
with MO =f(+O)  -&O). It is interesting to note that the conditions 
in eqns. 14 and 15 are decoupled when cc = 0, and they are easily 
reduced to two separate conditions for the E,'"' and H,""' compo- 
nents in the case of a nonchiral thin dielectric slab. 
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where Xi(m) are the polyphase components of i ( n )  for 1 = 0, 1, ..., 
M - 1. Using this representation, we can rewrite eqn. 1 as 

M-1 00 

?i(m) = f , ( M m  - M k  + l ) zZ(k )  
2=0 k = - m  

M-1 00 

= fiz(m - k)zz (k)  
2=0 k=-0O 
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Adaptive filter bank reconstruction using 
fast multichannel RLS algorithms 

Dah-Chung Chang  and  Wen-Rong W u  

The recursive least-squares (RLS) algorithm has been used in the 
adaptive synthesis filter bank for fast convergence. However, 
because of interpolation operations involved in the synthesis 
process, fast RLS algorithms cannot be applied. In this Letter, an 
approach is proposed that can formulate subband signal 
reconstruction as a multichannel filtering problem. This 
formulation allows the application of fast multichannel RLS 
algorithms and substantial reduction in computational 
complexity. 

Introduction: Many design methods have been developed to 
achieve perfect reconstruction for a subband system. However, 
most designs assume that the output of the decimators is identical 
to the input of the expanders; in other words, that subband signals 
are free of any distortions. Unfortunately, in practical applica- 
tions, this assumption is often invalid. For example, subband sig- 
nals may be distorted by additive noise due to quantisation, by 
channels due to transmission, or by filters due to signal process- 
ing. Although some designs have considered the quantisation noise 
problem [1, 21, they are not general enough to encompass other 
applications. A more useful approach is to use an adaptive synthe- 
sis filter bank [3, 41. It is known that the recursive least squares 
(RLS) algorithm has a fast convergence rate but requires extensive 
computation. Fast RLS algorithms, which can substantially reduce 
computation, have been developed. However, Paillard et al. [4] 
have pointed out that the fast RLS algorithms cannot be directly 
applied due to the interpolation operations involved in the synthe- 
sis process. In this Letter, we propose a new algorithm overcoming 
this problem. 

Proposed reconstruction algorithm: An M-band filter bank system 
including channel and noise distortion is depicted in Fig. 1 .  The 
reconstruction signal x(n)  in Fig. 1 can be expressed as 

M-1 00 

q.1 = ft(n - M k ) z , ( k )  (1) 
z=O k = - w  

whereJ;(n) denotes the nth coefficient of the ith synthesis filter. 
Let n = Mm + 1. Then, we have 

?(n) = O ( M m  + 1 )  = ?i.l(m) (2) 
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where Jl(m) = J;(Mm+l) are the polyphase components of f n ) .  
Here we assume that allJ;(n)s have length L, and that K = W M  is 
an integer. Eqn. 3 indicates that the output signal iz (m) can be 
seen as a result of multichannel fdtering. There are M channel 
input signals zt(m) and MfiltersJ,(m), i = 0, 1, ..., M -  1. To have 
a compact form, we express eqn. 3 as a product of two vectors. 
We define fi = [f; fif; ... f & , - l ] ~ x l  and z(m) = [qT(m) zlT(m) ... 

[zt(m) z,(m-1) .. zz(m - K + l)],&l . Then, eqn. 3 can be written as 
z . L  (m>lL where fI,t = [f;,(O) JL1) ... J;,W - 1)IL and a(m) = 

2l(m) = fi' . z(m) (4) 
After we obtain the polyphase components .Cl(m> for 1 = 0, 1, ..., 
M-1, the output signal i ( n )  can be reconstructed using a multi- 
plexer. The reconstruction structure is depicted in Fig. 2. 

analysis filters synthesis filters 
m 

Fig. I M-band analysidsynthesis filter bank system 

a b WLL 

Fig. 2 New subband reconstruction structure and structure of block fi 

a New subband reconstruction structure 
b Structure of block f ,  

Our formulation is similar to that presented in [4]; however, the 
difference is that ours is a multichannel approach while the previ- 
ous formulation is a single channel approach. The single channel 
formulation does not allow the use of fast RLS algorithms. This is 
why only the LMS algorithm was considered in [4]. Using our for- 
mulation, we can apply the fast multichannel RLS algorithm 
called the block step-up step-down (B-SUSD) algorithm [5] to find 
the optimal synthesis fdter bank. To prevent the numerical stabil- 
ity problem, a stabilised version of the fast algorithm is usually 
required in practical implementation. The computational complex- 
ity of the stabilised B-SUSD FRLS algorithm is of the order of 
O(6ML) while that of the standard RLS algorithm is U(2L2). The 
stabilised B-SUSD algorithm is shown below. 

Initials 
W,(O) = fi(0) := OLX, ,  A(0) = B(0) := o,,,, ado) := 1, 
ad(0) = a,*(O) := IMxM, K, := 1, i = 1, 2, 3 

Time updating of the Kalman gain 
eh(m+l) = i,(m+l) - AT(m)z,(m) 
PL(m+l) = h-1ak-l (m)eh(m+l) 
~ & ( m + l )  = e&(m+l)/a,(m) 
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A(m+l)=A(m) + wL(m)€; (m+l) 

2; (m+l) = i,(m+l-L) - BT(m)Z,(m+l) 
wL(m+l) = c,(m+I) + B(m)S,(m+l) 

6; (m+I) = ha; (wt)6,(m+l) 
eL'(m+l) = K$L (m+l) + (l-KJ6; (m+l), i = 1, 2, 3 
c ~ ~ + ~ ( m + l )  = adm) + e; (m+l)p&(m+l) 
aM(m+ 1) = a,+,(m+ 1) - e t '  (m+ l)SM(m+ 1) 
e;' (m+l) = e~'(m+l)/a,(m+l), z = 2, 3 
B(m+ 1) = B(m)+wL(m+ 1 ) ~  E (m+ 1) 
a i ( m + l )  = hat(m) + eL(m+l)Eg (m+1) 
a; (m+l) = La: (m) + e; (m+l)eF (m+l) 

Time updating of the synthesis filter bank 
For I =  0 to M -  1 Do 

ei(m+ 1) = di(m+ 1) - z l  (m+ l)f,(m) 
~ / ( m + l )  = ei(m+l)/aM(m+ 1) 
f,(m+l)=f,(m) + w,(m+l)€/(m+l) 

End For 

Permutation matrices T and S are defined such that 
- 

-5 L I 
0 1000 2000 3000 4000 5000 6000 

iterations 43713 

Fig. 3 Learning curves f o ~  reconstructing AR(1) signal with input SNR 
= 30dB 
(i) Wiener filter 
(ii) RLS algorithm 
(iii) stabilised B-SUSD FRLS algorithm 
(iv) LMS algorithm 
(v) conventional synthesis filtering 

Simulations: To demonstrate the effectiveness of the proposed 
adaptive reconstruction filter bank, a 55 tap five band system is 
implemented. The subband noise is assumed to be white Gaussian 
(SNR = 30 dB) and the channel to be c, = [-0.077, -0.355, 0.059, 
1, 0.059, -0.2731. The input is a first-order AR signal with a corre- 
lation coefficient of 0.8. Fig. 3 shows the learning curves for 
serveral algorithms. As we can see, while the convergence of the 
stabilised B-SUSD FRLS algorithm is slightly slower than that of 
the standard RLS algorithm, it is much faster than the LMS algo- 
rithm. Also, the reconstruction SNR of the stabilised B-SUSD 
FRLS algorithm is almost identical to that of the standard RLS 
algorithm. The reconstruction SNR for the LMS algorithm is 
much lower. The conventional synthesis fiiter bank has the worst 
performance since it does not consider the distortion of subband 
signals. 
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5 

arity estimation using e 
classification in the DCT domain 

C.L. Pagliari and T.J. Dennis 

A disparity estimation algorithm for stereo images is proposed, 
which attempts to achieve robustness to scene characteristics. 
Area-based matching is guided by an orientation classification 
derived from discrete cosine transform coefficient characteristics 
over small blocks. 

Introduction: In this Letter, we use edge-oriented classification in 
the discrete cosine transform (DCT) domain, to aid in the task of 
finding the binocular disparities between a stereo image pair. A 
similar process is used in classified vector quantisation [l]. The 
main advantage is that the most likely matching points, those hav- 
ing the same edge orientation, are then known and hence the 
search range can be significantly reduced. 

I I I 

Fig. 1 4x4 DCT coefficient labelling 

Fig. 2 Basis pictures corresponding to Fig. 1 
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