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Abstraet~In this paper, we present a complete decomposi- 
tion algorithm for nonconvex separable optimization 
problems applied in the optimal control problems. This 
complete decomposition algorithm combines recursive 
quadratic programming with the dual method. When our 
algorithm is applied to discretized optimal control problems, 
a simple and parallel computation and a simple and regular 
data flow pattern between consecutive computational steps 
results. This paper also suggests an approach for developing 
a hardware implementation of our algorithm and gives an 
estimation of the execution time needed to solve a practical 
example. 

1. Introduction 
A NONCONVEX SEPARABLE optimization problem of the 
following form is considered in this paper: 

k 

min ~ z,(yi), 
Y i=1 

subject to: k 
~, hi(y,) = O, 
i=1 

k (1) 
c,(y,) -< O, 

where Y=(Yl  . . . . .  yk) ER n, y i e R  n~ and ~kffilni=n; and 
constraint functions h,: Rn~-+ ~'~, ci: R n~-~ R q and objective 
functions z i : Rn'---~ R, i = 1, 2 , . . . ,  k, are twice continuously 
differentiable in y~. 

The dual method is ideally suited for solving such 
large-scale separable optimization problem, because it has 
been shown (Luenburger, 1984) that the dual function of (1) 
can be decomposed into k independent smaller minimization 
subproblems. However, directly applying the dual method to 
(1) may fail in general since the Hessian matrix of the 
Lagrangian of (1) may not be positive definite. To cope with 
this difficulty, the augmented Lagrangian method can be 
used to convexify the Lagrangian; however, this destroys the 
separability of (1) due to the cross product terms in the 
added quadratic penalty function. In response to this 
problem, numerous techniques have been developed to find 
a proper Lagrangian. Among the leading methods, the 
approaches proposed by Watanabe et al. (1978) and 
Tatjewshi (1989) were both based on approximating the 
augmented Lagrangian to maintain the separability; while 
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those of Bersekas (1979) and Tanikawa and Mukai (1985) 
used a convexification procedure, which is different from the 
augmented Lagrangian method, to ensure the positive 
definiteness of the Hessian matrix of the Lagrangian and 
preserve the separability. All the above techniques must, at 
least, solve k independent minimization subproblems in each 
iteration. Thus, an additional iterative optimization program 
is needed for these subproblems. 

Compared to the above techniques, our approach is 
simpler because we do not seek a proper Lagrangian. 
Instead, we employ the recursive quadratic programming 
technique proposed by Hun (1977) to successively solve the 
quadratic approximate problem of (1); the quadratic 
approximate problem is formulated to have a positive 
definite diagonal Hessian matrix. Thus, the separability of 
(1) will be preserved in the quadratic approximate problem, 
which can then be solved by the dual method. Furthermore, 
a complete decomposition property can be obtained because 
each decomposed quadratic subproblem can be solved 
analytically owing to the diagonal Hessian matrix. The 
construction of this positive definite diagonal Hessian matrix, 
say B, of the quadratic approximate oroblem is based on the 
diagonal terms of the matrix V2~.kffilzi(Yi) such that 
[diagB]i = [diagV 2 ~/k= 1 zi(y,)]j if it is positive; otherwise, 
[diag B~ = ?, a small positive scalar. Thus in addition to the 
complete decomposition property obtained by using the dual 
method to solve each quadratic approximate problem, our 
technique will function like a variable metric method (Han, 
1976) if B =  V2E zi(y,) and the constraint functions are 
afline, or like the gradient projection method§ if B = yl. 
Therefore, our technique is best suited to obtain the discrete 
solution of fixed final-time constrained nonlinear optimal 
control problems with quadratic performance index. In 
general, such problems are considered to be difficult, 
especially in the presence of control constraints. However, 
we show in this paper that our technique for such problems 
exhibits good convergence, even though an augmented 
Lagrangian method is incorporated to solve the problem with 
terminal state constraints. Furthermore, the complete 
decomposition property of our technique for solving such 
problems will not only result in simple and parallel 
computation but also a simple and regular data flow pattern 
between consecutive computational steps. This naturally 
leads to the use of data driven waveform VLSI array 
processors (Kung, 1988) to implement our technique. A 
detailed description of the implementation process is beyond 
the scope of this paper. However, a version of the hardware 
used to implement a general minimum-time control 
algorithm proposed by Lin (1992b) can be modified for the 
implementation of our technique. 

At the end of this paper, we present a practical optimal 
control example among several examples which are tested by 
our technique. The convergence rate is slow as expected 

§ Mukai and Polak (1978) developed an efficient scheme 
with finite inner iterations. 
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because of the simplicity of our technique. However,  based 
on current VLSI technology, the estimated execution time is 
fast. 

2. RQPD (recursive quadratic programming with dual 
method) algorithm for nonconvex separable optimization 
problems 
Preliminaries. The quadratic programming problem (2) 
describes an approximation of (1) at the point  y(l), 

k 

min ,-~-i VY'zi(Yi(I))d' + ½dTi B~(yi(l))di' 

subject to: 

h,(y~(l)) + Vy~h~(y,(l))d~ O, 

[~i~_l ci(yi(l)) + VyCi(yi(l))di]- O, (2) 

where d i • ~ni, Vyihi(.) is an m x n t matrix, VyiCi(" ) is a q x n i 
matrix, Vy, Z~(.) is an ni dimensional row vector, Bi(yi(l)) is an 
n~ x n i positive definite diagonal matrix such that its j th  
diagonal element 

fOZzl 02z y,,,, 
if ~ > O; 

, otherwise, 

where ~ > 0 is a scalar, yq is the j th  element of the vector y~, 
and (.) denotes the transpose of (.). 

A recursive quadratic programming method for solving (1) 
proposed by Han (1977) is to solve (2) recursively with 
updating procedures by (3): 

ys( l+l )=y~( l )+&d[ ' ,  i = 1  . . . . .  k, (3) 

where d*, which is the optimal solution of (2), is a descent 
direction of (1) at y(l) in the sense of the absolute-value 
penalty function (Han,  1977); and the & is determined by the 
one-dimensional line search method to minimize the 
absolute-value penalty function of (1) along the direction 
d* = (d~ • • • dD. 

Despite the search of the stepsize, the most cumbersome 
computational procedure of the recursive quadratic pro- 
gramming method is to solve (2) in each iteration l. Clearly, 
the dual method is ideally suited for solving (2) because it is 
separable and has a positive definite Hessian matrix. 

To proceed with the dual method,  the dual problem of (2) 
should be described first. It is shown below: 

max * (~ , /u ) ,  
~-',' ( 4 )  

,u __> fi, 

where the dual function *() . , /~)  is a function of the 
Lagrange multiplier (it, ~), it • R ' ,  g e R q, such that 

• (it, #) = min [Vy,Zi(y~(l))d~ + ½dfB,(y~(l))d~] 

+ H,(y,(l), d, it + Ci(y,(l ), d, l~ , 

(5) 

where H~(y,(l), d,) = h,(y~(l)) + Vy,h,(y~(1))d,, C~(y~(I), di) = 
q(y,(l)) + Vr, c,(y,(l))d,. 

The dual method we employed to solve (2) uses the 
gradient ascent method to solve (4). Its iterative procedures 
are 

it '(j  + 1) = ill(j) +/~Vx,~(j  ), t = 1 . . . . .  m, 
(6) 

/ ~ ( j + I ) = u ~ ( j ) + / ~ V u ~ * ( j  ), v = l  . . . . .  q, 

where j denotes the iteration index, ~ ( j )  denotes q~(it,/~) at 
the j th  iteration, it' and/a  ~ are the tth and vth components  of 
it and /~, respectively, and the stepsize fl is obtained by t h e  
one-dimensional line search method such that f l =  
arg maxp ,~{~( i t ( j )  + f lVx~(j  ), p ( j )  + ~ V . * ( j ) ) } ,  where 
:~ = {fl • R | / a ( j )  + f l V , * ( j ) - > 0 } ,  and all components  of 
(Vx*(j) ,Vuqb(j) )  can be computed according to the 

following formula: 
k 

v ~ , . ( j )  = y~ 14',(y,(l), d,). 
i = l  

k (7) 
Vuvqb(j ) = ~ C~'(yi(l), d,), 

i = 1  

provided that the minimum solution d of (5) with 
()~, la)=(~(j) ,  #( j ) )  is obtained. In (7), H~(yi(l), ~li) and 
C~(yi(l),di ) denote the tth and vth component  of 
H~(y~(l), di) and v ^ C i(yi(l), dl), respectively. 

For a given it, due to the separability of (2), (5) can be 
decomposed into k independent  minimization subproblems 
and each subproblem i can be solved analytically as follows: 

~1~ = B~(y~(l)) l[Vy~Z,(y~(l))r + Vy,h,(y,(l))Tit(j) 

+ VyCi(yi(l))rll(j)]. (8) 

In addition to the parallelization of computing the k d i 
vectors, there is also a trivial parallelization of computing the 
components of each di, because Bi(y~(l))-' is a diagonal 
matrix. Moreover,  all the components  of Vx~( j  ) and V,~( / ' )  
can also be computed in parallel according to (7). This 
indicates that the RQPD method has a complete decomposi- 
tion property. 

RQPD algorithm. Based on the above developments,  we are 
ready to state the RQPD algorithm for nonconvex separable 
optimization problems: 

Algorithm I. 
Step O. Set the values of ~,,y(0), and let i = 0 .  Step 1. 

Guess it(0), and #(0) (->0); and let j = 0. Step 2. Compute  d 
in parallel by (8). Step 3. Compute  (Vx~(j) ,  V~,q~(j)) in 
parallel by (7). Step 4. If {IV~*(j)l~, IV,,~(j)L) < e~, go to 
Step 6; otherwise, go to Step 5. Step 5. Update  
(~.(j + 1),/~(j^+ 1)) in parallel by (6), and return to Step 2. 
Step 6. If I d l e<e2 ,  stop, and output  the solution y(l);  
otherwise, update y(l  + 1) in parallel by (3), and return to 
Step 1. (Note: e I and e 2 are preselected accuracies, and I( ' )L 
denotes the infinity norm of (.).) 

Convergence analysis. The convergence of the rccursive 
quadratic programming method and the dual method have 
been analyzed by Han (1977) and Bazaraa and Shetty (1979), 
respectively. From their results, we easily obtain the 
following sufficient conditions to ensure the convergence of 
the RQPD algorithm: 

Corollary I. Assume that (i) there exist two positive scalars 
6 and r/ such that for each l, 6yr, y, <yfB~(y,( l ) )y ,< rlyfy ~, 
for any y~ • R "~, i =  1, 2 . . . . .  N, (ii) there exists a unique 
solution of (2) for any given value of y ( l ) •  R", and the 
corresponding Lagrange multiplier is bounded,  and (iii) the 
constraint qualification of (2) that there exists a d '  such 
that 2k=l hi(yi(l)) + Vy, hi(yi(l))d ~ : 0, E L l  q(yi(l)) + 
Vyci(yi(l))d; < 0  holds true for each I. Then any bounded 
sequence {y(l)} generated by the RQPD algorithm will 
converge to a Kuhn-Tucker  point of (1). 

Remark. We adopt the version of the convergence theorem 
of the recursive quadratic programming method described by 
Luenburger (1984). It differs from the original theorem 
shown by Han (1977) by having two additional assumptions: 
(1) the sequence {y(l)} generated should be bounded,  and 
(2) the solution of (2) exists under  any given value of 
y(1) • a ' .  

3. Application to optimal control problems 
The RQPD algorithm we proposed is especially suitable 

for fixed final-time, nonlinear,  multivariable optimal control 
problems with quadratic performance index and control 
variable inequality constraints. 

Mathematical ly such optimal control problems can be 
expressed as 

minJ(x ,  u ) [ =  x(t f)rMx(t()  + 1 fqur ( t )R( t )u ( t  ) 
2 3,,, 

+x'r( t )Q(t)x( t )  dt] ,  (9a) 
d 
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subject to: 

Yc(t) =f ' (x( t ) ,  u(t), t); X(to)= Xo, (9b) 

g(u(t)) <- O, (9c) 

r(x( t f ) )  = o, (9d) 

where the vector of state variables x • R " ,  the vector of 
control variables u • R p, the functions f '  : R'~+P---* ~ " ,  
g : ~ P " ~  ~ q, T : ~m"'> ~ m are twice continuously 
differentiable in x(t), u(t), and the matrices R(t) • ~ × ~  are 
positive definite, while M ~ ~"×" ,  Q(t) • ~'~×" are positive 
semidefinite matrices. The typical performance index for our 
problems might be minimum energy (e.g. Q = 0) or regulator 
and tracking problems, etc. Problem (9a)-(9d)  and problem 
(9a)-(9c) are with and without terminal state constraints, 
respectively. 

Discretization. The discrete solutions of (9a)-(9c) and 
(9a)-(9d) will be sought. Thus, we should discretize the 
continuous time optimal control problem first. Without  loss 
of generality, we can assume to = 0, using time interval 
At=tr /N .  The continuous problem (9a)-(9c)  is then 
discretized as 

N 
min ~'~ J ( x i ,  u l ) ,  (10a) 

i ~ O  

9 i); xo=  Xi+ 1 -- X i = N f ( x i ,  u i, x o, (10b) 

(lOc) g(ui) <- O, i = 0  . . . . .  N - l ,  

where ( ')i  denotes (.) (i At); J(xi, ui) = ½(urRiui + 
xTiQix i )  At, for 0 < i < N - 1; J(x~¢, uN) = xfvMxN, and 
u N = 0 ;  the function f:Ro'+P---*R " in (10b) results from 
discretizing (9b), and different orders of the Runge -Ku t t a  
method employed for discretization will result in different f s .  
Furthermore,  the discrete form of (9d) is 

r(xN) = 0. ( l o d )  

Direct application o f  the RQPD algorithm to (10a)-  
(10c). Clearly, (10a)-(10c) is a nonconvex separable 
optimization problem. We can solve it directly by the RQPD 
algorithm. Let 

t 
Ei(I) = xi+ ,(1) - xi(l) - ~vf(xi(l), ui(I), i), 0 <-- i < N - 1, 

, 

dX ](xi(t),ui(i),i) ~U ](xi(D,ui(i),i ) 

ag 
g"i(l) =- ~u ,,i(t)' 

and let ~ and ~ ;  be the s th  and r t h  diagonal elements of R i 
and Q ,  respectively. We also let tT~ v denote  the r t h  diagonal 
element of M. Define that 

f ~ ,  if ~ > 0 ,  
q i = ~ y ,  i = 1  . . . .  N; 

otherwise, 

then ( l l a ) - ( l l c )  are quadratic approximations of (10a)-  
(10c) at (x~(l), u~(l)), i = 1 . . . . .  N -  1: 

N--1 

min [MxN(I)]r dxN + dxr  MdxN + ~N ~" [Qix'(l)]r dx' 
i=O 

+ [Riu,(l)]rdui + dxirQidx, + dufR, au,, ( l l a )  

subject to: 

E,(I) + dx,+ , - dx, - ~Nf ~(l)dx , 

-~Nf~(l)dui=O; d x o = 0 ,  ( l l b )  

g(u,(l))+gr(l)dui<-O, i = 0  . . . . .  N - 1 .  ( l l c )  

Let t lJ(). ,#) denote  the dual function of ( l l a ) - ( l l c )  and 

• ( j )  denote ~ 0 . ,  #)  at the j th  iteration. We may now state 
the RQPD algorithm for solving (10a)-(10c).  

The computing formula included in this algorithm can be 
easily derived based on the R Q P D  algorithm; readers who 
are interested in the details are referred to Lin (1992a). 

Algorithm II: 
Step O. Set the values of ~, and (x(0), u(0)),  and let l ~-0. 
Step 1. Set the values of ).(0) and #(0) (-->0), and let j = 0. 
Step 2. Compute  the following coefficients in parallel: El(l), 
fx,(l), f , ( l ) ,g(ui ( l ) )  , Riui(I ) and Qixi(l), where i =  
O, 1 , . . .  , ' N -  1, and MxN(l). Step 3. Compute  in parallel 

- ~ ([Q,~,(I)]" + ~;_~(j) - V0 )  

/ ,  

dx';( j)  = ~ - ~f~,r( l))~,( j)),  i f  i = 1 . . . . .  N - 1; (12a) 

/ 
[ -  ( [Mx,,( l )r '  + , f ,  = N; 

/ ( ' =  1 ,  . . . , m ,  

aug(j)  = - ([e,u,(I)r - + 

s = l  . . . . .  p, i = 0  . . . . .  N - 1 .  (12b) 

Step 4. Compute  in parallel 

^ '¢ " ^ '¢ " - ~N [f~T(l)~lx'(J) v ~ ( j )  = eT( l )  + ax, . , . ,0)  - ax, 0) 

+f~r( l )du~( j ) ] ,  ,: = 1 . . . . .  m, (13a) 

V~W(j)  = gS(u,(I)) + g~r(l)du,(j), 

s = l  . . . . .  q, i = 0  . . . . .  N - 1 .  (13b) 

Step 5. If maxi {IVx,~(j)l~, IV~iku(j)l® ) < el, go to Step 7; 
otherwise, go to Step 6. Step 6. Update  in parallel 

Z~(j  + 1) = ,L~'(j) + BVxrW( j ) ,  

#~(j + 1) = #~(j) + fiV~qW(j), 

i = 0 , . . . , N - 1 ,  r = l , . . . , m ,  s = l  . . . . .  q, 

and return to Step 3, where the stepsize/~ is similarly defined 
as in^  (6) b y  replacing • with ~ .  Step 7. If 
maxi (]dxil®, ]dud®)< e2, stop and output  optimal control  
solution ui(l), i = 0 . . . . .  N - 1; otherwise, go to Step 8. Step 
8. Update  in parallel 

xki+,(l + 1) = x~+ l ( l  ) + &dx~+,, 

uf( l + 1) = uf(l) + &~lu~i, (15) 

i = 0  . . . .  , N - l ,  k = l  . . . . .  rn and s = l  . . . . .  p,  

and set l = 1 + 1; then return to Step 1, where the stepsize & 
is similarly defined as in (3), that is, to minimize the 
absolute-v~ue^penal ty  function of ( l l a ) - ( l l c )  along the 
direction (dx, du). 

(Note: (.)(~) denotes the ~ t h  element  of the vector (.) or 
the O t h  row of the matrix (.).) 

Corollary 2. Suppose (i) there exist scalars 6 and r /such that  
0 < 6 < max~.,~ < r/, and 0 < 6 < max~.~q7 < r/, (ii) the 
bounded constraints on each component  of u are included in 
the constraints set g(u)<--0, (iii) there exists a nonempty 
subset {u I g'(u) < 0} c (u ] g(u) <- 0}, and each g; is convex. 
Then if the sequence {(x(l), u(l)} generated by Algori thm If 
is bounded,  this sequence will converge to a Kuhn-Tucke r  
point of (10a)-(10c). 

Remark. For most practical control systems, the control 
variables are bounded.  

The above corollary follows easily from Corollary 1 if we 
show that conditions (ii) and (iii) of Corollary 1 are satisfied. 
From (iii) of Corollary 2, we see that  for any u, there exists a 
du such that g(u) + gr(u)du < 0 because of the convexity of 
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g~. For this du, there always exists a dx such that 

Ei(l ) + dxi+ , - dx, - ~Nfr(l)dxl - ~ f  ~(l)du, O, 

i = 0  . . . . .  N - 1 .  (16) 

Therefore, there must exist a feasible solution of 
( l l a ) - ( l l c ) ,  and the constraint qualification of ( l l a ) - ( l l c )  is 
also satisfied; thus, condition (iii) of Corollary 1 is satisfied. 
From (ii) of Corollary 2, the control is bounded, thus the 
optimal value of the objective function of ( l l a ) - ( l l c )  must 
be bounded below due to the continuous differentiability of 
f. Furthermore, the Hessian matrix of ( l l a ) - ( l l c )  is positive 
definite, so the optimal solution of ( l l a ) - ( l l c )  must be 
unique, and the Lagrange multiplier associated with the 
optimal solution must be finite. Thus, condition (ii) of 
Corollary 1 is satisfied. 

Algorithm for  solving (10a)-(10d). Because of the terminal 
constraints (10d), there may not exist a dx such that 

G ~ 
Ei(I) + dxi+ , - dx i - ~ f ~( l)dx i 

-~ 0, i 0, N - I ,  - Nf~t(l)du i . . . . . .  

T(xN(I)) + T~xN(I)dxN = 0, (17) 

hold for any du satisfying g ( u ) +  gr(u)du <--0. This implies 
that condition (ii) of Corollary 1 may not be satisfied. To 
cope with such a difficulty, we employ an augmented 
Lagrangian method (Bersekas, 1982) to handle the terminal 
constraint (10d). The augmented Lagrangian method applied 
to (10a)-(10d) is to solve 

max/min  J(x, u) + cT(XN) 2 + rT(XN) I xi+, -- xi 
7: ~ X,U 

i )=O,g(u i )<-O, i  O, N - I }  
ts 

- N f ( x i ,  ui, = . . . . .  

iteratively with the updating procedure for r by r(k + 1) = 
• (k) + cT(,~N), where XN is the optimal x N of the constrained 
minimization problem within the bracket for a given ~(k), 
and the penalty coefficient c is a large positive scalar. The 
constrained minimization problem within the bracket has 
almost the same form as the optimal control problem 
(10a)-(10c), except that the terminal state penalty terms may 
not be quadratic. However, it can be solved by Algorithm II 
by simply replacing the ~ ,  which is equal to the r t h  
diagonal term of M, with the r t h  diagonal term of 
cT(XN) 2 + ~T(xN) and replacing the MXN(I ) in (12a) with 

a[cr(xN)~__~+ ~r(xN)l I 
a X N  IxN(I)" 

Thus, we may combine the augmented Lagrangian method 
with Algorithm II for solving (10a)-(10d) to formulate 
Algorithm III. 

Algorithm III. 
Step O. Set a positive value c(0) with moderate magnitude 
and a value r(0), and let k = 0. Step 1. Use Algorithm II to 
solve 

min J(x, u) + c(k )T(XN) 2 + ~(k )T(XN) 
x,u 

x~+l - xi - ~Nf(xi, ui, i) O, (18) 

g(ui) <-0, i = O . . . . .  N - 1 .  

Step 2. Update ~(k + 1) = z(k)  + c(k)T(.~N), where XN is 
obtained from Step 1. Step 3. If IT(-~N)I~< e3 (a preselected 
accuracy) stop, and the solution obtained from Step 1 is the 
optimal solution of (10a)-(10d); otherwise, set k = k  + 1, 
increase c(k) by some formula, and return to Step 1. 

For the augmented Lagrangian method, in addition to all 
the sufficient conditions of Corollary 2, a second order 
sufficiency condition (Bersekas, 1982) of (10a)-(10d) 
stipulating that the Hessian matrix at the strict local 
minimum is positive definite on its tangent plane is needed to 
ensure the convergence of Algorithm III. This second order 
sufficiency condition is difficult to check in advance unless the 
problem under consideration is linear quadratic. For 
example, for a problem with quadratic performance index 
(R > 0, Q -> 0, M -> 0) and convex inequality constraint 
function g, equation (10b) shows that xl, i = 1 . . . . .  N can be 
viewed as a function, say F/(u, xo), of u(i), i = 0 . . . . .  N - 1 
and the initial condition xo. Substituting the x terms in the 
performance index and the terminal constraint (10d) by the 
function Fg(u, Xo), i = 1 . . . . .  N, we see that the Hessian 
matrix of the problem is positive definite if T and f are affine. 
However, if either f or T is not affine, the second order 
sufficiency condition cannot be checked unless the optimal 
solution and the corresponding Lagrange multiplier are 
obtained. 

Implementation and modifications. Obviously, the computa- 
tions of (12a), (12b), (13a), and (13b) in Steps 3 and 4 of 
Algorithm II constitute most of the computations required in 
Algorithms II and III. These calculations can be carried out 
independently for each i,j. Furthermore, for each time 
interval i, only the data in the same time interval are needed 
to calculate da~ and V~i~ in (12b) and (13b). However, the 
)., t and d£i+ 1 from adjacent time intervals are required for 
calculating d,~ and VxflP in (12a) and (13a). For such a highly 
parallel computing algorithm with an extremely simple and 
regular data flow pattern, a sequential computer is not the 
optimal means of implementation. However, a parallel 
processing computing system is not suitable either, because 
too much communication overhead may degrade the 
computational performance. Thus, special purpose data 
driven waveform VLSI array processors such as those 
described by Kung (1988) should be the best choice for 
implementing our algorithms. Data driven waveform VLSI 
array processors can avoid global synchronization, thus 
greatly reducing time delay. A simple asynchronous 
handshaking device (Kung, 1988) may be used to 
acknowledge data propagation between processing elements, 
and this device will induce only negligible time delay. 
However, for the sake of regularity of the VLSI array 
processors, some modifications of our algorithms are needed. 
First, the stepsizes ~, fl are set as constants. Second, we 
replace the convergence check in Step 5 of Algorithm II by 
checking whether the number of iterations j exceeds a certain 
limit Jmax" The selection of this number Jm~x depends on the 
number of time intervals, N, and the order of the system. 
Similarly, when applying Algorithm III, we may replace the 
convergence check in Step 7 of Algorithm II by checking 
whether the number of iterations 1 -  lmax which is a certain 
limit. Such type of modifications and successful tests are 
described by Lin (1991, 1992b). A detailed approach to the 
VLSI array processor design needed to realize our algorithm 
is not provided here; however, a similar version has been 
developed by Lin (1992b). 

Remarks. (a) Consider a case where the simple inequality 
constraint is defined as _u- u <-fi, where _u and t~ are the 
lower and upper bounds, respectively, of control variable u. 
We can separate the inequality constraint g(u)<-O into a 
simple inequality constraint _u <_ u -< fi and non-simple 
inequality constraint g"(u)<--O, and convert g"(u)<-0 by the 
equality constraint g " ( u ) + z = O  and simple inequality 
constraint z->0. Thus, in the dual method, we can easily 
circumvent the need for the Lagrange multiplier /~ for 
inequality constraints by projecting u and z into the set 
{ (u , z )  l_u<_u<_a,z>-O ). Using such modifications, & 
should be set as 1. Lin (_1992b) has tested that cases with 
constant stepsize & and fl favor such modifications. (b) In 
order to ensure that the sequence {(x([), u(l)} generated by 
our algorithm is bounded, the increment &dx and &du in (15) 
should be small. However remark (a) indicates that 6¢ = 1. 
Thus, in order to achieve the small increment, we may 
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increase the value of q~' and ~ in (12a) and (12b) for each i, 
r and s. This can be accomplished by multiplying a large 
positive scaling factor S to the performance index. It is easily 
verified that positively scaling the performance index will not 
affect the optimal solution. 

Computation time analysis. As may be expected that our 
algorithms have a rather slow convergence rate because of 
the linear convergence rate of the dual method, the linear 
convergence rate, at the worst, of the employed recursive 
quadratic programming method, and the superlinear 
convergence rate of the augmented Lagrangian method. 
However, since we intend to implement the algorithms by 
VLSI array processors, it is more instructive to estimate the 
time needed for the complete solution process using current 
VLSI technology. In making this estimation, first we notice 
that in Algorithm II, for sutficiently large j . . . .  the 
computation time needed for Steps 1, 2, 7 and 8 is much less 
than that needed for Steps 3-6. Thus, we may define a basic 
iteration of our algorithms (Algorithms II and III) as one 
sweep of Steps 3-6; total computation time would then be 
approximately equal to the total number of basic iterations 
needed to complete the solution process multiplied by the 
computation time needed for one basic iteration. Lin (1992b) 
has analyzed that compared to the computation time, the 
communication overhead due to data propagation is 
negligible. Let ~r(.) denote the number of multiplications ® 
and additions ~ required to complete the computations for 
(.). Under a data driven waveform VLSI array processor 
environment, computations of the same algorithmic step for 
different time intervals can be carried out simultaneously. 
Thus, the computation time spent on Step 3 of Algorithm II 
is maxi.t~,s (3r(t~ck), 3(du~)}, which equals (m + q + 4) ~ + 
(m + q + 2 ) ~ ;  and the computation time spent on Step 4 of 
Algorithm II is max~,k,s{ff(Vx,~(j)), 3-(V,,~(j))}, which 
equals (m + p  + 2) ® + (m + p  + 2)~ .  The ~todified Step 5 
of Algorithm II requires only one comparison operation to 
check whether ]>-j . . . .  and the processing time for the 
comparison in hardware is usually less than one ~ (Lin, 
1992b). The time spent on Step 6 of Algorithm II for 
updating the variables is one (@ + ~ ) .  Therefore, the 
computation time spent for one basic iteration is 
approximately equal to (2m + q + 7) ® + (2m + p + q + 6 )~ ,  
and the total computation time of the whole solution process 
can be estimated as 

(total number of basic iterations) 

× [ ( 2 m + q + 7 ) ~  + ( 2 m + p + q + 6 ) ~ ] .  (19) 

Example. Van der Poi oscillator. 

rain ½(x~ + x~ + u 2) dx, 

k , = ( 1 - x 2 ) x , - x 2 + u ;  x](0) = 0, 

~2=x, ;  x~(0)= 1, (20) 

- 0 . 5 ~  u-< +0.5; t e [0, 5], 

x,(5) = 0, x~(5) = 0. 

This example without control variable and terminal state 
constraints has been tested by Nedeljkovic (1981). We apply 
the second order Runge-Kutta method to discretize the state 
equations in (20) and use the following parameters for 
Algorithm II: a performance index scaling factor S = 100, 
N = 30, ]m.x = 40, /max = 40, & = 1, /~ = 0.1. We designate 
the initial value of c in Algorithm III to be 5, and the 
increased formula for c by ck !, where k is the iteration index 
of Algorithm III. With the above parameters, we apply 
AI.gorithm III to solve (20); the solution of the optimal state 
trajectory and optimal control are sketched in Figs 1 and 2, 
respectively. As shown in Table 1, the Euclidean norm of the 
terminal state (x1(5), x2(5)) approaches 0 as c increases. The 
accuracies of the solution are fairly satisfactory with 
e I = 0 . 0 6 ,  e 2 = 0.001. 

We will not compare the total iterations of our algorithm 
with the tested methods described by Nedeljkovic (1981), 
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FIG. 1. The optimal state trajectory of the Van der Pol 
oscillator. 
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FIG. 2. The optimal control solution of the Van der Pol 
oscillator. 

T A B L E  1. T H E  V A L U E S  OF T H E  T E R M I N A L  

STATES WITH RESPECT TO ¢ 

c x,(5) x2(5) 

5 -7 .3  x 10 -3 1.4 × 10 -3 
10 -3 .9  × 10 -3 2.2 x 10 -3 
30 -1 .9  × 10 -3 1.9 x 10 -3 

120 -9 .8  x 10 -4 9.2 × 10 -4 
600 -5 .2  x 10 4 4.2 x 10 -4 

because his methods deal with a simpler unconstrained case, 
and because our algorithm is basically designed to be 
implemented by hardware. Nevertheless, we have prepared a 
rough estimate of the execution time for our algorithm based 
on (19) and current VLSI technology. The total number of 
basic iterations used in this example is 5 x 40 x 40 = 8000. 
The arithmetic operations needed for one basic iteration in 
this example are ( 2 x 2 + 1 + 7 ) ~ + ( 2 x 2 + 1 + 1 + 6 ) =  
12® + 12~.  According to the technology developed by 
Sharma et al. (1989), the length of time needed to perform 
one 16x 16-bit ® and E) are 6.75nsec and -<0.35nsec, 
respectively. Thus, a rough estimation of the execution time 
for this example is less than I msec (=10 -3 sec). 

4. Conclusion 
This paper presents a complete decomposition algorithm 

for nonconvex separable optimization problems. The 
algorithm is especially suitable for solving constrained 
nonlinear fixed final-time optimal control problems with 
quadratic performance index. For such applications, 
implementation by VLSI array processors is recommended. 
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Although significant ettort may be needed to realize such an 
implementation, considering its value for real-time process- 
ing control systems, this effort should be worthwhile. 
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