
Information Processing Letters 66 (1998) 309-3 15

An inheritance flow model for class hierarchy analysis

Jim-Liang Chen ‘, Feng-Jian Wang *
Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, 30050, Taiwan

Received 14 August 1997; received in revised form 19 March 1998
Communicated by D. Gries

Abstract

This paper presents an inheritanceJow model, which represents the inheritance relationships among classes as a flow graph.
A flow operation is associated with each attribute and method in a class to denote the defined (redefined) or inherited member.
An inherited member can be deemed as being handled by a sequence of flow operations along a path in the flow graph. This
model provides several analyses in a class hierarchy, such as implicit inherited member and polymorphic method invocation.
These analyses may be applied in various fields of software engineering, such as static analysis, maintenance, and complexity
measurement. 0 1998 Elsevier Science B.V. All rights reserved.

Keywords: Programming language; Software engineering; Object-oriented; Class hierarchy

1. Introduction

Due to inheritance, classes in the Object-Oriented
(00) paradigm often form a hierarchical structure,
called class hierarchy. In a class hierarchy, a class
can inherit the members from its superclass without
declaring them. The inherited members for a class
are implicit, since they can be used but not defined
in the class. The implicit inherited members often
obstruct the investigation of changing superclasses,
and joining/splitting classes during software design
and maintenance [lo], besides program understanding

1631.
Most programming environments (e.g., MicrosoftTM

Visual C++ and BorlandTM C++ Builder) employ
a compiler to build a virtual table [9] to record
the members of each class. However, the virtual
table is a fixed structure; it is difficult to provide

* Corresponding author. Email: fjwang@csie.nctu.edu.tw.

’ Email: jlchen@csie.nctu.edu.tw.

0020-0190/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved.
PII: SOO20-0190(98)00072-6

class investigations as mentioned above. At present,
there is no formal model to describe the behavior

evolution in a class hierarchy. This might complicate
the understanding of a class hierarchy, since one has
to navigate through all the classes.

In this paper, we present an inheritanceflow model

that represents the inheritance relationships among

classes as a flow graph. In this model, a flow operation,
which is either to define or to use is associated

with each member (i.e., an attribute or method) of a
class. The de&e operation means that the member is
defined or redefined, while the use operation means

that the member might be referenced. Thus, the
member of a class inherited by subclasses can be
deemed as being handled by a sequence of flow
operations along an inheritance path in the flow
graph. The sequence can be used to indicate the
behavior evolution in a class hierarchy, and it may
form a define-use pair, like the define-use relation

in data-flow analysis [l]. Therefore, several analyses

310 J.-L. Chen, E-J. Wang/Information Processing Letters 66 (1998) 309-315

in a class hierarchy can be performed on this flow
graph, for example, implicit inheritance analysis and
polymorphic message analysis. The analyses may be
applied in various fields of software engineering,
such as static analysis, maintenance, and complexity
measurement.

2. Background

2.1. Object-oriented programs

00 programming encapsulates related data and op-
erational procedures as attributes and methods through
an object. An object is instantiated from a class, which
defines attributes and methods (called members for the
both). With inheritance, a class can obtain the mem-
bers from its superclass. A subclass cannot only use
the inherited members, but also redefine them. Inher-
itance rules are different for various 00 languages,
and Java [5] is adopted to demonstrate the class hierar-

chy analysis through this paper. In addition to classes,
Java provides the interface, a collection of constants
and procedure prototypes (signatures). For a class, in-
heritance is achieved by specifying its superclass (at
most one) in an extends clause and its superinterfaces
in an implements clause. An interface to subinterfaces
is similar to a class to subclasses. An interface can ex-
tend more than one interface at a time. Thus, the class
hierarchy includes not only class inheritance but also
interface inheritance. Detailed features can be found

in [5].

2.2. Preliminary dejinitions

Definition 1. A digraph is an ordered pair G(V, E),
where V is a finite set of vertices, and E s V x V is a
finite set of directed edges. For an edge e, e E E, from
a vertex u1 to a vertex ~2, ut is called the initial vertex
of e, denoted as IV(e), and u2 is called the terminal
vertex of e, denoted as TV(e).

Definition 2. A multi-digraph is an n + 1 tuple (V, El,

E2,..., En) such that for all i, 1 6 i 6 n, (V, Ei)
is a digraph. A path in the graph is a sequence of

edges (et, e2, . . . , ek), such that m(ei) = zV(ei+t) for
1 6 i 6 k - 1, and ej E U”,=, E, for 1 < j < k. Let
VI = ZV(el) and ur = m(ek). The path is called a
path from VI to VT, or VI + vr for short.

Definition 3. A tagged multi-digraph is a tuple (V,

(El, E-J “l.1.l E,), T) such that (V, El, ET, . . . , E,) is
a multi-digraph, where
(1) V is a finite set of vertices,
(2) Ei 2 V x V for 1 6 i < n is a finite set of directed

edges,
(3) T is a finite set of vertex tags; T = U$‘” T(X),

where T(X) is a set of vertex tags associated with

vertex X.

Definition 4. Let G = (V, (El, E2, . . . , E,), T) be a
tagged multi-digraph.
(I) A path in G is a path in the multi-digraph

W, EI, E2,. . . , Ed.
(2) Let E, and E, be two sets of edges in G. Given a

path

Va--,vb=(el,e2,...,ek), Va w vb
EX UE,

denotesthatforalli,l<i<kk,eiEExUEy.

3. Inheritance flow model

In a class hierarchy, a path from a root class to its
subclass via inheritance relationship(s) is called inher-

itancejow. Along an inheritance flow, public and pri-
vate members defined in a class can be inherited by its
subclass implicitly. The specification of a member in
a class consists of signature and body parts, which de-
note the declaration and implementation/instantiation
for the member, respectively. Thus, inheritance flow
has to take the signature and body into considera-
tion. The evolution of a member in inheritance flow
can be described by flow operations as the follow-

ings.

Definition 5. In inheritance flow, an operation on the
signature of a member in a class or interface is either
a signature-inheritance define (Dst) or signature-
inheritance use (Usi). In a class (or interface),

(1)

(2)

a DS; on a member means that the signature of
the member is declared in the class or interface
originally;
a Usi on a member means that the signature of the
member is inherited from a superclass or superin-
terfaces, i.e., the class or interface possesses the
signature without defining it.

J.-L. Chen, E-J. Wang /Infommtion Processing Letters 66 (1998) 309-315 311

Definition 6. In inheritance Aow, an operation on

the body of a member in a class is either a body-

inheritance define (Dbj), body-inheritance use (Ubj),

Or null (Nbj). In a ChSS,

(1) a Dbi on a member means that the body of the

member is newly defined or redefined in the class;
(2) a ubi on a member means that the body of the

member exists, but does not be specified in the

class;
(3) an N& on a member means that neither &j nor

u& on the body of the member, i.e., the body does
not exit.

In inheritance flow, a member in a class can be
associated with a pair of flow operations for its

signature and body by {D,i, USi) X {Db;, ubi, Nbi}.

There are six combinations for a flow operation pair,

but only five of them are reasonable. The excluded one
is (D,i, ubi), because no member can let its signature
be redefined, but remain its body,

To represent the structure of an 00 program, we

define an Inheritance Flow Graph (IFG) based on a
tagged multi-digraph.

Definition 7. Let P be a program. An Inheritance

Flow Graph (IFG) of P is defined as Gifg(P) =

(V, E, T), where (V, E, T) is a tagged multi-digraph,
and

(1)

(2)

V=V,UViUV,UV,,where

V, is a set of vertices representing classes,
Vi is a set of vertices representing interfaces,

V, is a set of vertices representing methods, and

V, is a set of vertices representing attributes;

E = (.&H, Eimp, Epub, Epro, Epd, where

E,,? C (V, U Vi) x (V, U Vi) is a set of edges
representing class inheritance,

Eimp C (Vi x (V, U Vi)) is a set of edges repre-

senting interface inheritance,
Epub 2 (V, U Vi) x (V, U V,) is a set of edges
representing public-membership of attributes and

methods in a class,
Epro G (V, U Vi) x (V, U V,) is a set of edges

representing protected-membership of attributes
and methods in a class, and
Epri c (V, U Vi) x (V, U V,) is a set of edges
representing private-membership of attributes and
methods in a class;

(3) T = U;Ev~uVm T(X), where T(X) is a pair of

vertex tags, denoted as (a, b), associated with
X to represent a pair of flow operations for the

signature and body of a member.
A member associated with (USi, U&) or (USi, Nbi)

in a class implies that it is inherited from a superclass
or superinterface. Since the member is implicit for the
class, there is no membership edge from the vertex
of the class to that of this member in an IFG. That

is, T(X) in an IFG is either (D,i, Dbi), (D,i, Nbi),

or (Usi, Dbi). Note that if an 00 language provides
public, protected, and public inheritances, the IFG

needs different inheritance edges to represent them.
Since Java language allows public inheritance only,

the other two inheritances and related work are not
discussed here.

For a program in Fig. 1, its IFG is illustrated in
Fig. 2. Attribute attrib in CO is inherited by Cl,

but does not appear in the definition of Cl. In the
graph, there is no edge from Cl to attrib (i.e.,
Cl -+ attrib = E).

4. Class hierarchy analysis

4.1. DejSne-use pair analysis

In a class hierarchy, the inheritance of a member
from one class to its subclass can form a dejine-use

pair in terms of flow operations. According to the
inheritance flow model, we can define a define-use pair

with respect to the signature and body of an inherited
member.

Definition 8. Let cl and c2 be classes or interfaces,

(~1, ~2) E V, U Vi. Let m be a member, m E Vm U V=.

Given two operations on m in CI and ~2, (m, cl, ~2)
is said to be a signature dejine-use (DU,i) pair iff the
following conditions are true:

(i) cl -+ m E Epro U Epub and

T(m(cl + m)) E { (D,i, Dbi)v (D,i, Nbi)},

(ii) either T(TV(c2 + m)) = (USi, Dbi) or c2 -+
m = E,

(iii) cl - 13, and
Eexr’JEimp

312 J.-L. Chen, E-J. Wang /Information Processing Letters 66 (1998) 309-315

interface TO {

public void fl(); // Dsi, Nbi

public void f2(); // Dsi, Nbi

1
interface Tl extends TO {

1
abstract class CO {

protected int attrib; //Dsi, Dbi

public void f2(){attrib=2;} //hi, Dbi

1
class Cl extends CO implements Tl

public void f20 { // Usi, Dbi

attrib = 100;

. . .
l
public void fl() {

attrib = 10;

// Usi, Dbi

// Definition of class Cl

class C2 extends Cl {

public void f20 {

. . .
1

1

// Usi, Dbi

Fig. 1, An example program.

(iv) for all (Y,

CXEVcUViACt-oACk!-C2,
&xf’JEimp &_xrWmp

such that either T(W((r -+ m)) = (USi, Dbi) or

a+m#E.

In Definition 8, condition (i) denotes m is associated

with a D,i in cl, and can be inherited by q’s
subclasses. Condition (ii) denotes m is associated with
a lJSi in ~2. Condition (iii) is that there is an inheritance
path from ct to c2. Condition (iv) indicates that m’s
signature defined in ct does not be refined by other
classes (or interfaces) before the signature is inherited
by ~2. The OUsi pair indicates that the evolution of
m in the class hierarchy begins at cl. m may have

more than one implementation from cl to c2. These
implementations belong to m’s evolution. When a

programmer redefines m’s body in ~2, the evolution

will be updated.

Definition 9. Let ct and c2 be classes, {cl, CT} S

V,. Let m be a member, m E V, U V,. Given two
operations on m in ct and ~2, (m, cl, ~2) is said to

be a body de$ne-use (DUbi) pair iff the following

conditions are true:

(i) ct + m E Epro U Epub and T(TV(q -+ m)) E

I(Dsit D&I, (usi, Dbi)},
(ii) c2 += m = E,

(iii) cl ---+, and
Et%

(iv) for all (II,

CY E v, A Cl c c-6 A o! F c2,
P.Xf

suchthata-+m=~.

J.-L. Chen, E-J. Wang /Information Processing Letters 66 (1998) 309-315 313

c”, void f2()

<‘J,,, D,’

Legend:

.-‘-““‘I
-...__/ v, 0 vc aDEex,/Em,, <OP,,OP,> Vertex tags

0 V! 0 V” m E,b &/E,,

Fig. 2. The IFG of the example program.

This definition is similar to the previous one. The

operations on m are a Dbi and a Ubir and m’s body here

is inherited via classes only. The DUbi pair means that

m is implicit inherited by c2 and its body is defined in
cl. The implicit inheritance of m vanishes if m’s body

is redefined in ~2.
For example, in Fig. 2, the operations on f 1 in TO

and Cl form a DUsi pair, while those on attrib in

CO and Cl form a DUbi pair. All the DUsi and DUbi

pairs in the example program are shown in Table 1.

4.2. Inheritance analysis

The implicit members via inheritance relationships

can be represented as the flow information in class

hierarchies. For a class, its flow information includes
(a) what members can be inherited by the class, and

(b) which superclasses/super-interfaces bring these
members. The flow information of a class includes

the signatures and bodies of inherited members can be
presented with DUsi and DUbi pairs.

Definition 10. For a class or interface C, C E V, U 6,

the inheritance flow of member signatures is {(a, x) 1

Table 1
DUsi and Dubi pairs in theexample program

LIUsi pairs DUbi pairs

(fl, TO, Tl), (f2, TO, Tl), (attrib, CO, Cl)

(fl, TO, Cl), (f2, TO, Cl), (attrib, CO, C2)

(fl, TO, C2), (f2, TO, C2). (fl, Cl, C2)

(f2. CO, Cl). (attrib, CO, Cl)

(f2, co. C2). (attrib, CO, C2)

cz E V, U Vi and x E V, U Va such that (x, cz, C) is a
DUsi pair).

This definition shows that the flow of member
signatures entering a class (or interface) includes the
member signatures originally defined in superclasses
or superinterfaces. Similarly, the flow of member
bodies entering a class is described in Definition 11.

Definition 11. For a class C, C E V,, the inheritance
flow of member bodies is ((ar, x) I cx E V, and x E
V, U V, such that (x, cz, C) is a DUbi pair}.

314 J.-L. Chen, E-J. Wang /Information Processing Letters 66 (1998) 309-315

void foo(C0 object) { 5. Applications
object.f2();

// polymorphic message

I

Fig. 3,Apolymorphic message.

With Table 1, one can get that the inheritance
flow of member signatures for class Cl is {(TO, f l),

(TO, f2), (CO, f2>, (CO, f l), (CO, attrib)), from
which he/she can know where the member signatures
inherited by Cl are originally defined in a class hier-
archy. The inheritance flow of member bodies for Cl
is [(CO, attrib)}, in which the body of attrib is
implicitly inherited from CO. It seems that f 2 in Cl
could be inherited from TO and CO. In fact, f 2 is in-
herited from CO according to Java specification [5].
With multiple inheritance [121, f 2 in C 1 may incur an
inheritance conflict when both TO and CO are direct
superclasses of Cl and contain the bodies of f 2. It

is straightforward to detect the conflict by looking up
an identical member inherited from different classes in

the inheritance flow.

There are several potential applications of the analy-

ses with the inheritance flow model, such as static

analysis, maintenance, complexity measurement. For
example, navigation in class hierarchies is inevitable

for a programmer during maintaining and reusing 00

systems [lo]. The class hierarchy analysis can facili-

tate class navigation by collecting the define-use pairs

of members. These pairs show what implicit inherited

members a class can possess, and where these mem-
bers are from.

4.3. Polymorphism analysis

A method may have multiple implementations, of
which each is defined in different classes of a class

hierarchy. These implementations can be invoked by
a message with a polymorphic receiver in a uniform
manner. The analysis of a polymorphic message is to

collect all the implementations that can be invoked
potentially. It can be presented as the definition below.

Definition 12. Given a polymorphic message with a
receiver of class C invoking method m, the set of
potentially invoked implementations of m is { (fl, m) 1

BE vc, c- E,r B A B + m E Epro U Epub, such that

T(m(B + m)> = (usi, Dbi)l.

Like data flow anomaly detection [4], the inheri-

tance flow model can provide static analysis for de-
tecting anomalies in class hierarchies, such as unim-

plemented member [1 l] and repeated inheritance [2].

A member propagated along an inheritance path, from

Cl,CZ,... to Ck, can be regarded as a sequence of flow

operations, (at, bl) (a~, b2) . . . (Uk, bk). The operation

sequence can be represented in terms of a regular ex-
pression with ‘1’ denoting ‘or’ and ‘+’ denoting repe-

tition at least once. An unimplemented member anom-

aly occurs when a member owns its signature without

body in a subclass. The anomaly can be detected by
examine if an operation sequence of a member con-

tains the expression (D,i, Nbi) (Usi, Nbi). A repeated
inheritance occurs when there are two or more inheri-

tance paths, along which there exits an identical DUbi

pair. For example, given two inheritance paths from a

class Cl to another C2. a repeated inheritance anom-
aly can be detected when the operation sequences of

a member corresponding to the two paths can be ex-

pressed as](D,i, Dbi) 1 (usi, &i)I[(Usi, ubi)l+. This

expression implies that the member in Ct and C2

forms a DUbi pair.

In this definition, (p, m) denotes that /J is a sub-
class of C and m’s body is redefined in B. For exam-
ple, a polymorphic message in Fig. 3 is with a receiver
of class C 0 invoking f 2. According to the definition
above, one can get {(cl, f2), (C2, f2)) which con-
tains the implementations of f2 in Cl and C2 that
might be potentially invoked by the polymorphic mes-
sage.

Software complexity measurement captures the pro-
gramming difficulties during development and pre-

dicts the maintainability and testability of the soft-
ware. Current measurement approaches for 00 pro-

grams, such as [3,7], do not consider the factor of
behavior evolution in class hierarchies. The behavior

evolution, for example, includes the overridden and in-
herited members and the multiple implementations of
a method. However, the behavior evolution can be rep-

resented as some specific sequences of flow operations
in this model. The number of these sequences might
thus be one index for the complexity measurement.

J.-L. Chen, E-J. Wang /Infomafion Processing Letters 66 (1998) 309-315 315

Acknowledgements

The authors would like to thank the referees, whose
comments helped to improve the overall presentation.
This research was sponsored by MOEA and supported
by Institute for Information Industry, Taiwan, R.O.C.

References

[I] A.V. Aho, R. Sethi, J.D. Ullman, Compilers-Principles, Tech-

niques, and Tools, Addison-Wesley, 1986.

[2] M. Beaudouin-Lafon, Object-Oriented Languages: Basic Prin-

ciples and Programming Techniques, Chapman & Hall, Lon-

don, 1994.

[3] S.R. Chidamber, C.F. Kemerer, A metrics suite for object-

oriented design, IEEE Trans. Softw. Engrg. 20 (6) (1994) 476

493.
141 L.D. Fosdick, L.J. Osterweil, Data flow analysis in software

reliability, ACM Comput. Surveys 8 (3) (1976) 305-330.
151 J. Gosling, B. Joy, G. Steele, The Java Language Specification,

Addison-Wesley, Reading, MA, 1996.

[6] M. Lejter, S. Meyers, S.P. Reiss, Support for maintaining

object-oriented programs, IEEE Trans. Softw. Engrg. 18 (12)
(1992) 1045-1052.

[7] Y.S. Lee, B.S. Liang, F.J. Wang, Some complexity metrics for

object-oriented programs based on information flow: A study

of C++ program, J. Inform. Softw. Engrg. 10 (1994) 21-50.

[8] PK. Linos, V. Courtois, A tool for understanding object-

oriented program dependencies, in: Proc. IEEE Third Work-

shop on Program Comprehension, 1994, pp. 2&27.

[9] S.B. Lippman, B. Stroustrup, Pointer to class methods in C++,

in: Proc. USENIX CC+ Conference, 1988, pp. 305-323.

[lo] A. Putkonen, M. Kiekara, A case-tool for supporting navi-

gation in the class hierarchy, ACM SIGSOFT Softw. Engrg.

Notes 22 (1) (1997) 77-84.

[ll] P. Steyaert, C. Lucas, K. Mens, T.D’Hondt, Reuse con-

tracts: managing the evolution of reusable assets, in: Proc.

OOSLA’96, ACM, 1996, pp. 268-285.

[121 C.P. Willis, Analysis of inheritance and multiple inheritance,

Softw. Engrg. J. 11 (4) (1996) 215-224.

