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Al~traet--This paper presents a multirate controller design 
for a linear periodic system with multiple delays at input and 
output. The approach first converts the periodic time-delay 
system into a periodic delay-free system, and then stabilizes 
and optimizes it by a multirate controller with pulse 
compensation. A significant advantage of this approach is 
that by using multirate sampling, the controller can provide 
more substantial design freedoms, so that although the 
system does not provide complete state information, it 
remains possible to convert the controller design into the 
dual of a regular complete state feedback problem. This 
enables one to derive a simple algorithm for choosing the 
optimal parameters of the controller and, by use of the 
optimal pulse compensation, to improve the transient 
response. 

1. Introduction 
PERIODIC SYSTEMS are an important class of control systems. 
Many time-varying mechanical and chemical processes 
exhibit periodical property and are best described by periodic 
models (Onogi and Matsubara, 1980; Schadlich et al., 1983). 
Various valuable approaches for controlling such models 
have been proposed in the past two decades, e.g. optimal 
periodic filtering and control (Bittani and Bolzern, 1985a; 
Bittani et al., 1990; Kano and Nishimura, 1985); periodic 
eigenvalue assignment (AI-Rahmani and Franklin, 1989; 
Kabamba, 1986); periodic deadbeat control (Grasselli and 
Lampariello, 1981), etc. Roughly speaking, to control a 
linear periodic system, a periodic state feedback is sufficient 
to guarantee the closed-loop asymptotic stability and to 
obtain the desired performance specification under some 
constraints. 

It is interesting to control a linear periodic time-delay 
system. However, this problem may encounter some more 
difficulties than that of an ordinary delay-free system. One 
difficulty arises from the implementation. This is because in 
the stabilization of a linear time-delay system, not only the 
present state, but also the past states or controls are needed. 
As has been pointed out, (Astrrm and Wittenmark, 1984) an 
analog Smith predictor is difficult to implement, because it 
needs to store and integrate the past controls at every 
instant, so that for practical implementation, a sampled-data 
controller is more convenient than an analog controller. 
Another difficulty is that an optimal algorithm of a linear 
time-delay system is generally very cumbersome and hard to 
solve. As a result, convenient suboptimal algorithms are 
often suggested for controlling a linear time-delay system. 
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In this paper, a multirate controller design is proposed for 
a linear periodic system with multiple delays at input and 
output. A motivation of this approach came from the paper 
of AI-Rahmani and Franklin (1990), who have shown that a 
multirate controller for periodic delay-free systems presents 
some advantages over that of a single rate controller. For 
example, the linear quadratic regulation problem subject to 
the multirate structure can be solved from an algebraic 
Riccati equation with a dimension equal to the plant while, 
in general, a single-rate approach needs to solve an algebraic 
Riccati equation with a dimension higher than the plant 
(Meyer and Burrus, 1975). Furthermore, it is possible for a 
multirate controller to sample the state relatively slowly 
while the response characteristics are still met by the fast rate 
of control updation. Thus more freedoms can be obtained on 
the choice of the sampling period. 

A significant advantage of the presented multirate 
controller for a periodic time-delay system is that by taking a 
large ratio of sampling rate between input and output, the 
controller can provide more substantial design freedoms, so 
that although the system does not provide complete state 
information, it remains possible to convert the controller 
design into the dual of a regular complete state feedback 
problem. This enables one to derive a simple algorithm for 
choosing the optimal parameters of the controller. A 
distinctive feature of the proposed controller is that a pulse 
compensation is employed to improve the transient 
characteristics which might be badly influenced solely by an 
output feedback because of multiple time delays. In 
particular, if the initial state is known, then the system can 
be driven to the zero steady-state in a time no larger than the 
sum of the maximum input delay and the sampling period. 

2. Preliminary 
2.1. The plant. Consider a linear periodic time-delay 

system : 

Yc(t) = A(t)x(t) + ~ Bi(t)u(t - hi) , (la) 
i = l  

g 

y(t) = ~ Cj ( t ) x ( t -  f~i)' (lb) 
]=1 

where f and g are positive integers, ~ and/~j are delay times 
satisfying 0-<hi < ' ' "  < ~  and 0 ~ h l < . . .  <hg, x e R  n is 
the state vector, u e R  ~ is the control input, yeRm2 
(m2 -< n) is the measurable output, and the parameters A(t),  
Bi(t) and Cj(t) are piecewise continuous and satisfying the 
periodical property that A ( t ) = A ( t - T ) ,  B i ( t ) = B ~ ( t - T )  
and Cj(t) = Cj(t - T) for some positive real T. 

2.2. The transformation algorithm. By using the following 
transformation algorithm (see Lemma A.1 in the Appendix): 

X(t) = x(t) + ~ ~p(t, s + hi)Bi(s + hi)u(s ) ds, (2a) 
i=1 t - - h  i 

g £ 

y(t) = y(t) + ~ ~ C/(t) 
]~!  i=1 

x ~(t  - f~j, s + hi)Bi(s + hl)u(s ) ds, (2b) 
_ . _ - .  

t h I h I 

one can convert the periodic time-delay system (1) into a 
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periodic delay-free system as follows: 

.~(t) --- A(t)~(t) + B(t)u(t), (3a) 

y(t) = C(t)$(t), (3b) 

where B(t) and C(t) are given by 

f 
B(t) = ~ dp(t, t + hi)Bi(t + hi), (4a) 

i = 1  

C(t) = ~ Cj(t)ep(t - [t), t), (4b) 
j=l 

and q~(t, s) is the state transition matrix satisfying 

d 
~tdP(t,s)=A(t)cp(t,s); dp(s,s)=l~. (5) 

2.3. Controllability and observability. Considering the 
converted periodic delay-free systems (3), the reachability 
Gramian matrix on [0 T] is defined as 

~h[0 T)= I j  ep(T, s)B(s)B(s)Vp(T, s)*ds, (ea) 

where r denotes the transpose operation of a matrix, and the 
observability Gramian matrix on [0 T) is defined as 

t "  T 

~ [ 0  T)=Jo  qJ(T,s)B(s)B(s)'cp(T,s)*ds, (ea) 

It is assumed that (A(t), B(t)) is controllable on [0 T) and 
(C(t), A(t)) is observable on [0 T) in the sense that fib[0 T) 
and ff~[0 T) are nonsingular, respectively (Bittani and 
Bolzern, 1985a; Bittani et al., 1985b, Kabamba, 1986). As 
will be clear later that the controllability implies that the 
periodic time-delay system (la) with any initial state can be 
driven to the zero steady-state in a time no larger than 
h I + T, and the observability implies that there exists finite 
reals 0~, 0 2 . . . . .  Op satisfying 0-< 0~ < 02 < -  • • < Op < T 
such that the initial state x(0) can be constructed by_y(-0  0, 
y( -02)  . . . . .  y(-Op) and u( -s )  for all s e [0 hf + hg + Op). 

3. Multirate controller design 
3.1. Multirate structure. Based on the converted periodic 

delay-flee system (3), a multirate controller is proposed as 
follows: 

u(kT + iT/M + O) = P~(Lly~(kT ) + L26o(kT)), (7) 

where 0 • [ 0  T/M), i =0, 1, 2 , . . .  , M -  1, M is an integer, 
L I e R "×m2, L2 ~ R "×l, 6o(kT) denotes the discrete-time 
pulse function (i.e. 60(kT) = 1 for k = 0, and 6o(kT) = 0 for 
k = l , 2  . . . .  ), and g e R  " '×~ denotes the normalized 
piecewise gains described by 

P~ = M/T~K2 ', (8) 

in which ~2 denotes the generalized reacbability Gramian of 
order M on [0 T) (AI-Rahmani and Franklin, 1990) given by 

M - I  

Q = M/T ~ Qi~;, (9a) 
i ~ o  

where 
((i+I)T/M 

~ = ~T/M cp(T, s)B(s) ds. (9b) 

Since (A(t), B(t)) is controllable on [0 T), the inverse of ff~ 
can be guaranteed if M is sufficiently large (AI-Rahmani and 
Franklin, 1989). 

Now, by the periodical property of A(t), B(t) and C(t), 
the state of the converted periodic delay-free system (3) 
satisfies 

i ( (k  + 1)T) 

( =~b(T,O)X(kT)+ ep(T,s)B(s)u(kT +s)ds. (10) 

By substituting the multirate control (7) into (10), one can 
obtain 

2((k + 1)T) = (/i, + LI~)2(kT ) + Lzbo(kT) ' ( l l )  

where ,4=q~(T, 0) and t ~ = C ( k T ) = C ( 0 ) .  If f i .+L,(~ is 
asymptotically stable (i.e. all eigenvalues lie inside the unit 
complex circle), then Y(kT)--~ 0 as k--, o~, so that by (7) and 
(2), x(t)---~O and u(t)--~O as t--. ~. 

3.2. Computation of .~(kT). The converted output y(kT) 
can be calculated from a discrete-time model. To do so, let 
Cj = Cj(kT) = Ci(O ) for j = 1 . . . . .  g, N be a positive integer 
satisfying (N - 1)T < h I + f~g <- NT, and 

J 
W(s) = Z ~ Wq(s), (12) 

i 1 / = 1  

where 

Wq(s)= { Co/P(-h-h hi -s)B,(h, - s  ) whenotherwise.0-<s<hi+/~p 

(13) 

From (2b), one can rearrange y(kT) as 

y(kT) = y(kT) + W(s)u(kT - s) ds 

g 1 loT =y(kT)+ ~ W ( j T + s ) u ( k T - j T - s ) d s .  (14) 
i=o 

So after k -> N, y(kT) can be calculated by 

y(kT) 
N 

=y(kT) + ~', 7j(L,y((k - j )T )  + L2b,,((k - j )T)) ,  (15) 
j = l  

where 

M 1 f(z+l)T/M 
7 =  ~] W(( j -1)T+s)P, , ,  z ,ch'. (16) 

z = O  -' zT/M 
Since y(kT) may not obey the discrete-time model (15) for 
k =0,  1, 2 . . . . .  N -  1, a precise calculation of 9(kT) can be 
done as follows: 

y(kr) 

[ y ( K T ) + f ( U r w ( s ) u ( k T - s )  ds, 

= J  for k < N  
N 

ly(kT) +,~-t y,(L,y((k - j l T )  + L2bo((k - j)T) 

k. for k>_N. 

(17) 

4. An optimal approach 
Define the performance index 

J = ~ E(Y,'(kT)Q2(kT)), (18) 

where E (# )  denotes the expectation of a random vector # ,  
and Q e R  "×" is a positive-definite matrix (denoted by 
Q > 0 ) .  By the closed-loop sampled-data system (11), the 
quadratic performance index (18) can be expressed by 
Kwakernaak and Sivan (1972) 

J = Tr VE($(T)Yc'(T)), (19) 

where V e R "×" is a positive-definite matrix solved from the 
following Lyapunov equation: 

(A+ L , C ) r V ( , 4 + L 1 C ) - V + Q = O .  (20) 

By canceling redundant output variables, it does not lose 
the generality to assume that C is of full rank. The following 
theorem shows that the optimal parameters L~ and L z of the 
muitirate controller (7) to minimize the quadratic performance 
index (18) is unique and only dependent on the expectation and 
the covariance of the converted initial state ~(0). 
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Theorem 1. Assume (t~, .4) is observable,  and the expectation 
and the covariance of the initial state .~(0) are given by 

E[~(O)I = elx(O)l 

+ ~_. ~(0, s + hi)Bi(s + hi)u(s) ds = u~ 1, (21a) 
i ~  1 h i 

and 

Coy (~(0)) = C o v  (x(0)) 

= E[(x(O) - E(x(0)))(x(0)  - E ( X ( 0 ) ) ) q  = q,~ > 0, 

(21b) 

then the optimal parameters  L~ and L 2 of the multirate 
controller (7) to minimize the performance index (18) can be 
obtained as 

L 1 = -AAC'(C'3.C") - I ,  (22a) 

and 

Lz = - ,4qJ ,  - L,)7(0), (22b) 

where ). e R nx~ is the positive-definite matrix solved from the 
following algebraic Riccati equation: 

,4L4 ~ -/iAC~(CAC ~)- ~CL4 ~ - l + A~,~ ~ = O. (22c) 

Proof, From the closed-loop sampled-data system (11) one has 

~(r) = Ax(0) + L,y(0) + L~ 

= / t  {£(0) - E(£(0))} + {L,y(0) + L 2 + AE($(0) ) ) .  (23) 

By substituting (23) into (19), the index can be expressed by 

J = Tr V {A E[(£(0) - E(Y(0)))(£(0) - E($(0)))  q~," 

+ (L,y(O) + L~ + AE(£(O)))(L,y(O) + L 2 + ,~iE(£(O)))~}. 

(24) 

From (24), it is obvious that 

L2 = - . 4 E ( £ ( 0 ) )  - L,y(0) ,  (25) 

is the gain to minimize J for every specified L~. Hence (22b) 
is obtained. On the other  hand,  by substituting (22b) into 
(24), the performance index is simplified as 

J = Tr {V.4 Cov (.~(0)).4 ~} = Tr {Vfi~ Cov (x(0))fi, ~) 

= Tr {VAU22 ~ ~). (26) 

To minimize the performance index (26) subject to the 
Lyapunov equation (20), an augmented cost can be 
introduced as follows (Bryson and Ho,  1975): 

J = Tr {V,4~2.zi ~ + ;t((.4 + Lt C)~V(.4 + L~ C') - V + Q)}, 

(27) 

where 3 . eR  "×~ is the associated Lagrange multiplier. By 
taking dJ/dZ = 0, one obtains (20), and by taking dJ/dV = O, 
one obtains 

(/,  + L, C)3.(/] + L, C) ~ - 3. + ~,WzA ~ = 0. (28) 

Also, by taking dJ/dL~ = 0, one obtains 

V(fi, + L, t~)3.C" = 0. (29) 

Since Q and W2 are positive-definite, the solution V and ). of 
the Lyapunov equations (20) and (28) are positive-definite, 
thus (29) leads to (22a). By substituting (22a) into (28), one 
also obtains (22c). Hence the necessity of (22) is proved. 
Besides, by (28) and (20), one has 

J = Tr VYlWzA ~= - T r  V{(. 3, + L, (5")3.(/] + L ,C)  ~ -  3.} 

= - T r  3.((,4 + L, ¢~)W(fi, + L, C') - V) = Tr 3.Q. (30) 

It is known (Payne and Silverman, 1973; Caines and Mayne,  
1970) that for the discrete-time Algebraic Riecati equat ion 
(22c) and (22a), there exists a unique stable solution to 
minimize the index (30) therefore the theorem is 
derived. [] 

Remark 1. In a general case, ((~, .4) may not  be observable 
even if (C(t), A(t))  is observable on [0 T). In this condition, 
one can use a new observation as 

P 

y.~w(t) = ~ C ~ y ( t -  0~) 
v = l  

P g 

= ~ ~ ,  (?~C/(t  - O~)x( t  - fij - 0~),  (31) 
v= [ I = l  

where Co e R m3×''2 (m3 is a selected positive integer) and 
O < _ O ~ < 0 2 < . . . < O o < T .  Now, if the output  ( lb )  is 
replaced by (31), the output  t ransformation (2b) is replaced 
by 

Yne.(t) =Y.e . ( t )  + ~ ' ~  ~ CvC/( t -Oo)  
v = l  j ~ l  i = l  

x f '  ~ ( t  - f~/- 0~, s + h,)B,(s + h,)u(s) ds, 
J ,  t - h i - h j - O  p 

(32) 

and the converted output  matrix (4b) is replaced by 

p g 

C(t)n~w = ~ ~_j C',,C/(t - O~)dp(t - f l / -  0~, t) 
v = l j = l  

= ~ d . C ( t -  Oo)@(t- Oo, t), (33a) 

hence one has 

t~.~w = C(0).~w = ~ d~C(-O,,)dp(-O~, 0). (33b) 
v = l  

In view of the full rankness of ~ [ 0  T), one can choose C~ 
and 0~ such that ((7 . . . .  ,4) is observable.  

Remark 2. One can estimate .~(0) from an available 
observation. To do so, by substituting (31) into (32), one 
obtains 

V ~ I  v = l  j ~ l  i = l  

X ~--h dp(-f~j - 0 o , s + hi)Bi(s + hi)u(s) ds 
i - hi - or,  

= C'.~,..2(0). (34) 

Now, one defines the least square error  estimate of £(0) 
subject to the observation (31) as the vector %0 e R n which 
minimizes the index J0 = ~php subject to the equality that  
.P.c,,(0) = (?.cw~P- By minimizing the following augmented 
COSt 

J0 = ~ " V  + l~(C.,w% 0 - Y,ew(0)), (35) 

where 1 ~ R %  is the Lagrange multiplier, one obtains the 
estimate as follows (no loss of the generality to assume 
rank [(7.ow] = m3 < n):  

%0 = C.~ew(C.ewC.~¢w)-~%cw(0 ). (36) 

In particular, one has ~p = £ ( 0 )  when rank [t~.ew] = m 3 = n, 
so that 2(0) can be reconstructed from the past inputs and 
outputs. 

Remark 3. If W~ is substituted by the exact value 2(0),  then 
by (22b) and (11), 2 ( k T ) =  0 for all k ~ 1. Thus by (2) and 
(7), x( t )=  0 and u( t )= 0 for all t >-hf + T. Therefore  the 
periodic time-delay system ( la )  can be driven to the zero 
steady-state in a time no larger than h I + T. In general,  £(0) 
is unknown,  for practical applications, qJ~ can be substituted 
by an estimated vector (e.g. the least square error  estimate 
subject to an available observation),  Wz = Coy [£(0)] can be 
substituted by a chosen positive-definite matrix to reflect the 
estimation error. 
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5. Example  
Consider the following periodic time-delay system: 

sin (2m) 0 
.~(t) = (_~  10)x(t) + ( 0 ) u ( t ) + ( c o s ( 2 m ) )  u ( t - 1 ) '  

(37a) 

y( t )  = [cos (2~t) 0]x(t) + [0 sin ( 2 m ) ] ( x ( t -  1)). (37b) 

Assume a ( - 0 ) = 0 ,  0 ~ 0 < 2 ,  E(x(0))=[1 1] 3 and 
Cov (x(O))= e l  2, e is a positive real. Using the transforma- 
tion (2), this system is converted into the following periodic 
delay-free system: 

2 ( t ) = ( _ ~  ; ) ~ ( t ) +  [ s i n ( 2 m ) - s i n ( 1 ) c ° s ( 2 m ) '  ""  
COS (1) cos (2m) } uU) '  

(38a) 

~(t) = {[cos (2m) 0] + s in (2m)[s in  (1) cos (1)]}.~(t). 

(38b) 
By selecting T = 1 and M = 10, one has 

( cos (1) sin (1)~ d = [1 0]. (39) 
,'i = k-s in  (1) cos (1) / '  

From (8) and (9), the normalized piecewise gains P,- are given 
by 

Po = [2.6324 3.7952[, P5 = [-1.3741 -2.7266], 

P~=[1.5140 1.1151], P6=[-2.1336 -2.1882], 

P2= [0.5167 -1.2664], P7= [-2.8002 -1.70311, 

Pa= [-0.1948 -2.6847], P~[-2.9225 -1.1940], 

P4-- [-0.7502 -3.0512], P9 = [-2.0862 -0.3665]. (40) 

Solving the equations (22), one obtains the following optimal 
gains: 

L - ( - 0 . 7 8 7 2 ~  / -1 .3818\  - 0  
- \ 0.6829]' L2= ~ 0.3012)- L,y(). (41) 

Besides, by (16), one obtains 

~q=[0.1075 -0.3212], 72=[0 0l. (42) 

Thus the optimal multirate controller is taken as the 
following form: 

u ( k T  + i T / M  + O) = P,-(L~y(kT)  + L z 6 o ( k T ) ) ,  (43a) 

where i = 0, 1 , . . .  , 9, and y ( k T )  is given by 

y(kV) 
= [y(0) for k = 0  

\y(kT) + 7 t ( L t y ( ( k  - I)T) + L26o((k - 1)T)) otherwise. 

(43b) 

For comparison, this controller is simulated for six typical 
initial states (see the output plots (a)-(f) in Fig. 1 and the 
input plots (a)-(f) in Fig. 2). Notice that this controller is 
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kT 

(f) 
FIG. 1. The output responses of the periodic time-delay system (37) with the muitirate controller (43). The 

initial state x~(0) are assumed by (a): [1 1] (b): [1 01, (c): [2 1], (d): [1 2], (e): [0 1] and (f): [0 0]. 
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FIG. 2. The input responses of the periodic time-delay system (37) with the multirate controller (43). The 

same initial states as in Fig. 1 are assumed. 

optimal from a statistical viewpoint for all possible initial 
states. In particular, if E(x(O)) is obtained from a precise 
reconstruction (i.e. Cov(x(0))~0),  the response almost 
approaches the deadbeat case (a). 

6. Conclusions 
In this paper, a multirate output feedback controller is 

presented for a linear periodic system with multiple delays at 
input and output. A simple algorithm is also derived for 
choosing the optimal parameters of the controller. Such an 
algorithm tends to yield a two-stage control. At the first 
stage, the optimal pulse compensation drives the system to 
approach the zero steady-state in a time no larger than the 
sum of the maximum input delay and the sampling period (if 
the estimation error of the converted initial state is small). 
Then at the second stage, the multirate output feedback 
control serves as a closed-loop suboptimal control to 
guarantee the asymptotic stability. 

It is interesting to compare the presented multirate output 
feedback control scheme with the multirate state feedback 
control scheme of periodic delay-free systems suggested by 
AI-Rahmani and Franklin (1990). Since they have derived 
the control scheme based on the minimization of a 
continuous-time quadratic performance index, better inter- 
sampling behavior can be obtained. However, in general, 
complete state measurements are costly. Moreover, to a 
periodic system with multiple delays at input and output, the 
transient response during the period of time delay may be 

influenced solely by an output feedback. In this condition, a 
pulse compensation will be valuable for improving the 
transient response. 
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Appendix: Converting a periodic time-delay system into a 
periodic delay -free system 

Lemma A.1. By using the transformation (2), the periodic 
time-delay system (1) can be converted into the periodic 
delay-free system (3). 

Proof. It is shown (Artstein, 1982) that by using the 
transformation (2a), the periodic time-delay system (1) can 
be converted into (3a), Thus by (lb), (2a) and (4a), one may 

rearrange y(t) as 

y ( t )  = ~, ci(t ~( t  - f,j) - 
j ~ l  

X dp(t -- fl/, S + hi)Bi(s + 
h i f l !  

= ~ Ci(t){dP(t-f~j,t)-~(t) 
/=! 

- ~' _ dp(t - hi' s)B(s)u(s) ds 
, h i  

- ,=,Y~ -,,,-7,j ~ ( t  - f~j, ~ + h~)B,(s + h , ) . ( s )  ds 

= ~ C/(t){ dp(t- f~,, t)Y(t) 
/"=1 

+ 

t h 1 

- 2 dp(t - fz/, s + hi)Bi(s + h,)u(s) ds 
i=l t - h  i h! 

= ~  g f 

G(t)dp(t-  f~j, t ) $ ( t ) -  2 2 C/(t) 
j = l  1 = 1 i = 1  

× dp(t - f~/, s + hi)Bi(s + hi))u(s ) ds 

f t-h/ + hi)u(s) cls } + ¢p(t - 1~/, s + hi)Bi(s 
t h i - h  I 

= 2 Cj(t)O(t - f~j, t)Y,(t) 
j--I 

- ~. Cj(t) _ q)(t - fzj, s + h,)B~(s + h,)u(s) ds. 
/=1  i=1 t h h! 

(A.1) 
Hence by taking .f(0 and C(t) as (2b) and (4b), respectively, 
the converted output (3b) can be obtained. [] 


