
Automatica, Vol. 28, No. 6, pp. 1249-1254, 1992
Printed in Great Britain.

0005-1098/92 $5.00 + 0.00
Pergamon Press Ltd

~) 1992 International Federation of Automatic Control

Brief Paper

Complete Decomposition Algorithm for
Nonconvex Separable Optimization Problems

and Applications*t

S H I N - Y E U LIN~:

Key Wads--Decomposition; optimization and optimal control.

Abstraet~In this paper, we present a complete decomposi-
tion algorithm for nonconvex separable optimization
problems applied in the optimal control problems. This
complete decomposition algorithm combines recursive
quadratic programming with the dual method. When our
algorithm is applied to discretized optimal control problems,
a simple and parallel computation and a simple and regular
data flow pattern between consecutive computational steps
results. This paper also suggests an approach for developing
a hardware implementation of our algorithm and gives an
estimation of the execution time needed to solve a practical
example.

1. Introduction
A NONCONVEX SEPARABLE optimization problem of the
following form is considered in this paper:

k

min ~ z,(yi),
Y i=1

subject to: k
~, hi(y,) = O,
i=1

k (1)
c,(y,) -< O,

where Y=(Yl yk) ER n, y i e R n~ and ~kffilni=n; and
constraint functions h,: Rn~-+ ~'~, ci: R n~-~ R q and objective
functions z i : Rn'---~ R, i = 1, 2 , . . . , k, are twice continuously
differentiable in y~.

The dual method is ideally suited for solving such
large-scale separable optimization problem, because it has
been shown (Luenburger, 1984) that the dual function of (1)
can be decomposed into k independent smaller minimization
subproblems. However, directly applying the dual method to
(1) may fail in general since the Hessian matrix of the
Lagrangian of (1) may not be positive definite. To cope with
this difficulty, the augmented Lagrangian method can be
used to convexify the Lagrangian; however, this destroys the
separability of (1) due to the cross product terms in the
added quadratic penalty function. In response to this
problem, numerous techniques have been developed to find
a proper Lagrangian. Among the leading methods, the
approaches proposed by Watanabe et al. (1978) and
Tatjewshi (1989) were both based on approximating the
augmented Lagrangian to maintain the separability; while

*Received 24 December 1989; revised 11 April 1992;
received in final form 28 April 1992. The original version of
this paper was not presented at any IFAC meeting. This
paper was recommended for publication in revised form by
Associate Editor M. Jamshidi under the direction of Editor
A. P. Sage.

t This work was supported by National Science Council
under Grant NSC-78-0404-E-009-33.

:[:Department of Control Engineering, National Chiao
Tung University, Hsinchu, Taiwan, Republic of China.

1249

those of Bersekas (1979) and Tanikawa and Mukai (1985)
used a convexification procedure, which is different from the
augmented Lagrangian method, to ensure the positive
definiteness of the Hessian matrix of the Lagrangian and
preserve the separability. All the above techniques must, at
least, solve k independent minimization subproblems in each
iteration. Thus, an additional iterative optimization program
is needed for these subproblems.

Compared to the above techniques, our approach is
simpler because we do not seek a proper Lagrangian.
Instead, we employ the recursive quadratic programming
technique proposed by Hun (1977) to successively solve the
quadratic approximate problem of (1); the quadratic
approximate problem is formulated to have a positive
definite diagonal Hessian matrix. Thus, the separability of
(1) will be preserved in the quadratic approximate problem,
which can then be solved by the dual method. Furthermore,
a complete decomposition property can be obtained because
each decomposed quadratic subproblem can be solved
analytically owing to the diagonal Hessian matrix. The
construction of this positive definite diagonal Hessian matrix,
say B, of the quadratic approximate oroblem is based on the
diagonal terms of the matrix V2~.kffilzi(Yi) such that
[diagB]i = [diagV 2 ~/k= 1 zi(y,)]j if it is positive; otherwise,
[diag B~ = ?, a small positive scalar. Thus in addition to the
complete decomposition property obtained by using the dual
method to solve each quadratic approximate problem, our
technique will function like a variable metric method (Han,
1976) if B = V2E zi(y,) and the constraint functions are
afline, or like the gradient projection method§ if B = yl.
Therefore, our technique is best suited to obtain the discrete
solution of fixed final-time constrained nonlinear optimal
control problems with quadratic performance index. In
general, such problems are considered to be difficult,
especially in the presence of control constraints. However,
we show in this paper that our technique for such problems
exhibits good convergence, even though an augmented
Lagrangian method is incorporated to solve the problem with
terminal state constraints. Furthermore, the complete
decomposition property of our technique for solving such
problems will not only result in simple and parallel
computation but also a simple and regular data flow pattern
between consecutive computational steps. This naturally
leads to the use of data driven waveform VLSI array
processors (Kung, 1988) to implement our technique. A
detailed description of the implementation process is beyond
the scope of this paper. However, a version of the hardware
used to implement a general minimum-time control
algorithm proposed by Lin (1992b) can be modified for the
implementation of our technique.

At the end of this paper, we present a practical optimal
control example among several examples which are tested by
our technique. The convergence rate is slow as expected

§ Mukai and Polak (1978) developed an efficient scheme
with finite inner iterations.

1250 Brief Paper

because of the simplicity of our technique. However, based
on current VLSI technology, the estimated execution time is
fast.

2. RQPD (recursive quadratic programming with dual
method) algorithm for nonconvex separable optimization
problems
Preliminaries. The quadratic programming problem (2)
describes an approximation of (1) at the point y(l),

k

min ,-~-i VY'zi(Yi(I))d' + ½dTi B~(yi(l))di'

subject to:

h,(y~(l)) + Vy~h~(y,(l))d~ O,

[~i~_l ci(yi(l)) + VyCi(yi(l))di]- O, (2)

where d i • ~ni, Vyihi(.) is an m x n t matrix, VyiCi(") is a q x n i
matrix, Vy, Z~(.) is an ni dimensional row vector, Bi(yi(l)) is an
n~ x n i positive definite diagonal matrix such that its j th
diagonal element

fOZzl 02z y,,,,
if ~ > O;

, otherwise,

where ~ > 0 is a scalar, yq is the j th element of the vector y~,
and (.) denotes the transpose of (.).

A recursive quadratic programming method for solving (1)
proposed by Han (1977) is to solve (2) recursively with
updating procedures by (3):

ys(l+l)=y~(l)+&d[' , i = 1 k, (3)

where d*, which is the optimal solution of (2), is a descent
direction of (1) at y(l) in the sense of the absolute-value
penalty function (Han, 1977); and the & is determined by the
one-dimensional line search method to minimize the
absolute-value penalty function of (1) along the direction
d* = (d~ • • • dD.

Despite the search of the stepsize, the most cumbersome
computational procedure of the recursive quadratic pro-
gramming method is to solve (2) in each iteration l. Clearly,
the dual method is ideally suited for solving (2) because it is
separable and has a positive definite Hessian matrix.

To proceed with the dual method, the dual problem of (2)
should be described first. It is shown below:

max * (~ , /u) ,
~-',' (4)

,u __> fi,

where the dual function *() . , /~) is a function of the
Lagrange multiplier (it, ~), it • R ' , g e R q, such that

• (it, #) = min [Vy,Zi(y~(l))d~ + ½dfB,(y~(l))d~]

+ H,(y,(l), d, it + Ci(y,(l), d, l~ ,

(5)

where H~(y,(l), d,) = h,(y~(l)) + Vy,h,(y~(1))d,, C~(y~(I), di) =
q(y,(l)) + Vr, c,(y,(l))d,.

The dual method we employed to solve (2) uses the
gradient ascent method to solve (4). Its iterative procedures
are

it '(j + 1) = ill(j) +/~Vx,~(j), t = 1 m,
(6)

/ ~ (j + I) = u ~ (j) + / ~ V u ~ * (j), v = l q,

where j denotes the iteration index, ~ (j) denotes q~(it,/~) at
the j th iteration, it' and/a ~ are the tth and vth components of
it and /~, respectively, and the stepsize fl is obtained by t h e
one-dimensional line search method such that f l =
arg maxp ,~{~(i t (j) + f lVx~(j), p (j) + ~ V . * (j)) } , where
:~ = {fl • R | / a (j) + f l V , * (j) - > 0 } , and all components of
(Vx*(j) ,Vuqb(j)) can be computed according to the

following formula:
k

v ~ , . (j) = y~ 14',(y,(l), d,).
i = l

k (7)
Vuvqb(j) = ~ C~'(yi(l), d,),

i = 1

provided that the minimum solution d of (5) with
()~, la)=(~(j) , #(j)) is obtained. In (7), H~(yi(l), ~li) and
C~(yi(l),di) denote the tth and vth component of
H~(y~(l), di) and v ^ C i(yi(l), dl), respectively.

For a given it, due to the separability of (2), (5) can be
decomposed into k independent minimization subproblems
and each subproblem i can be solved analytically as follows:

~1~ = B~(y~(l)) l[Vy~Z,(y~(l))r + Vy,h,(y,(l))Tit(j)

+ VyCi(yi(l))rll(j)]. (8)

In addition to the parallelization of computing the k d i
vectors, there is also a trivial parallelization of computing the
components of each di, because Bi(y~(l))-' is a diagonal
matrix. Moreover, all the components of Vx~(j) and V,~(/ ')
can also be computed in parallel according to (7). This
indicates that the RQPD method has a complete decomposi-
tion property.

RQPD algorithm. Based on the above developments, we are
ready to state the RQPD algorithm for nonconvex separable
optimization problems:

Algorithm I.
Step O. Set the values of ~,,y(0), and let i = 0 . Step 1.

Guess it(0), and #(0) (->0); and let j = 0. Step 2. Compute d
in parallel by (8). Step 3. Compute (Vx~(j) , V~,q~(j)) in
parallel by (7). Step 4. If {IV~*(j)l~, IV,,~(j)L) < e~, go to
Step 6; otherwise, go to Step 5. Step 5. Update
(~.(j + 1),/~(j^+ 1)) in parallel by (6), and return to Step 2.
Step 6. If I d l e<e2 , stop, and output the solution y(l);
otherwise, update y(l + 1) in parallel by (3), and return to
Step 1. (Note: e I and e 2 are preselected accuracies, and I(')L
denotes the infinity norm of (.).)

Convergence analysis. The convergence of the rccursive
quadratic programming method and the dual method have
been analyzed by Han (1977) and Bazaraa and Shetty (1979),
respectively. From their results, we easily obtain the
following sufficient conditions to ensure the convergence of
the RQPD algorithm:

Corollary I. Assume that (i) there exist two positive scalars
6 and r/ such that for each l, 6yr, y, <yfB~(y,(l))y ,< rlyfy ~,
for any y~ • R "~, i = 1, 2 N, (ii) there exists a unique
solution of (2) for any given value of y (l) • R", and the
corresponding Lagrange multiplier is bounded, and (iii) the
constraint qualification of (2) that there exists a d ' such
that 2k=l hi(yi(l)) + Vy, hi(yi(l))d ~ : 0, E L l q(yi(l)) +
Vyci(yi(l))d; < 0 holds true for each I. Then any bounded
sequence {y(l)} generated by the RQPD algorithm will
converge to a Kuhn-Tucker point of (1).

Remark. We adopt the version of the convergence theorem
of the recursive quadratic programming method described by
Luenburger (1984). It differs from the original theorem
shown by Han (1977) by having two additional assumptions:
(1) the sequence {y(l)} generated should be bounded, and
(2) the solution of (2) exists under any given value of
y(1) • a ' .

3. Application to optimal control problems
The RQPD algorithm we proposed is especially suitable

for fixed final-time, nonlinear, multivariable optimal control
problems with quadratic performance index and control
variable inequality constraints.

Mathematical ly such optimal control problems can be
expressed as

minJ(x , u) [= x(t f)rMx(t() + 1 fqur (t)R(t)u (t)
2 3,,,

+x'r(t)Q(t)x(t) dt] , (9a)
d

Brief Paper 1251

subject to:

Yc(t) =f ' (x(t) , u(t), t); X(to)= Xo, (9b)

g(u(t)) <- O, (9c)

r(x(t f)) = o, (9d)

where the vector of state variables x • R " , the vector of
control variables u • R p, the functions f ' : R'~+P---* ~ " ,
g : ~ P " ~ ~ q, T : ~m"'> ~ m are twice continuously
differentiable in x(t), u(t), and the matrices R(t) • ~ × ~ are
positive definite, while M ~ ~"×" , Q(t) • ~'~×" are positive
semidefinite matrices. The typical performance index for our
problems might be minimum energy (e.g. Q = 0) or regulator
and tracking problems, etc. Problem (9a)-(9d) and problem
(9a)-(9c) are with and without terminal state constraints,
respectively.

Discretization. The discrete solutions of (9a)-(9c) and
(9a)-(9d) will be sought. Thus, we should discretize the
continuous time optimal control problem first. Without loss
of generality, we can assume to = 0, using time interval
At=tr /N . The continuous problem (9a)-(9c) is then
discretized as

N
min ~'~ J (x i , u l) , (10a)

i ~ O

9 i); xo= Xi+ 1 -- X i = N f (x i , u i, x o, (10b)

(lOc) g(ui) <- O, i = 0 N - l ,

where (')i denotes (.) (i At); J(xi, ui) = ½(urRiui +
xTiQix i) At, for 0 < i < N - 1; J(x~¢, uN) = xfvMxN, and
u N = 0 ; the function f:Ro'+P---*R " in (10b) results from
discretizing (9b), and different orders of the Runge -Ku t t a
method employed for discretization will result in different f s .
Furthermore, the discrete form of (9d) is

r(xN) = 0. (l o d)

Direct application o f the RQPD algorithm to (10a)-
(10c). Clearly, (10a)-(10c) is a nonconvex separable
optimization problem. We can solve it directly by the RQPD
algorithm. Let

t
Ei(I) = xi+ ,(1) - xi(l) - ~vf(xi(l), ui(I), i), 0 <-- i < N - 1,

,

dX](xi(t),ui(i),i) ~U](xi(D,ui(i),i)

ag
g"i(l) =- ~u ,,i(t)'

and let ~ and ~ ; be the s th and r t h diagonal elements of R i
and Q , respectively. We also let tT~ v denote the r t h diagonal
element of M. Define that

f ~ , if ~ > 0 ,
q i = ~ y , i = 1 N;

otherwise,

then (l l a) - (l l c) are quadratic approximations of (10a)-
(10c) at (x~(l), u~(l)), i = 1 N - 1:

N--1

min [MxN(I)]r dxN + dxr MdxN + ~N ~" [Qix'(l)]r dx'
i=O

+ [Riu,(l)]rdui + dxirQidx, + dufR, au,, (l l a)

subject to:

E,(I) + dx,+ , - dx, - ~Nf ~(l)dx ,

-~Nf~(l)dui=O; d x o = 0 , (l l b)

g(u,(l))+gr(l)dui<-O, i = 0 N - 1 . (l l c)

Let t lJ(). ,#) denote the dual function of (l l a) - (l l c) and

• (j) denote ~ 0 . , #) at the j th iteration. We may now state
the RQPD algorithm for solving (10a)-(10c).

The computing formula included in this algorithm can be
easily derived based on the R Q P D algorithm; readers who
are interested in the details are referred to Lin (1992a).

Algorithm II:
Step O. Set the values of ~, and (x(0), u(0)), and let l ~-0.
Step 1. Set the values of).(0) and #(0) (-->0), and let j = 0.
Step 2. Compute the following coefficients in parallel: El(l),
fx,(l), f , (l) ,g(ui (l)) , Riui(I) and Qixi(l), where i =
O, 1 , . . . , ' N - 1, and MxN(l). Step 3. Compute in parallel

- ~ ([Q,~,(I)]" + ~;_~(j) - V0)

/ ,

dx';(j) = ~ - ~f~,r(l))~,(j)), i f i = 1 N - 1; (12a)

/
[- ([Mx,,(l)r ' + , f , = N;

/ (' = 1 , . . . , m ,

aug(j) = - ([e,u,(I)r - +

s = l p, i = 0 N - 1 . (12b)

Step 4. Compute in parallel

^ '¢ " ^ '¢ " - ~N [f~T(l)~lx'(J) v ~ (j) = eT(l) + ax, . , . ,0) - ax, 0)

+f~r(l)du~(j)] , ,: = 1 m, (13a)

V~W(j) = gS(u,(I)) + g~r(l)du,(j),

s = l q, i = 0 N - 1 . (13b)

Step 5. If maxi {IVx,~(j)l~, IV~iku(j)l®) < el, go to Step 7;
otherwise, go to Step 6. Step 6. Update in parallel

Z~(j + 1) = ,L~'(j) + BVxrW(j) ,

#~(j + 1) = #~(j) + fiV~qW(j),

i = 0 , . . . , N - 1 , r = l , . . . , m , s = l q,

and return to Step 3, where the stepsize/~ is similarly defined
as in^ (6) b y replacing • with ~ . Step 7. If
maxi (]dxil®,]dud®)< e2, stop and output optimal control
solution ui(l), i = 0 N - 1; otherwise, go to Step 8. Step
8. Update in parallel

xki+,(l + 1) = x~+ l (l) + &dx~+,,

uf(l + 1) = uf(l) + &~lu~i, (15)

i = 0 , N - l , k = l rn and s = l p,

and set l = 1 + 1; then return to Step 1, where the stepsize &
is similarly defined as in (3), that is, to minimize the
absolute-v~ue^penal ty function of (l l a) - (l l c) along the
direction (dx, du).

(Note: (.)(~) denotes the ~ t h element of the vector (.) or
the O t h row of the matrix (.).)

Corollary 2. Suppose (i) there exist scalars 6 and r /such that
0 < 6 < max~.,~ < r/, and 0 < 6 < max~.~q7 < r/, (ii) the
bounded constraints on each component of u are included in
the constraints set g(u)<--0, (iii) there exists a nonempty
subset {u I g'(u) < 0} c (u] g(u) <- 0}, and each g; is convex.
Then if the sequence {(x(l), u(l)} generated by Algori thm If
is bounded, this sequence will converge to a Kuhn-Tucke r
point of (10a)-(10c).

Remark. For most practical control systems, the control
variables are bounded.

The above corollary follows easily from Corollary 1 if we
show that conditions (ii) and (iii) of Corollary 1 are satisfied.
From (iii) of Corollary 2, we see that for any u, there exists a
du such that g(u) + gr(u)du < 0 because of the convexity of

1252 Brief Paper

g~. For this du, there always exists a dx such that

Ei(l) + dxi+ , - dx, - ~Nfr(l)dxl - ~ f ~(l)du, O,

i = 0 N - 1 . (16)

Therefore, there must exist a feasible solution of
(l l a) - (l l c) , and the constraint qualification of (l l a) - (l l c) is
also satisfied; thus, condition (iii) of Corollary 1 is satisfied.
From (ii) of Corollary 2, the control is bounded, thus the
optimal value of the objective function of (l l a) - (l l c) must
be bounded below due to the continuous differentiability of
f. Furthermore, the Hessian matrix of (l l a) - (l l c) is positive
definite, so the optimal solution of (l l a) - (l l c) must be
unique, and the Lagrange multiplier associated with the
optimal solution must be finite. Thus, condition (ii) of
Corollary 1 is satisfied.

Algorithm for solving (10a)-(10d). Because of the terminal
constraints (10d), there may not exist a dx such that

G ~
Ei(I) + dxi+ , - dx i - ~ f ~(l)dx i

-~ 0, i 0, N - I , - Nf~t(l)du i

T(xN(I)) + T~xN(I)dxN = 0, (17)

hold for any du satisfying g (u) + gr(u)du <--0. This implies
that condition (ii) of Corollary 1 may not be satisfied. To
cope with such a difficulty, we employ an augmented
Lagrangian method (Bersekas, 1982) to handle the terminal
constraint (10d). The augmented Lagrangian method applied
to (10a)-(10d) is to solve

max/min J(x, u) + cT(XN) 2 + rT(XN) I xi+, -- xi
7: ~ X,U

i)=O,g(u i)<-O, i O, N - I }
ts

- N f (x i , ui, =

iteratively with the updating procedure for r by r(k + 1) =
• (k) + cT(,~N), where XN is the optimal x N of the constrained
minimization problem within the bracket for a given ~(k),
and the penalty coefficient c is a large positive scalar. The
constrained minimization problem within the bracket has
almost the same form as the optimal control problem
(10a)-(10c), except that the terminal state penalty terms may
not be quadratic. However, it can be solved by Algorithm II
by simply replacing the ~ , which is equal to the r t h
diagonal term of M, with the r t h diagonal term of
cT(XN) 2 + ~T(xN) and replacing the MXN(I) in (12a) with

a[cr(xN)~__~+ ~r(xN)l I
a X N IxN(I)"

Thus, we may combine the augmented Lagrangian method
with Algorithm II for solving (10a)-(10d) to formulate
Algorithm III.

Algorithm III.
Step O. Set a positive value c(0) with moderate magnitude
and a value r(0), and let k = 0. Step 1. Use Algorithm II to
solve

min J(x, u) + c(k)T(XN) 2 + ~(k)T(XN)
x,u

x~+l - xi - ~Nf(xi, ui, i) O, (18)

g(ui) <-0, i = O N - 1 .

Step 2. Update ~(k + 1) = z(k) + c(k)T(.~N), where XN is
obtained from Step 1. Step 3. If IT(-~N)I~< e3 (a preselected
accuracy) stop, and the solution obtained from Step 1 is the
optimal solution of (10a)-(10d); otherwise, set k = k + 1,
increase c(k) by some formula, and return to Step 1.

For the augmented Lagrangian method, in addition to all
the sufficient conditions of Corollary 2, a second order
sufficiency condition (Bersekas, 1982) of (10a)-(10d)
stipulating that the Hessian matrix at the strict local
minimum is positive definite on its tangent plane is needed to
ensure the convergence of Algorithm III. This second order
sufficiency condition is difficult to check in advance unless the
problem under consideration is linear quadratic. For
example, for a problem with quadratic performance index
(R > 0, Q -> 0, M -> 0) and convex inequality constraint
function g, equation (10b) shows that xl, i = 1 N can be
viewed as a function, say F/(u, xo), of u(i), i = 0 N - 1
and the initial condition xo. Substituting the x terms in the
performance index and the terminal constraint (10d) by the
function Fg(u, Xo), i = 1 N, we see that the Hessian
matrix of the problem is positive definite if T and f are affine.
However, if either f or T is not affine, the second order
sufficiency condition cannot be checked unless the optimal
solution and the corresponding Lagrange multiplier are
obtained.

Implementation and modifications. Obviously, the computa-
tions of (12a), (12b), (13a), and (13b) in Steps 3 and 4 of
Algorithm II constitute most of the computations required in
Algorithms II and III. These calculations can be carried out
independently for each i,j. Furthermore, for each time
interval i, only the data in the same time interval are needed
to calculate da~ and V~i~ in (12b) and (13b). However, the
)., t and d£i+ 1 from adjacent time intervals are required for
calculating d,~ and VxflP in (12a) and (13a). For such a highly
parallel computing algorithm with an extremely simple and
regular data flow pattern, a sequential computer is not the
optimal means of implementation. However, a parallel
processing computing system is not suitable either, because
too much communication overhead may degrade the
computational performance. Thus, special purpose data
driven waveform VLSI array processors such as those
described by Kung (1988) should be the best choice for
implementing our algorithms. Data driven waveform VLSI
array processors can avoid global synchronization, thus
greatly reducing time delay. A simple asynchronous
handshaking device (Kung, 1988) may be used to
acknowledge data propagation between processing elements,
and this device will induce only negligible time delay.
However, for the sake of regularity of the VLSI array
processors, some modifications of our algorithms are needed.
First, the stepsizes ~, fl are set as constants. Second, we
replace the convergence check in Step 5 of Algorithm II by
checking whether the number of iterations j exceeds a certain
limit Jmax" The selection of this number Jm~x depends on the
number of time intervals, N, and the order of the system.
Similarly, when applying Algorithm III, we may replace the
convergence check in Step 7 of Algorithm II by checking
whether the number of iterations 1 - lmax which is a certain
limit. Such type of modifications and successful tests are
described by Lin (1991, 1992b). A detailed approach to the
VLSI array processor design needed to realize our algorithm
is not provided here; however, a similar version has been
developed by Lin (1992b).

Remarks. (a) Consider a case where the simple inequality
constraint is defined as _u- u <-fi, where _u and t~ are the
lower and upper bounds, respectively, of control variable u.
We can separate the inequality constraint g(u)<-O into a
simple inequality constraint _u <_ u -< fi and non-simple
inequality constraint g"(u)<--O, and convert g"(u)<-0 by the
equality constraint g " (u) + z = O and simple inequality
constraint z->0. Thus, in the dual method, we can easily
circumvent the need for the Lagrange multiplier /~ for
inequality constraints by projecting u and z into the set
{ (u , z) l_u<_u<_a,z>-O). Using such modifications, &
should be set as 1. Lin (_1992b) has tested that cases with
constant stepsize & and fl favor such modifications. (b) In
order to ensure that the sequence {(x([), u(l)} generated by
our algorithm is bounded, the increment &dx and &du in (15)
should be small. However remark (a) indicates that 6¢ = 1.
Thus, in order to achieve the small increment, we may

B r i e f P a p e r 1253

increase the value of q~' and ~ in (12a) and (12b) for each i,
r and s. This can be accomplished by multiplying a large
positive scaling factor S to the performance index. It is easily
verified that positively scaling the performance index will not
affect the optimal solution.

Computation time analysis. As may be expected that our
algorithms have a rather slow convergence rate because of
the linear convergence rate of the dual method, the linear
convergence rate, at the worst, of the employed recursive
quadratic programming method, and the superlinear
convergence rate of the augmented Lagrangian method.
However, since we intend to implement the algorithms by
VLSI array processors, it is more instructive to estimate the
time needed for the complete solution process using current
VLSI technology. In making this estimation, first we notice
that in Algorithm II, for sutficiently large j the
computation time needed for Steps 1, 2, 7 and 8 is much less
than that needed for Steps 3-6. Thus, we may define a basic
iteration of our algorithms (Algorithms II and III) as one
sweep of Steps 3-6; total computation time would then be
approximately equal to the total number of basic iterations
needed to complete the solution process multiplied by the
computation time needed for one basic iteration. Lin (1992b)
has analyzed that compared to the computation time, the
communication overhead due to data propagation is
negligible. Let ~r(.) denote the number of multiplications ®
and additions ~ required to complete the computations for
(.). Under a data driven waveform VLSI array processor
environment, computations of the same algorithmic step for
different time intervals can be carried out simultaneously.
Thus, the computation time spent on Step 3 of Algorithm II
is maxi.t~,s (3r(t~ck), 3(du~)}, which equals (m + q + 4) ~ +
(m + q + 2) ~ ; and the computation time spent on Step 4 of
Algorithm II is max~,k,s{ff(Vx,~(j)), 3-(V,,~(j))}, which
equals (m + p + 2) ® + (m + p + 2)~ . The ~todified Step 5
of Algorithm II requires only one comparison operation to
check whether]>-j and the processing time for the
comparison in hardware is usually less than one ~ (Lin,
1992b). The time spent on Step 6 of Algorithm II for
updating the variables is one (@ + ~) . Therefore, the
computation time spent for one basic iteration is
approximately equal to (2m + q + 7) ® + (2m + p + q + 6)~ ,
and the total computation time of the whole solution process
can be estimated as

(total number of basic iterations)

× [(2 m + q + 7) ~ + (2 m + p + q + 6) ~] . (19)

Example. Van der Poi oscillator.

rain ½(x~ + x~ + u 2) dx,

k , = (1 - x 2) x , - x 2 + u ; x](0) = 0,

~2=x, ; x~(0)= 1, (20)

- 0 . 5 ~ u-< +0.5; t e [0, 5],

x,(5) = 0, x~(5) = 0.

This example without control variable and terminal state
constraints has been tested by Nedeljkovic (1981). We apply
the second order Runge-Kutta method to discretize the state
equations in (20) and use the following parameters for
Algorithm II: a performance index scaling factor S = 100,
N = 30,]m.x = 40, /max = 40, & = 1, /~ = 0.1. We designate
the initial value of c in Algorithm III to be 5, and the
increased formula for c by ck !, where k is the iteration index
of Algorithm III. With the above parameters, we apply
AI.gorithm III to solve (20); the solution of the optimal state
trajectory and optimal control are sketched in Figs 1 and 2,
respectively. As shown in Table 1, the Euclidean norm of the
terminal state (x1(5), x2(5)) approaches 0 as c increases. The
accuracies of the solution are fairly satisfactory with
e I = 0 . 0 6 , e 2 = 0.001.

We will not compare the total iterations of our algorithm
with the tested methods described by Nedeljkovic (1981),

1.2

1.0

0.8

~x 0.6

0.4

0.2

0
-0.3

0
0
0
0

0

0 0
0

0

o
o

0
o

o
o

o
0Q

o o

L ~ ° O q ~ t

- 0.2 - 0.1 0 0.1 0.~2 0.3

xl

FIG. 1. The optimal state trajectory of the Van der Pol
oscillator.

1.0

E

0

0 , 9 - -

0 . 8 -
0 . 7 -
0 . 6 -
0.5 - +4-++++

+
0.4 -+

0 . 3 -

0 . 2 -

0 . 1 -

+
+

++
++

+ +

+++-4-
I I I I I I ~ + + - f + + ~ - + + ~ .

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

"~me (sec)

FIG. 2. The optimal control solution of the Van der Pol
oscillator.

T A B L E 1. T H E V A L U E S OF T H E T E R M I N A L

STATES WITH RESPECT TO ¢

c x,(5) x2(5)

5 -7 .3 x 10 -3 1.4 × 10 -3
10 -3 .9 × 10 -3 2.2 x 10 -3
30 -1 .9 × 10 -3 1.9 x 10 -3

120 -9 .8 x 10 -4 9.2 × 10 -4
600 -5 .2 x 10 4 4.2 x 10 -4

because his methods deal with a simpler unconstrained case,
and because our algorithm is basically designed to be
implemented by hardware. Nevertheless, we have prepared a
rough estimate of the execution time for our algorithm based
on (19) and current VLSI technology. The total number of
basic iterations used in this example is 5 x 40 x 40 = 8000.
The arithmetic operations needed for one basic iteration in
this example are (2 x 2 + 1 + 7) ~ + (2 x 2 + 1 + 1 + 6) =
12® + 12~. According to the technology developed by
Sharma et al. (1989), the length of time needed to perform
one 16x 16-bit ® and E) are 6.75nsec and -<0.35nsec,
respectively. Thus, a rough estimation of the execution time
for this example is less than I msec (=10 -3 sec).

4. Conclusion
This paper presents a complete decomposition algorithm

for nonconvex separable optimization problems. The
algorithm is especially suitable for solving constrained
nonlinear fixed final-time optimal control problems with
quadratic performance index. For such applications,
implementation by VLSI array processors is recommended.

1254 B r i e f P a p e r

Although significant ettort may be needed to realize such an
implementation, considering its value for real-time process-
ing control systems, this effort should be worthwhile.

References
Bazaraa, M. S. and C. M. Shetty (1979). Nonlinear

Programming. John Wiley, New York.
Bersekas, D. P. (1979). Convexification procedures and

decomposition methods for nonconvex optimization
problems. J. Opt. Theory Applic., 29, 169-197.

Bersekas, D. P. (1982). Constrained Optimization and
Lagrange Multiplier Methods. Academic Press, New York.

Han, S. P. (1976). Superlinearly convergent variable metric
algorithms for general nonlinear programming problems.
Math. Prog., 11, 263-282.

Han, S. P. (1977). A globally convergent method for
nonlinear programming. J. Opt. Theory Applic., 22,
297-309.

Kung, S. Y. (1988). VLSI Array Processors. Prentice Hall,
London.

Lin, S.-Y. (1991). A distributed state estimator for electric
power systems. IEEE PES 1991 Summer Meeting, San
Diego.

Lin, S.-Y. (1992a). A complete decomposition algorithm for
large-scale nonconvex separable optimization problems
and computations of optimal control. NCTU Technical
Report # CNTR-LIN-9201.

Lin, S.-Y. (1992b). A hardware implementable two-level
parallel computing algorithm for general minimum-time
control. IEEE Trans. Aut. Control, AC-37, 589-603.

Luenberger, D. G. (1984). Linear and Nonlinear
Programming, 2nd ed. Addison, MA.

Mukai, H. and E. Polak (1978). On the use of
approximations in algorithms for optimization problems
with equality and inequality constraints. SIAM J. Numer.
Anal., 15, 674-693.

Nedeljkovic, N. B. (1981). New algorithms for unconstrained
nonlinear optimal control problems. IEEE Trans. Aut.
Control, AC-26, 868-884.

Sharma, R., A. Lopaz, J. Michejda, S. Hillenius, J.
Andrews and A. Studwell (1989). A 6.75-ns 16 x 16-bit
multiplier in single-level-metal CMOS technology. IEEE
J. Solid State Cric., 24, 922-927.

Tanikawa, A. and H. Mukai (1985). A new technique for
nonconvex primal-dual decomposition of a large-scale
separable optimization problem. IEEE Trans. Aut.
Control, AC-30, 133-143.

Tatjewski, P. (1989). New dual-type decomposition algo-
rithm for nonconvex separable optimization problems.
Automatica, 25, 233-242.

Watanabe, N. Y. Nishimura and M. Matsubara (1978).
Decomposition in large system optimization using the
method of multipliers. J. Opt. Theory Applic., 25,
181-193.

