AB) = I
O A C val(AC)= I
O A D val (AD) = l
O A E val(AE)=l
O A F val (AF) =,,¢
O A G val(AG) = I
O A H val(AH) =0
O A I val(AI)=0

Depth 0

O
E

O FA val (FA) = ~ 1
O F B va](FB)= ~41
O F C va](FC)= ~,¢1
O F D v)I(FD)= .~4/
O F E val(FE)= ;~¢/
OFG val(FG)= ~041
O F H val (F/./) = 0
o F I val(FI)=0

D e p t h 1

O A v~(A)=1
OB va] (B)=l
O c v~ (c)=I
O D va1(D)=l
0 E val (E)=2
O F val (F)-~
O G val (G)=2
O H val (H)=o
0 1 v~(l)=o

(b)
Depth 3

~ ABC vaI(ABC)= 1
ABD vaI(ABD)= I
ABE val (A B E) = I

ABF val (ABF) = .,#
ABG val (ABG) = I
ABH val (ABH) = 0
ABI val (ABI) = 0

O FAB val (FaB)= ~ ¢ 2
OFAC vaI(FAC) = ~ 4 2
O F A D vaI(FAD) = ~'¢2
OFAE val(FAE)= 7(~'¢ 2
OFAG vaI(FAG) = ~ ¢ 2

' "(~FAH val (FA//) = 0
OFBI val(FBl)=0

01.4 val{iA)=o ~/AB val(/Ao)=o
O I B val(lB)=O i ' O I A C val(lAC)=O
O I C val (/C) = 0 OIAD val(1AD)=O
O l D val (IO) = 0 [OlAE val(IAE)=O
O I E va l (lE) -O O l A F val (/AF) = ,.¢
OIF val (IF)=A [OIAG val(1AG)=O
O I G val (IG)=0 J ~ I A H val(lAH)=l
0114 val (tH) - I

(c)
Fig. 3. S C M I X solves the SC p r o b l e m fo r p r o c e s s o r A in the n e t w o r k m o d e l s h o w n in Fig. 1: (a)

T h e first r o u n d IG- t ree . (b) A f t e r the a b s e n t ru le is appl ied . (c) A f t e r the message e x c h a n g e p h a s e

(d) A p p l y i n g the V O T E s o

H.-S. Siu et al. / Journa l o f In format ion Sciences 108 (1998) 1 5 ~ 1 8 0 165

Depth 0

, 0 *-Ty--~
E

D ~ t h 1 Depth 2 Death 3

O A C "" I 1 0 A B D wJ(ABD)=I
A l O A D l I OABE ~ val(ABE)=l

O A E [,,¢ OABF ~ vaI(ABF)=.,¢

l ' l i OAF l , OABG ~ ~,(AB~)= . OAG [0 0 A B H vaI(ABH)=O
O A H L 0 0 A B I vnI(ABI)=O

- OA1

~ o ~
B

, o

IDO

20
E

, ¢ O
F

<
c4

I FB ~" I;~'¢20FAC " cl val(FAC)= ~ ¢ 2 ~41 0 FC I~! 2 0 F A D v~I (FAD) = ~¢ 2
~ 4 1 0 FD 1 ~ 1 2 0 F A E ~ v~(FAE)= ~¢ 2
~¢I O F E 1 ~ 4 2 0 F A G ~ v~(FAG)= ~¢2 I OFG |0 OFAH ~ val(rAH)= 0

0 FH L 0 o FAI vM (FAI) = 0
O F I

0 0 9 c3
H

m 0 0 1B c3 0 0 1AC val (IAC) = 0
0 0 I C OIAD ~ vaJ(lXD)=O
o o l ~ o ~ ~.o 0 IAE vaJ (IAE
0 0 I E O l A F ~ val(lXF)=,¢
A O I F OIAG ~ ~(IAG)=0
0 o I G OIAH v'A (/AH) = ~
I O I H

(d)

Fig. 3 (continued)

value d will be relayed to all receivers as value ~ / 1 and the value ~ ¢ j will be
relayed to all receivers as value N d j + l (the meaning of value ~ and . ~ ¢ / w i l l
be described later), where 1 ~< j ~< t.
S t e p 2: the second message exchange round
• Pack the values stored in depth 1 of the IG-tree to the message M

Processor A packs the values stored in depth 1 of the IG-tree to the message
M, namely (1,1,1,1,2, ~ 4 1 , 2,0,0). Note that the value d is replaced by . ~ d]
by using the absent rule.
• Use FTVC to broadcast the message M

Using FTVC, processor A broadcasts the massage M to all processors.
• According to the structure of the IG-tree, unpack the received messages, and

store the unpacked messages to depth 2 of the IG-tree.

166 H.-S. Siu et al. / Journal of Information Sciences 108 (1998) 157-180

• Processor A receives the messages sent by all processors, unpacks these messag-
es, and stores the unpacked messages to the vertices at depth 2 of its IG-tree.

• Apply the absent rule to depth 2 of the IG-tree.
To remove the influence of the detected faulty processors, processor A ap-

plies the absent rule to depth 2 of its IG-tree.
In the third round, processor A executes the same procedure as in the second

round did. Processor A broadcast, using FTVC, the messages stored at depth 2
of its IG-tree, receives the messages sent by all processors, and stores the received
messages to depth 3 of its IG-tree. After the message exchange phase, the mes-
sages collected in A's IG-tree is presented in Fig. 3(c) (due to space limitations,
only a part of the IG-tree is shown). For example, the val(ABC) (val(ABC) = 1)
represents that the message was first sent by processor A to processor B, and then
processor B relayed this message to processor C. Finally, A received this message
from C and stored it in vertex ABC as shown in depth 3 of the IG-tree in
Fig. 3(c). In this example, 505 (1 + 9 • 8 • 7) vertices are created in the IG-tree.
Decision making phase
Step 3: Compute the common value
• Apply the voting function VOTEsc to the root E of the IG-tree.
• Processor A applies the voting function VOTEsc to its IG-tree to compute

the common value for strong consensus. Note the value ~ ' (excluding the
last round) is not counted at the time the VOTEs¢ is taken. The value '1'
is stored in the root E after VOTEsc is applied as shown in Fig. 3(d).

• Output the value stored at the root E of the IG-tree as the common value.
Finally, processor A selects the value '1' stored in the root of the IG-tree as

the common value.
The detailed descriptions of the above steps for removing the influences of

the multiple faulty processors are presented below.

3.1. Removing the influence of a faulty relay

To remove the influence of a faulty relay, a protocol, called FTVC, provides
a fault-tolerant virtual channel on the physical links in a nonfully connected net-
work. To illustrate the concept of FTVC, we first consider the case of a single
sender S and a single receiver R. S uses FTVC to send its message ms to R. An-
alyzing this exchange will enable us to portray the general situation in which
every sender sends a message to every receiver. For example, when FTVC is
applied to the network model shown in Fig. 4(a), receiver R can receive the
fault-free message sent by sender S; while in the case of Fig. 4(b), R can posi-
tively detect that S did not send a message to it even if it does receive the false
message sent by the arbitrary faulty relay.

As the Menger theorem [15] states, at least c disjoint paths exist between S
and R if the connectivity of the network is c. Hence S is able to send e copies of
its messages through c disjoint paths to R. The c disjoint paths between S and R

H.-S. Siu et al. / Journal of lnformation Sciences 108 (1998) 157-180 167

0 Fault-free processor

S e n d e r ~ R e c e i v e r

(a)

I~ Dormant faulty processor • Arbitrary faulty processor

Sender ~ R e R i v e r S

(b)

Fig. 4. An example of the function of FTVC.

can be predefined as stated in [9,7], and the path information is distributed to
the relaying processors between S and R. A detailed description of the path
information distribution is presented in Appendix A. According to the path
information, a relay processor receives the message (R, S, ms) from a predefined
immediate predecessor and sends the message to a predefined immediate suc-
cessor. Since the network is synchronous, the predefined immediate successor
P of S should have the message sent by S after a predefined time interval
[13]; otherwise, it knows that S is faulty. When P receives no message from
S, it will relay the symbol O (O ~ V) to its immediate successor along the pre-
defined disjoint path between S and R to reflect the faulty status. These are the
concepts of the transfer rules obeyed by each relay processor. The formal def-
inition of the transfer rules is presented in Appendix B.

According to the transfer rules, an arbitrary faulty relay can modify at most
one message, and a dormant faulty relay can drop at most one message. In the
worst case, R will receive c - Pa copies of messages sent by S. Applying the ma-
jority vote MAJ to these messages, R can determine what message was sent by
S if the constraint on connectivity, namely c > 2Pa + Pd, holds. MAJ has three
possible outcomes:

Case 1: ms, if S is fault-free.
Case 2: O, if S does not send the message to R.
Case 3: Arbitrary value, if S has an arbitrary fault.
In case 1, R receives the message ms sent by the fault-free sender S when

MAJ is applied to the receiver messages. If S does not send the message to R
(case 2), R will use O as the message sent by S because the major of c - Pa cop-
ies of messages is O. The third outcome of MAJ implies that the received mes-
sage is not only contaminated by a faulty relay, but is also contaminated by an
arbitrary faulty sender. FTVC is unable to remove the influence in such a case;
hence such an outcome for MAJ shall be an arbitrary value.

3.2. Removing the influence of a dormant faulty sender

Each fault-flee sender must send its messages to all receivers in each round
of the message exchange phase. As mentioned in Section 3.1, a receiver can

168 H.-S. Siu et al. / Journal of Information Sciences 108 (1998) 157-180

therefore detect that a sender is faulty if no message is received from the sender
(the output of MAJ of FTVC is •). A fault-free receiver R can detect that a
sender S is faulty if no message is received from S. If R receives no message
from S at the rth round, all messages received from S (directly) at the rth round
and any subsequent rounds will be replaced by the value d ; and this value will
be relayed to the other receivers as value ~ d l . In each subsequent round, the
value ~ 4 j will be relayed to the other receivers as value N d j + l (~ ' and
~ ¢ / j ~ V), where 1 ~<j ~< t.

Semantically, the value ~4 is represented as an absentee vote, and sender S is
treated as an absentee. Hence, the voting ticket of S is ignored during the de-
cision making phase. The value ~ ' j will be interpreted as the j th time an ab-
sent vote is reported. Receiver R will report to all other receivers that S is an
absentee, and then the faulty sender S will be forced out of the game of agree-
ment; thus, S has no influence on the others when the voting function VOTEsc
is taken in the decision making phase. The approach is called the Absent Rule
(ARsc) and it can be formalized as follows.

"ARsc: When receiver R receives no message directly from sender S in the
rth round, then all messages received from S in the rth and any subsequent
rounds will be replaced by value ~¢, and this value will be relayed to the
other receivers (if any) as value ~ ¢ 1 . In each subsequent round, the value
~ 4 j will be relayed to the other receivers as value ~ d j + 1 , where
l<~j<~t."

3.3. Removing the influence of an arbitrary faulty sender

After the message exchange phase, the messages collected in a fault-free re-
ceiver's IG-tree are free from the influence of faulty relays and the dormant
faulty senders. However, the messages may still be contaminated by arbitrary
faulty senders. In order to reach an agreement, such influences must be re-
moved in the decision making phase.

Conventionally, the influence of arbitrary faulty senders is removed by
means of a recursive majority vote when only arbitrary faults are considered
[3,6]. The main concept used in these protocols is majority because a majority
of the processors in the network are assumed to be fault-free. However, this
concept is inappropriate for mixed failure types because a majority of the pro-
cessors may also fail. Using Fig. 5 as an example, there are four faulty proces-
sors (three dormant faulty processors and one arbitrary faulty processor; i.e.,
Pd = 3 and Pa = 1), a greater number than the number of fault-free processors
(three). Suppose that m = 3 (the number of values of V). The bound on the
constraints on failures, namely n > max{mPa + P d, 3Pa +Pd}, holds because
7 > 3 • 1 + 3. However, the fault-free processors, A,B and C, are unable to

H.-S. Siu et al. / Journal o f Information Sciences 108 (1998) 15~180 169

v c = l C D

Fig. 5. A fully connected network with mixed failure types (n = 7).

O Fault-free processor

• Dormant fault

O Arbitrary fault

reach agreement when a conventional majority vote is taken. A detailed de-
scription of this example is presented in Appendix C. Thus, a new voting
scheme VOTEsc should be proposed to solve the SC problem with mixed fail-
ure types.

By the constraint on the number of processors required, namely
n > max{mP~ + Pd, 3Pa + Pa}, it can tolerate k(-- max{m, 3}) more dormant
faulty senders because k(Pa - 1) + (Pd + k) = kPa +Pd, where Pa ~> 1 if the net-
work eliminates one arbitrary faulty sender. This phenomenon can be used
by VOTEsc to remove the influence of an arbitrary faulty sender. The basic
concept of VOTEsc is as follows. Let P be a fault-free processor and a be
the vertex at depth i of P's IG-tree, 1 <.i<~t. If P detects that k (t - i + 1)+
[(n - 1)modk] children of a have value sJ, it uses the original value stored at
o, namely val(a), as the output of VOTEsc to remove the influence of the ar-
bitrary faulty sender as in the above discussion; otherwise, it uses the most
common value of children of a as the output of VOTEsc.

VOTEsc is always correct if vertex a corresponds to a fault-free or a dor-
mant faulty sender since each fault-free receiver has the same message sent by
the sender. On the other hand, the output of VOTEsc may be contaminated
by Q after our approach is applied if vertex a corresponds to an arbitrary
faulty sender Q (Q cooperates with other arbitrary faulty senders to prevent
the fault-free processors from achieving a common value). However, the in-
fluence of Q can still be removed during upper level voting if
n > max{mPa +Pd,3Pa +Pd}. Appendix D presents the formal definition of
VOTEsc.

4. Analysis and evaluation

SCMIX removes the influence of processors subjected to various types of
failures to enable all fault-free processors to reach a common value to solve

170 H.-S. Siu et al. I Journal of Information Sciences 108 (1998) 157-180

the SC problem. Since a fault-free processor cannot know the fault status of the
other processors, t + 1 rounds are required to reach an agreement. SCMIX us-
es the approaches stated in Section 3 to remove the multiple faulty compo-
nents, and these approaches can be presented as the following primitives:
• FTVC_SEND(m, Q): send the message m to processor Q by using FTVC.
• FTVC_RECEIVE(m, Q): receive the message m from processor Q by using

FTVC.
• ABSENT_RULE(r) : apply the absent rule ARs¢ to depth r of the IG-tree.
• VOTEsc(s): apply the function VOTE to vertex s.

Some additional primitives should be presented to ensure a thorough solu-
tion:
• CREATE(~Q, v): create the vertex ~Q, and set val(aQ) = v.
• PACK(r, m): fold depth r of the IG-tree to the message m.
• UNPACK(m, r): according the structure of depth r of the IG-tree, unfold

the message.
• OUTPUT(v): output the value v.

Using the above primitives, the formal procedure of SCMIX is stated as fol-
lows.

1. Protocol SCMIX (for each processor P)
2. begin
3. /* Initialization */

4. CREATE (E, NULL);
5. /* Message Exchange Phase *l
6. /* The first round */
7. for Q E N do
8. FTVC_SEND(vp, O);
9. for Q E N do

10. begin
11. FTVC_RECEIVE(vq, Q);/* Vq is the initial value of processor Q

*/

12. CREATE(Q, Vq);
13. end;
14. ABSENT_RULE(l) ;
15. /* round 2 to round t + 1 */
16. f o r r = 2 t o t + l do
17. begin
18. PACK(r - 1, m);
19. for Q c N do
20. FTVC_SEND(m, Q);
21. for Q E N do
22. begin
23. FTVC_RECEIVE(m, Q);
24. UNPACK(m, r);

H.-S. Siu et al. / Journal oJIn]brmation Sciences 108 (1998) 15~180 171

25. for a E m do
26. begin
27. v = val(o-);
28. CREATE(aQ, v)
29. end
30. end;
31. ABSENT_RULE(r)
32. end;
33. /* Decision Making Phase */
34. OUTPUT(VOTEsc(E))
35. end.

4.1. Correctness

The goal of SCMIX is to enable all fault-free processors to reach a common
value to solve the SC problem; thus, the correctness of SCMIX can be proven
from the fact that the common value of each fault-free processor satisfies the
conditions of Agreement and Strong Validity. To reach a common agreement,
each fault-free processor must be insulated from contamination by faulty pro-
cessors. As stated in Section 3, SCMIX uses FTVC to remove the influences of
faulty relays during each round of message exchange. To remove the influence
of dormant faulty senders, SCMIX applies ARsc to be received messages after
each round. Finally, it applies VOTEsc to the messages, received in the mes-
sage exchange phase, to remove the influence of arbitrary faulty senders. When
all contamination by faulty processors has been removed, an agreement is
reached. This is the basic concept for proving the correctness of SCMIX.

Since SCMIX uses the IG-tree (based on the oral message model) to collect
the messages as presented in Section 3, some concepts and terminology used by
[8] are presented here. A vertex cr is called common, if each fault-free processor
computes a same value for ~r. In other words, a common value for solving the
SC problem can be reached if the root of each fault-free processor's IG-tree is
common. To prove the root is common, the term commonJJ'ontier is defined as
follows. I f every root-to-leaf path in an IG-tree contains a common vertex,
then the collection of common vertices forms a common frontier. By theJi'on-
tier lemma in [8], the fault-free processor's IG-tree root is common if the com-
mon frontier exists on each fault-free processor's IG-tree. Hence, a common
agreement can be reached among the fault-free processors if a common frontier
does exist in each fault-free processor 's IG-tree.

To prove the correctness of FTVC, the output of MAJ shall be proven free
from the influence of faulty relays. Thus, we shall prove that a fault-free receiv-
er can receive a message sent by a fault-free sender, or can detect that the send-
er did not send a message to it. Accordingly, we first define the consistent vertex
as follows.

172 H.-S. Siu et al. / Journal of Information Sciences 108 (1998) 157-180

Consistent vertex, vertex ~(~ = •i) in a fault-free receiver's IG-tree is a con-
sistent vertex if sender i is fault-free or dormant fault. By the behavior of i, all
fault-free receivers receive the identical message sent by i. Although a processor
does not know which vertex is consistent, the consistent vertices do exist since
some processors in the network are fault-free or dormant fault.

According to the definition of a consistent vertex, all fault-free receivers
should receive an identical message sent by a sender if the influence of a faulty
relay is removed. Therefore, the consistent vertices of an IG-tree are common.
Since the maximum number of arbitrary faulty processors is Pa(~< t), each root-
to-leaf path has at least one consistent vertex. Therefore, the common frontier
does exist in the IG-tree. Thus the root is a common vertex due to the existence
of a common frontier. A common agreement is reached among all fault-free
processors; thus, the SC problem with mixed failure types is solved.

To summarize the semantics for the following lemmas and theorems, Lem-
ma 1 indicates that a fault-free receiver can receive the message sent by a fault-
free sender by using FTVC. Lemma 2 shows that a fault-free receiver can detect
that the sender did not send a message to it by using FTVC. Theorem 2 proves
the correctness of FTVC. Lemma 3 states that all consistent vertices in an
IG-tree are common after the voting function VOTEsc is applied to an IG-tree.
By the definition of a common frontier, Lemma 4 shows the existence of a com-
mon frontier in an IG-tree. Based on the frontier lemma [8], Theorem 3 shows
that the root of a fault-free processor 's IG-tree is common. Finally, Theorem 4
proves that the SCMIX is correct under the constraints on failures stated in
Section 2.

Lemma 1. Using FTVC, faul t - f ree receiver R can receive message m sent by faul t -

f r ee sender S if c > 2Pa + Pd.

Proof. Using FTVC, fault-free sender S sends c copies of m to R through c
disjoint paths. According to the path information and transfer rules presented
in Section 3.1, each dormant faulty relay can drop at most one message. In the
worst case, R receives at least c - Pd messages sent by S. By hypothesis, we
know that c - Pd > 2Pa. Therefore, R can decide the message sent by S when
the majority vote MAJ is applied to these c - Pd messages. []

Lemma 2. Using FTVC, faul t - f ree receiver R can detect that sender S did not send

a message to it i f c > 2P~ + Pd.

Proof. When S does not send a message to R, each fault-free immediate
successor of S (along the disjoint paths between S and R) will relay the
symbol ~3 to R. In the worst case, R receives at least c - (Pa - 1) messages of
value Q. By hypothesis, we know that c - (Pd - 1) > 2Pa. Hence, the output

H.-S. Siu et al. / Journal o f lnformation Sciences 108 (1998) 157-180 173

of the majority vote MAJ is @, and R notices that S did not send a message
to it. []

Theorem 2. F T V C does remove the influence o f a faul ty relay i f c > 2P~ + Pd.

Proof. By Lemmas 1 and 2, the message received by R is free from the influence
of a faulty relay; thus, the theorem is proved. []

Lemma 3. All consistent vertices are common after VOTEsc is" applied to an
IG-tree i f n > max{mPa + Pd, 3Pa + Pd}.

Proof. Suppose that k = max{m, 3}. Each consistent vertex a of an IG-tree can
be proven to be common in the following cases.

Case 1 (o- is a leaf). Fault-free and dormant faulty senders always send iden-
tical messages to all receivers. Hence, a is common after VOTEsc is applied to o-.

Case 2 (a is at depth i, 1 ~< i ~< t).
Case 2.1. a has at least k*(t - i + 1) + [(n - 1)modk] children, each of which

has a stored value ~¢. By condition c2 of VOTEsc stated in Appendix D, the
original value stored at a, namely val(a), is used as the output of VOTEsc;
thus, a is common.

Case 2.2. a has j (< k*(t - i + 1) + [(n - 1)modk]) children, each of which
has a stored value s~¢. According to the structure of the IG-tree, a has n - i
children. By hypothesis, we have n - P ~ - Pd > 2P~. Since t ~> P~, we have
n - i ~> n - t I> n - Pa; moreover, j ~< Pd, we can write n -- i -- j > 2Pa. Hence,
by condition c3, c4 or c5 of VOTEsc stated in Appendix D, a is common. []

Lemma 4. A common J~ontier does exist in the IG-tree.

Proof. By definition, an IG-tree is a tree of depth t + 1. Since the maximum
number of arbitrary faulty processors is Pa(~< t), each root-to-leaf path has at
least one consistent vertex. By Lemma 3, a consistent vertex is common.
Therefore, a common frontier does exist in an IG-tree. []

Theorem 3. The root o f a fault-free processor's IG-tree is common.

Proof. Let k = max{m, 3}. According to the structure of the IG-tree, root E has
n children. I f no arbitrary faulty processor exists in the network, namely
P~ = 0, the message passing is influenced by dormant faulty processors only.
These influences are removed by using ARsc; therefore, E is common.
Generally, suppose that some senders in the network are subjected to arbitrary
faults, namely P~ > 0. By hypothesis, we have,

n - P ~ -P~ > (k - 1)P...

Since P~ > 0, we can write,

174 H.-S. Siu et al. /Journal of Information Sciences 108 (1998) 157-180

n > n - Pa, =~ n - Pd > n - Pa - Pd > (k - 1) P a ,

n > (k - 1)P~ + Pd.

Since (k - 1) > 2 (k = max{m, 3}), by majority concept, E is common after
VOTEsc is applied. []

Theorem 4. S C M I X does solve the S C problem with m i x e d fai lure types i f

n > max{mPa + Pd, 3Pa +Pd} a n d c > 2Pa +Pd-

Proof. By Theorem 3, the agreement condition is satisfied. That SCMIX
satisfies the strong validity condition is shown as follows. Let VFF c_ V be the
initial values of the fault-free processors. If VVF = V, then strong validity is
trivially satisfied. On the other hand, if lIFE ¢ V, then there are at most
k - l (k = m a x { m , 3 }) values among the fault-free processors. Since
n > kP.d + Pd, there are at least n - Pa - Pd > (k - 1)Pa fault-free processors.
Thus, for at least one value in VFF, there are more than Pa fault-free processors
with that initial value.

When a fault-free processor applies VOTEsc to the root E of its IG-tree, it
first applies VOTEs¢ to the n children of E. By Lemma 3, each depth 1 vertex
that corresponds to a fault-free processor outputs the original value stored at
that vertex, which is the initial value of the corresponding processor. By the
above observation, some value in VFF is output by VOTEsc for more than
Pa vertices at depth 1 because n > kPa + Pd and the influence of the dormant
faults is removed by ARsc. Since all fault-free processors agree on this value,
strong validity is satisfied. Thus, the theorem is proven. []

4.2. Complexi ty

The SC problem with mixed failure types is solved by SCMIX that is based
on the oral message model [3]. In this model, all fault-free processors should
exchange enough messages in order to reach a common value for the SC prob-
lem. Thus, the time for message passing dominates the entire execution of
SCMIX and the complexity analysis of SCMIX is focused on message complex-
ity. The complexity of SCMIX is defined in terms of: (1) the number of rounds
required, (2) the number of messages required, and (3) the number of faulty
components allowed, In this section, we prove that SCMIX is optimal. It uses
the minimum number of rounds and messages, and tolerates a maximum num-
ber of faulty components.

To solve the SC problem with mixed failure types in a generalized network,
Theorem 5 shows that SCMIX requires t + 1 rounds and (t + 1)cn 2 messages.
Theorem 6 shows that SCMIX can solve the problem by using a minimum
number of rounds and messages, and Theorem 7 proves that SCMIX can tol-
erate a maximum number of allowable faulty processors.

H.-S. Siu et al. I Journal o f lnformation Sciences 108 (1998) 157-180 175

Theorem 5. SCMIX requires t + 1 rounds and (t + 1)cn 2 messages to solve the
SC problem with mixed failure types t f n > max{mPa +Pd,3Pa +Pd} and
c > 2Pa + Pd.

Proof. The message passing is required in the message exchange phase only;
thus, SCMIX requires t + 1 rounds and this number is the minimum as shown
by Fischer and Lynch [16]. In each round, a processor packs the values stored
at the last level of the IG-tree to a message, and uses FTVC (c copies of the
message are sent to a processor) to broadcast the message to all processors.
Hence, there are cn 2 messages generated in each message exchange round.
Therefore, the total number of messages required by SCMIX is (t + 1)cn 2. By
Theorem 4, SCMIX can enable all fault-free processors to reach an agreement.
Hence, the theorem is proven. []

Theorem 6. SCMIX solves the SC problem with mixed failure types by using a
minimum number of rounds and messages.

Proof. If the system's fault status is unknown, then t + 1 rounds are proven to
be the lower bound on message passing for reaching an agreement [16]. By
Theorem 5, at least (t + 1)cn 2 messages are required to reach a common value.
Hence the theorem is proven. []

Theorem 7. The total number of allowable faulty processors by SCMIX, namely
Pa +Pd, is maximum t fn > max{mPa + Pd, 3Pa +Pd} andc> 2Pa +Pd.

Proof. As stated in Section 1, a protocol for the SC problem with mixed failure
types does exist if the constraints on failures, namely
n > max{mPa + Pd, 3Pa + Pd} and c > 2Pa + Pd, hold. Otherwise, an agreement
cannot be reached. If Pa + Pd is not the maximum number of allowable faulty
processors, then other constraints on failures should exist, namely
n ~< max{mPa + Pd, 3Pa + Pa} or c ~< 2Pa + Pa- However, this stands in con-
tradiction with Theorem 1. Thus, the theorem is proven. []

5. Conclusion

SCMIX is a protocol for solving the SC problem with mixed failure types in
a network proven in Theorem 4. We have shown the conditions for an agree-
ment, namely the number of processors required and the connectivity required
as stated in Theorem 1. Since SCMIX is based on the general assumptions of
mixed failure types and generalized network topology, the protocol of [6] is a
special case of SCMIX as shown in Table 1. From the previous discussion, we
can present the following results.

176 H.-S. Siu et al. / Journal of Information Sciences 108 (1998) 15~180

1. In solving the SC problem for a nonfully connected network, SCMIX is op-
timal in terms of the number of rounds required, the number of messages
required, and the number of faulty components allowable as proven in The-
orems 5-7.

2. SCMIX does not require a priori knowledge of processor fault status.
3. SCMIX is designed to solve the SC problem with the most general assump-

tions on processors as shown in Table 1.
4. The FTVC protocol provides a reliable communication mechanism for re-

moving the influence of faulty relays.
Since SCMIX was originally designed for handling processor faults, it can-

not tolerate the maximum number of allowable faulty components when pro-
cessors and links can both fail [14]. Our future work will focus on improving
SCMIX to where it can solve the SC problem with mixed failure types in both
processors and links.

Appendix A. Path information

The path information about each sender and receiver pair is distributed to
the reply processors between sender and receiver. Each relay processor P main-
tains tuple (receiver, sender, predecessor, successor) path information such that
the path (predecessor, P, successor) constitute a subpath of the path from the
sender to the receiver. The sender and receiver also need the c neighbors along a
prescribed set of processor-disjoint paths. The sender will send c copies of the
message formatted (receiver, sender, message) along the c predefined paths to
the receiver during each round of message passing.

Appendix B. Transfer rules

The transfer rules obeyed by a relay processor P are defined as follows:
R 1: According to the path information described above, P only relays mes-

sages to its predefined immediate successor if it receives them from its prede-
fined immediate predecessor.

R2: Let P be a predefined immediate successor of the sender S. If after time
Tk + Tsp, P has not received a message from S, then P will relay the symbol O to
its predefined immediate successor, where Tk is the starting time of the kth
round of the message exchange phase, and T~p is the upper bound on commu-
nication time between S and P.

Semantically, R 1 indicates that a fault-free relay receives messages only from
its predefined immediate predecessor and sends messages only to its predefined
immediate successor. R2 is proposed to help R to determine the status of S.

T
ab

le
 1

T

he
 c

on
st

ra
in

ts
 o

n
fa

il
ur

es
 f

or
 t

he
 S

C
 p

ro
to

co
ls

A
ss

um
pt

io
n

A
rb

it
ra

ry
 f

au
lt

D

o
rm

an
t

fa
ul

t

R
es

ul
t

F
ul

ly
 c

on
ne

ct
ed

N

on
fu

ll
y

co
nn

ec
te

d
F

ul
ly

 c
on

ne
ct

ed

N
on

fu
ll

y
(p

ro
to

co
l)

ne

tw
or

k
ne

tw
or

k
ne

tw
or

k
co

nn
ec

te
d

ne
tw

or
k

M
ix

ed
 f

au
lt

F
ul

ly
 c

o
n

n
e

c
te

d

ne
tw

or
k

N
on

fu
ll

y
co

nn
ec

te
d

ne
tw

or
k

N
ei

ge
r

[6
]

n
>

 m
ax

{m
P~

, 3
P~

}
N

A

S
C

M
IX

n

>
 m

ax
{m

P~
, 3

P~
}

n
>

 m
ax

{m
P~

, 3
P~

}
c

>
 2

P
~

n
>

 m
a

x{
m

P
d

,3
P

d
}

N
A

n
>

 P
a

n
>

 P
d

c
>

P
d

n
>

 m
ax

{m
(&

 +
 p

d)
,

3(
&

 +
 &

)}

n
>

 m
ax

{m
Pa

 +
 P

u,

3&
 +

 &
}

N
A

n
>

 m
ax

{m
&

 +
 p

d,

3&
 +

&
},

c

>
 2

P
a

+
 P

d

N
A

:
no

t
ap

pl
ic

ab
le

.

--
d

178 H.-S. Siu et al. / Journal of lnformation Sciences 108 (1998) 157-180

Since the network is synchronous, the starting time of each round and the upper
bound on each link's communication time can be predefined by each fault-free
processor [13]. At T w after the starting time of the kth round, namely T~ + Tsp,
the predefined immediate successor P of S should have the message sent by S;
otherwise, it knows that S is faulty. When P receives no message from S, it re-
lays the symbol • to its predefined immediate successor to reflect the fault sta-
tus of S. The properties of path information and transfer rules can be found in
current network path components such as ATM-based networks [18].

Appendix C. Conventional majority vote for mixed failure types

Fig. 6 shows that an agreement cannot be reached in the network shown in
Fig. 5 when conventional majority voting is used. When conventional majority
voting is applied to the internal vertex AB shown in Fig. 6, the output of the
voting is still contaminated by vertex ABG that corresponds to the arbitrary
faulty sender G (it sends different messages to different receivers). Although
the vertices correspond to dormant faulty senders, ABD, ABE, and ABF, they
are not counted when the vote is taken [10,7,11], and the number of children
related to the fault-free senders in vertex AB is not greater than that of the ar-
bitrary faulty senders. Hence, the voting result is dominated by the value stored
in vertex ABG. Consequently, the fault-free processors, A, B and C, are unable
to reach an agreement when conventional majority voting is used.

Appendix D. VOTEsc

VOTEsc only counts the non-sO values (excluding the last level of the IG-
tree). Suppose that k = max{m, 3}. For all vertex a at depth i of an IG-tree,
the output of VOTEsc depends on the following conditions:

O : Vertex corresponding to a fault-free sender
t ~ : Vertex corresponding to a dormant tiaulty sender
• : Vertex corresponding to a arbitrary faulty sender

0 0 ARC
AB • ABD

• ABE

• ABF
ABG

Fig. 6. A subtree of the IG-tree for the network shown in Fig. 5.

H.-S. Siu et al. / Journal of lnformation Sciences 108 (1998) 157-180 179

V O T E s c (g)
begin
if a is a leaf /* condi t ion cl */
then ou tpu t val(a)
else begin

let v be the most c o m m o n value o f VOTEsc(o-p), for all child p o f
vertex a stored at depth i o f IG-tree, and w be the number o f copies
o f value v;
let x = k * (t - i + 1) + [(n - 1)modk];
if w ~> x and v = ~ / * condi t ion c2 */
then output val(a)
else if v :~ ~ d j , where 1 ~< j < t / * condi t ion c3 */
then output v
else if v = '~d:~/1 /* condi t ion c4 */

then output value d
else if v = ~ 4 j and j 7 £ 1 /* condit ion c5 */

then output ~o~'j 1
end

end.
Note that if there is more than one most c o m m o n value in condit ions c3, e4,

and c5, then the value returned is the one that appears first in any predefined
ordering o f the values o f V (V = {vl , v 2 , . . . , Vm}). All fault-free processors use
the same ordering. I f the mos t c o m m o n value is not unique, the value returned
is the one that appears first in any fixed enumerat ion o f the values in V. Con-
ditions cl and c3 are similar to conventional majori ty voting. The other three
condit ions are used to handle cases o f mixed failure types. Semantically, con-
ditions c4 and c5 are used to report the existence o f an absentee. When a ma-
jori ty o f processors report that an absentee exists, V O T E s c returns the value ,~
or ~ d i _ l to represent the event. As mentioned in Section 3.3, VOTEsc uses
val(a) as the output if condi t ion c2 is satisfied.

When V O T E s c is applied to the vertex AB shown in Fig. 5, condi t ion c2 o f
VOTEsc is satisfied and the original value stored in vertex AB is used as the
output o f VOTEsc . Therefore, the influence o f the faulty processor G is re-
moved by using V O T E s c and all fault-free processors can reach a c o m m o n val-
ue '1 ' after the decision making phase.

References

[1] M. Barborak, M. Malek, A. Dahbura, The Consensus Problem in Fault-Tolerant Computing,
ACM Computing Surveys 25 (2) (1993) 171 220.

[2] D. Dolev, M.J. Fischer, R. Fowler, N.A. Lynch, H.R. Strong, An efficient algorithm for
Byzantine agreement without authentication, Inform. Comput. 52 (1982) 257 274.

180 H.-S. Siu et al. / Journal o f lnformation Sciences 108 (1998) 157-180

[3] L. Lamport, R. Shostak, M. Pease, The Byzantine Generals Problem, ACM Trans. Prog.
Lang. Syst. 4 (3) (1982) 382401.

[4] H.G. Molina, F. Pittelli, S. Davidson, Applications of Byzantine Agreement in Database
Systems, ACM Trans. TODS 11 (1) (1986) 2747.

[5] M. Pease, R. Shostak, L. Lamport, Reaching agreement in presence of faults, J. ACM 27 (2)
(1980) 228-234.

[6] G. Neiger, Distributed Consensus revisited, Inform, Process. Lett. 49 (1994) 195-201.
[7] F.J. Meyer, D.K. Pradhan, Consensus with dual failure modes, IEEE Trans. Parallel Distrib.

Syst. 2 (2) (1991) 214-222.
[8] A. Bar-Noy, D. Dolev, C. Dwork, R. Strong, Shifting gears: Changing algorithms on the fly to

expedite Byzantine agreement, Proceedings of the Symposium on Principle of Distributed
Computing 1987, pp. 42 51.

[9] D. Dolev, The Byzantine generals strike again, J. Algorithms 3 (1) (1982) 14-30.
[10] P. Lincoln, J. Rushby, A formally verified algorithm for interactive consistency under a hybrid

fault model, Proceedings of the Symposium on Fault-Tolerate Computing Toulouse, 1993, pp.
402411.

[11] P. Thambidurai, Y.-K. Park, Interactive Consistency with Multiple failure modes, Proc.
Symp. on Reliable Distributed Systems Columbus, OH, 1988, pp. 93-100.

[12] K. Shin, P. Ramanathan, Diagnosis of processors with Byzantine faults in a distributed
computing systems, Proceedings of the Symposium on Fault-Tolerate Computing, 1987, pp.
55-60.

[13] M. Fischer, M. Paterson, N. Lynch, Impossibility of distributed consensus with one faulty
process, J. ACM 32 (4) (1985) 374-382.

[14] K.Q. Yan, Y.H. Chin, S.C. Wang, Optimal agreement protocol in malicious faulty processors
and faulty links, IEEE Trans. on Knowledge and Data Engrg. 4 (3) (1992) 266-280.

[15] N. Deo, GRAPH THEORY with Applications to Engineering and Computer Science,
Prentice-Hall, Englewood Cliffs, NJ, 1974.

[16] M. Fischer, N. Lynch, A lower bound for the assure interactive consistency, Inform. Process.
Lett. 14 (4) (1982) 183-186.

[17] H.S. Siu, Y.H. Chin, W.P. Yang, A note on consensus on dual failure modes, IEEE Trans.
Parallel Distrib. Syst. 3 (1996) 230-255.

[18] R. Handel, M.N. Huber, Integrated Broadband Networks: An Introduction to ATM-based
Networks, Addison-Wesley, Reading, MA, 1991.

