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Abstract 

Many methods for solving polynomial programming problems can only find locally optimal solutions. This paper 
proposes a method for finding the approximately globally optimal solutions of polynomial programs. Representing a 
bounded continuous variable xi as the addition of a discrete variable dj and a small variable E,, a polynomial term xixi can 
be expanded as the sum of d,xj, dj&; and E,E,. A procedure is then developed to fully linearize din, and djci, and to 
approximately linearize E;C~ with an error below a pre-specified tolerance. This linearization procedure can also be extended 
to higher order polynomial programs. Several polynomial programming examples in the literature are tested to demonstrate 
that the proposed method can systematically solve these examples to find the global optimum within a pre-specified error. 
0 1998 Elsevier Science B.V. 
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1. Introduction subject to 

This paper develops a method for seeking a global 
g,(X)lO, k=l,..., q, 

minimum of a polynomial program where the poly- X=(~*,...,X,), 
nomial terms may appear in the objective function 
and the constraints. None of the convexity restric- OIf;IX,I~, i= l)..., n, 

tions is imposed on these functions and constraints. 
The mathematical expression of a polynomial pro- 

where f,< X> and gk( X) are polynomial functions of 

gramming problem is given below: 
X, and f; and K are respectively the lower and the 
upper bound of xi. 

(PP Problem) 
Some approaches for solving the above polyno- 

mial programming problems are discussed below. 

Global Min C&(X) 
i 1.1. Analytical approach 

Horst and Tuy [5] proposed outer approximation 
techniques for solving a PP Problem with Lips- 

* Corresponding author. E-mail:hlli@ccsun2.cc.nctu.edu.tw. chitzian objective function and constraint. Hansen, 
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Jaumard and Lu [3] developed interval analysis based 
sufficient conditions for convergence, and provided 
ways to eliminate variables and to reduce the ranges 
of variables. These analytical approaches, however, 
are only convergent in the absence of blocking sub- 
problems. As the size of problems increases it be- 
comes more and more likely that successive elimina- 
tion of variables leads to problems too complicated 
to allow any further elimination [3]. The analytical 
approach is promising in finding a global optimum 
of a PP Problem only if the range of variables of the 
PP Problem can be easily reduced by analytical 
techniques. 

1.2. Concave minimization approach and binary ap- 
proach 

Particular cases of PP Problems, such as concave 
programming problems and bilinear programming 
problems, have attracted much attention. Work on 
these problems was reviewed by Pardalos and Rosen 
[ 111. Various O-l polynomial programs proposed by 
Hansen, Jaumard and Lu [2] and Li [7,8] perform 
well in finding globally optimal solutions. These 
approaches exploit the special structure of the PP 
Problem and therefore they are not directly applica- 
ble to the general polynomial programming problems 
discussed in this paper. 

1.3. Stochastic approach 

Many stochastic algorithms for global optimiza- 
tion, such as the multistart with clustering [12,9] 
used random search to converge asymptotically to a 
global optimum. The algorithms can also be ex- 
tended to find global solutions. This approach is 
quite promising in searching for a global optimum in 
highly nonlinear programs which are difficult to treat 
by other methods. However, since this technique 
requires evaluating a huge amount of starting points, 
it can only be applied to solve small size problems. 

1.4. Reformulation - linearization approach 

Sherali and Tuncbilek [ 151 and Adams and Sherali 
[ 141 derived a reformulation linearization technique 
(RLT) which generated polynomial implied con- 
straints, and subsequently linearized the resulting 
problem by defining new variables. This construct 

was then used to obtain lower bounds in the context 
of a proposed branch and bound scheme. Although 
the RLT process is promising with respect to con- 
verging to a global solution, the process is in practice 
very difficult to implement owing to the following 
reasons: (i) Several types of implied constraints, or 
subsets, or surrogates need to be generated in a 
linearized form. Tightening its representation at the 
expense of an exponential constraint step by step is a 
long trial and error process. (ii) The RLT algorithm 
always needs to generate a huge amount of bounded 
constraints; many of these constraints are redundant. 
(iii) These are considerable variants in designing a 
RLT process, depending on the actual structure of 
the problem being solved. A user needs to formulate 
a special RLT scheme corresponding to each of his 
programs. 

This paper develops a new method for solving a 
PP Problem and to find a global optimum with a 
prespecified tolerance. The developed method uses a 
convenient linearization technique to systematically 
convert a PP Problem into a linear mixed O-l prob- 
lem. The solution of this converted problem can be 
as close as possible to the global optimum of the 
original PP Problem. A comparison of this method 
with other methods reviewed above is given below: 
1. The proposed methods can solve general PP Prob- 

lems. In contrast, the analytical approach [3] can 
only solve problems in the absence of blocking 
subproblems. The outer approximation techniques 
[5] or concave minimization approach [l l] can 
only treat problems with specific objective func- 
tions and constraints. 

2. Both the proposed method and the multistart 
method [ 12,9] can solve a PP Problem to obtain a 
solution closing in on a global optimum. How- 
ever, the multistart method requires evaluating a 
huge amount of starting points. 

3. The proposed method can systematically solve the 
general PP Problem, but the reformulation-lineari- 
zation approach [1_5] can only solve particular 
problems using various RLT processes. 
This paper has solved many test problems from 

the compendiums of Hock and Schittkowski [4], 
Schittkowski [6], and other sources. The experiment 
demonstrates that the proposed method stably treats 
all of the test problems in finding globally optimal 
solutions within a prespecified tolerance. 
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2. Preliminaries 

Consider a bounded variable xi, 0 I li I xi 5 7, 
where 1; and y are constants. xi can be represented 
as follows: 

.I 

x; = Ii + w; c 2’-,yij + Ei, (2.1) 
j=l 

where: 

is the lower bound of xi. 
is the pre-specified positive constant which is the 
upper bound of ci, 
is a O-l variable. 
is an integer which denotes the number of re- 
quired O-l variables for representing xi. 
is a small variable, 0 I E, < wi. 

For any bounded variable xi, there is an unique 
set of yi, (j = 1,. . . , J), oi and E, such that Eq. 
(2.1) is satisfied. For example, if xi is a variable 
between 10 and 15 and wi is chosen as 0.1, x, can 
then be represented as 

x,= lOfO.ly,, +o.2y,*+o.4yi,+o.8yi, 

+ 1.6~~~ + 3.2~~~ + E,, 

where O~.s,lO.l and yij, j= l,..., 6, are O-l 
variables. Suppose xi = 13.752. Then 

Yi, = Y, 3 = Y, 6 = ’ 3 

Yi2=Yj.$=Yi5=” 

and E; = 0.052. 
Referring to Eq. (2.11, a polynomial term x, x2 is 

represented as 

x,x,=A,x,+~,x~ 

=A,x, +AZel + E,E~, (2.2) 

where 

A, = 1; + wi i 2j-‘y,, for i= 1,2. (2.3) 
j=l 

Define e12 as a linear approximation of E, E*, ex- 
pressed as 

e12 = 2 ‘(co,&* + lo*&,). (2.4) 

The error of approximating E,B~ is computed as 

0 I e12 - &,&2=~(0,&2+W2E,)-&,&2+iJ,W2 

(2.5) 

The maximal difference between e12 and E, c2 is 
&,wz, which occurs at E, = $w, and ~2 

= ?jw,.Substituting El E2 by e,2, expression (2.2) 
can be approximately linearized as 

x,x~=A,x?;+A~E,+&~J,E~+w,E,). (2.6) 

The following section will show that the polyno- 
mial terms A, x2 and A, E, can be fully linearized. 
The maximum error of approximately linearizing 
x,x2 in Eq. (2.6) is therefore less than ~w,w,. By 
specifying smaller w, and w2 values, a more accu- 
rate approximation can be obtained. Choosing a 
smaller o,, however, requires using more binary 
variables to represent a bounded variable xi in Eq. 
(2.1). 

3. Linear strategies 

A polynomial term x,x2 can be approximated as 
follows, referring to Eqs. (2.2), (2.31, (2.4), (2.5) and 
(2.6): 

J 
XlX2=~,X2+W, C2’-‘y,,X,+&E, 

i=l 

J 

f w2 C 2j-‘yZj6, + +( W,E~ + WOE,), 
j=l 

(3.1) 

where I,, l,, w,, w2, I and J are constants, E, and 
~2 are continuous variables, y,, and yZj are binary 
variables, and 0 I Ed I wk, for k = 1,2. The terms 
ylix2 and yzjg, in Eq. (3.1) can be fully linearized 
based on Proposition 1 discussed below. 

Proposition 1. Given a polynomial term 

YlY,,..., y,,x, in which y, y,, . . . , y,, are binary 
variables and 0 I x IX, with x a constant, 

YlY29...’ y,, x can be fully linearized as 

Y,Y2?...>YnX=q, 

where the following inequalities are satisfied 
1. x+(y, +y2+ ... +y,-n)T<qIx; 
2. OIq<Xy,, i= l,..., n. 

This proposition can be checked as follows: If one 
of the y,y,,..., y. equals 0, then q = 0; and if all 
ofthe y1y2,..., y, equal 1, then q = x. 
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Proposition 2. Based on Proposition 1, a linear Replacing [x~x~I~&,~~-‘Y~~ by CkK_12k-1q3k, 
approximation of x, x2, denoted as [x, x,], can be [x1x2x3] is then converted into the form expressed 
expressed as in Proposition 3. 

[x*x*]=1,x2+w* ~2'-1q,;+1,El 
i= 1 

+w*~2’-‘q*j+~(W1E*+WZEl), 
j=l 

where q, i and qzj are bounded by the following 
inequalities: 

OIqliSX1yli, i= l,..., I, 

X2(yli- l)XIqliIx,, i= l,..., I, 

O(q,jIw*Y,,, j=l,...,J, 

El+(y2,-1)W1~q2j--<El, j=l,..., J. 

It is clear that [x1 x2] 2 x1 x2, and the maximal 
error of this approximation is 

max{[ x1 x2] - xi x,} = $w, w2. 

The same linearization process can be applied to a 
higher order polynomial term, discussed in the 
proposition below. 

Proposition 3. A linear approximation of x1 x2 xg, 
denoted as [x1 x2 x3 I, can be expressed as 

[-qx*xJ = (4 + ~3)[~1~*1+ w3 5 2k-1q,,, 
k=l 

where each of the qXk (k = 1,. . . , K > satisfies the 
following inequalities: 
-1. OIq;k~~XIXZl; 
2. [x,XJ+(Ysk- l&X* I qjk I i,i, y,,; 
where [x, x,] is the linear approximation of x, x2, . _ 
expressed in Proposition 2. 

Since [x1x2x3] 2 x1x2x3, the maximum error of 
this approximation becomes 

max{ [ xi x2 xs] - xi x2 x,} = iw, o&. 

This proposition is checked as follows: [x1x2x31 
is expressed as 

[x,x2x3]=[x,x*] 1,+w3 t 2k-lygk+Wg 
k=l 

4. Numerical examples 

Example 1. Solve the following global optimiza- 
tion problem adopted from Sherali and Tuncbilek 
[15]: 

Global Min 

PP(X)=x,x,x,+x;-2x1x,-3x1x,+5x,x3 

-xX,2+5x2+x3 

subject to 

4x, + 3x, + xs I 20, 

xi +2x,+x,2 1, 

21x, 15, 

0 I x2 I 10, 

41x, I 8. 

First, to determine the values of oi, wa and ws, 
denote [ *] as the approximation of a polynomial 
term *, where [ * ] is obtained by the proposed 
linearization method mentioned before. Since [ * ] 
2 * , the maximal error of linearizing PP(X), de- 
noted as 6, is computed as 

&= [x,x*xJ - x1 x2 xg + [x:] - XT 

+ ~(Ew31-~2+). 
The relationships among E, wi, I+, y, and 1; are 
stated below: 

&Ia(o,W3XI+W:+5W2Wg), 

gi - li I 
T I c 2’-‘y,, i= 1,2,3. 

I i-1 

Suppose E is chosen as E I 0.03. Then w,, 02, and 
os can be set as w, 2 0.125, w2 2 0.125, and ws 2 
0.137. 

Express x1, x2 and xs as follows: 

5 

xl = 2 + 0.125 c 2’-‘yli + pi, 
i= 1 
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I 

x2 = 0.125 c 2J-‘yq + E2’ 
j=l 

5 

x,=4+0.137 c 2k-‘y3k+Eg. 
k= I 

The term x, x2 xj can be linearized by Proposition 3, 
while all other polynomial terms can be linearized by 
Proposition 2. Solving the linearized program using 
LINDO [lo], the found optimal solution is 

X* =(,q$J;)=(3,0,8). 

In fact, this is the global optimum. The same solu- 
tion was found by Sherali and Tuncbilek [15] through 
a complicated heuristic algorithm for solving a mixed 
0- 1 problem. 

Example 2. Consider the optimal design problem of 
a pressure vessel in Sandgren [ 131 depicted in Fig. 1. 
Sandgren solved this problem by a Quadratic Integer 
Programming Method, and Fu et al. [l] solved it by 
an Integer Penalty method. Recently, Li and Chou 
[9] solved this problem by the Multistart Method. 
The problem is formulated below: 

Min f(X) =0.6224x,x, + 1.7781x,x: 

2 2 
+ 3.1661 x, xq + 19.84~~ xg 

subject to 

-x1 + 0.0193x, IO, 

-x2 + 0.00954x, IO, 

- nx;xq - +ITX; f 750.1728 I 0, 

-240+x,10, 

l.OOOIX, Il.375, 

0.625 2 x2 2 1 .OOO, 

Fig. I. Tube and end section of pressure vessel (from Sandgren 
[121X 

where x, and x2 are discrete variables with discrete- 
ness 0.0625, and 

47.5 5 x3 I 52.5, 

90.00 I x4 I 112.00, 

where x3 and x4 are continuous variables. x, is the 
spherical head thickness, x2 is the shell thickness, 
x3 is radius and xq is the length of the shell. 

Since x, and x2 are discrete variables, they can 
be completely expressed by binary variables without 
error, as shown below: 

x1 = 1 + O.O625y,, + O.O125Oy,, + 0.2500~,~, 

x2 = 0.625 + 0.0625~~~ + O.l25Oy,, + 0.2500y2,. 

Suppose the tolerable error of approximating f( X > 
(i.e. the objective function) is set as 0.05. Then we 
can choose o3 = 0.34 and o, = 0.375. The variables 
x3 and x4 are then rewritten as 

x3 = 47.50 + 0.34 y31 + 0.68 y32 + 1.36 Y,~ 

+2.72y,,+&,, 

x4 = 90.00 + 0.375 y41 + 0.75 y,, + 1.5 y43 + 3 y44 

+ 6~4, + 12~4, + ~4. 

Table 1 
A comparison of optimum solutions for Example 2 

Items Optimal solution by 
Sandgren’s method 

Optimal solution by 
Fu et. al’s method 

Optimal solution by 
the proposed method 

Xl 1.125 1.125 1.000 
*2 0.625 0.625 0.625 
x3 48.95 48.38 51.25 

106.72 111.745 90.991 
7982.5 8048.6 7127.3 
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The maximal error of f(X) after linearization is 
computed as 

0.6224 1.7781 

4 w36J4 + -w; 50.05. 
4 

Solving this program by LINDO [lo], the optimal 
solution is 

x * = (1.000,0.625,51.252,90.991), 

with objective function value f(X) = 7127.3. The 
same problem was solved by Sandgren [13] and Fu 
et al. [l]. The best solutions they can find, after 
testing many starting points, are listed in Table 1. 
Table 1 shows that the proposed method can find a 
solution better than the ones obtained by Sandgren 
and Fu et al. 

Example 3. To demonstrate the superiority of the 
proposed method in finding the global optimum of 
polynomial programs, several test examples of poly- 
nomial programming problems listed in Hock and 
Schittkowski [4] and Schittkowski [6] have been 
evaluated. These examples have been solved by six 
well-known optimization codes shown in Table 2. 
Since none of these six codes could solve all test 
problems successfully, and since none of them can 
guarantee having found the global solution, Hock 
and Schittkowski solved each test example by all of 
these six codes. They executed each code with very 
low stopping tolerances (10H7) and a huge amount 
of starting points, thus computing one solution as 
precise as possible. Only the best result obtained by 
six codes is reported as the solution of the test 
example. 

The proposed method resolves these test examples 
by setting the various tolerance values. The experi- 

Table 2 
Optimization programs for evaluating optimal solutions (Hock and 
Schittkowski [4]; Schittkowski [6]) 

Code Author Method 

VF02AD Powell Quadratic approximation 
OPRQP Bartholomew-Biggs Quadratic approximation 
GRGA Abadie Generalized reduced gradient 
VFOlA Fletcher Multiplier 
FUNMIN Kraft Multiplier 
FMIN Kraft, Lootsma Penalty 

ment shows that the proposed method successfully 
finds solutions for all test examples. Parts of the 
results are listed in Table 3. The proposed method 
resolves each of these problems and finds the same 
or even a better solution than the best solution found 
by the other six codes. Take Problem 338 in [6] for 
instance. The optimization problem is listed below: 

(Problem 338 in [6]) 

Min F(X) = -(X:+X,2+X:) 

subject to 

0.5x,+x,+x3-1=0, 

x~+3x;+~x32-4=0, 

where X, , X,, X3 are unbounded. 
The best solution of Problem 338 found by the six 

codes in Table 2 is 

(X,, X,, X,> = (0.3669,2.244, - 1.427), 
F(x) = - 7.2057. 

in which the stopping tolerance is specified as 10V7 
and a huge amount of starting points is tested. 

We resolve this problem by specifying the toler- 
ance as wi = w2 = w3 = 0.001 to obtain the solution 

;“x x x1=(- 
F(Y) =“‘- 10.993. 

0.363659, - 1.66324,2.84507), 

Solving this problem again by respecifying the toler- 
ance as o, = o2 = w3 = 0.0001, we find the same 
solution. Denote F(x * > as the value of objective 
function for global optimum, the maximal error of 
our solution with respect to F(x* >, is estimated 
below referring to Proposition 2: 

0.0001* 
F(x) -F(Y) =3 4 

i ) G 10-8. 

The obtained solution therefore is very close to the 
global optimum. 

The comparison between these six codes and the 
proposed method is discussed below: 

The quality of the solution for these six codes 
depends on the choice of starting point. In con- 
trast, there is no requirement for the proposed 
method to specify an initial point. 
None of these six codes can guarantee having 
found the global solution, but the proposed method 
can ensure finding the global solution within a 
pre-specified error. 
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These six codes can only be applied to solving 
problems with continuous variables. But the pro- 
posed method can solve problems containing both 
continuous and discrete variables. 

Conclusions 

This paper proposes a practical and useful lin- 
earization technique to approximate polynomial terms 
in a polynomial program. Using the technique, a 
program with a polynomial objective function and 
constraints can be solved to reach a global optimum 
within a pre-specified tolerance. Many examples in 
the literature are tested, which demonstrate that the 
proposed method is very promising with regard to 
solving a general polynomial program to obtain an 
approximately global optimum. 

Theoretically, the proposed method can solve a 
polynomial program to find a solution which is as 
close as possible to a global optimum. A major 
difficulty of implementing the proposed method is 
that if the range of a variable xi is large and the 
upper bound of the tolerant error of xi (i.e., wi) is 
small, then it requires to add many binary variables 
to represent xi. This will increase the computational 
burden in the solution process. One possible way of 
overcoming this difficulty is to divide the interval of 
a variable before solving the problem. This remains 
for further study. 
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