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Channel Occupancy Times and Handoff Rate
for Mobile Computing and PCS Networks

Yuguang Fang, Member, IEEE, Imrich Chlamtac, Fellow, IEEE,
and Yi-Bing Lin, Senior Member, IEEE

Abstract—This paper presents a study of channel occupancy times and handoff rate for mobile computing in MC (Mobile
Computing) and PCS (Personal Communications Services) networks, using general operational assumptions. It is shown that, for
exponentially distributed call holding times, a distribution more appropriate for conventional voice telephony, the channel occupancy
times are exponentially distributed if and only if the cell residence times are exponentially distributed. It is further shown that the
merged traffic from new calls and handoff calls is Poisson if and only if the cell residence times are exponentially distributed, too.
When cell residence times follow a general distribution, a more appropriate way to model mobile computing sessions, new formulae
for channel occupancy time distributions are obtained. Moreover, when the call holding times and the cell residence times have
general (nonlattice) distributions, general formulae for computing the handoff rate during a call connection and handoff call arrival
rate to a cell are given. Our analysis illustrates why the exponential assumption for call holding time results in the underestimation of
handoff rate, which then leads to the actual blocking probabilities being higher than the blocking probabilities for MC/PCS networks
designed using the exponential distribution approximation for call holding time. The analytical results presented in this paper can be
expected to play a significant role in teletraffic analysis and system design for MC/PCS networks.

Index Terms—PCS, mobile computing, call holding time, cell residence times, call blocking, handoff rate, channel occupancy times.
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1 INTRODUCTION

convergence of Mobile Computing and Personal
Communications Services (MC/PCS) being witnessed

today leads to the emergence of networks poised to provide
integrated services, such as voice and data, to mobile users
anywhere, anytime ([19], [4]) in an uninterrupted and
seamless way, using advanced microcellular and handoff
concepts ([15]). Due to the growing importance of these
emerging networks, it is necessary to study their behavior
for performance evaluation, optimization, management, as
well as billing, under realistic conditions. We observe that
the channel occupancy time corresponds to the service
time, while the handoff call traffic to a cell forms a major
part of the cell traffic, the resulting queuing network is used
to find the very important design parameters, such as
blocking probability. The handoff rate is used to character-
ize the handoff call traffic to a cell. Therefore, the channel
occupancy time and the handoff rate are two important
parameters for the MC/PCS networks.

The channel occupancy time distribution has been stud-
ied quite extensively in the past for classical cellular sys-
tems. A common assumption in these studies has been that
the call holding time (the time requested for a call connec-
tion) is exponentially distributed. The first traffic model for

cellular mobile radio telephone systems was proposed by
Hong and Rappaport ([11]), who analyzed the performance
and showed that the channel occupancy time distribution
could be approximated by the exponential distribution
when the call holding times are exponentially distributed.
Using a simulation model, Guerin ([10]) showed that, for
the mobile users with “low” change rate of direction of the
movement, the channel occupancy time distribution dis-
plays a rather poor agreement with the exponential distri-
bution fitting. In ([22]), Lin and Chlamtac obtained the ex-
pected channel holding times for both new calls and
handoff calls. Nanda ([27]) studied the handoff rate under
the assumption that the call holding times are exponentially
distributed and there are no blocking and forced termina-
tions (i.e., corresponding to the ideal assumption that there
is an infinite number of channels available in each cell). In
other words, most analytical studies in the literature as-
sume that the channel occupancy times are exponentially
distributed. However, recent field studies ([1], [12], [14])
showed that the channel occupancy times are not exponen-
tially distributed for cellular systems. Therefore, further
investigation on channel occupancy times is needed.

To model the MC/PCS networks in a realistic way, sev-
eral observations are in order. First, due to the wide spec-
trum of the integrated communications services (such as
phone calls, information retrievals, Internet surfing, etc.)
carried jointly over an MC/PCS network, the assumption of
call holding times being exponentially distributed, made in
the past for evaluating the behavior of classical wireless or
wireline telephone networks, may no longer be valid. This
is confirmed via field studies, as we mentioned earlier. Sec-
ond, due to user mobility (portables or mobile computers)
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and the irregular geographical cell shapes, the cell resi-
dence times (the time a user spends in a cell) will also typi-
cally have a general distribution. Third, the channel occu-
pancy time in a cell, i.e., the time the channel is occupied by
a call in a cell (a new call, a handoff call, regardless of the
call being completed in the cell or moving out of the cell) is
also not necessarily distributed exponentially, as generally
assumed in the past ([23], [27], [33], [34]). Last, during a
communication session in an MC/PCS network, a user may
traverse several cells and the call may consequently be
handed off many times before it completes.

Recently, we ([7], [8]) have developed some analytical
tools for analyzing the call completion probability, effective
call holding times, and billing rate planning. In this paper,
we present a systematic study of channel occupancy times
and handoff rate in MC/PCS systems under general sys-
tems assumptions, leading to a number of new results. Un-
der the assumption that the call holding time is exponen-
tially distributed, we present a necessary and sufficient
condition for the new call channel occupancy time (the
handoff call channel occupancy time or the channel occu-
pancy time) to be exponentially distributed. Specifically, we
show that, in an MC/PCS system, the channel occupancy
time is exponentially distributed if and only if cell residence
times are exponentially distributed. When cell residence
times are not exponentially distributed, we derive formulae
to compute the distribution of channel occupancy times. In
order to apply Erlang-B formula, the cell arrival traffic,
which consists of merged traffic of new calls and handoff
calls, has been assumed to be Poisson, a common assump-
tion for the computation of blocking probability in cellular
systems ([5], [9], [23], [31], [33], [34]). However, for cell arri-
val traffic in MC/PCS networks, we show that the cell arri-
val traffic is Poisson if and only if the cell residence times
are exponentially distributed.

The handoff rate, which is defined as the average num-
ber of handoffs during a call connection, is the second focus
of this paper. This quantity is not only used in obtaining the
handoff call arrival rate to a cell, a quantity used in charac-
terizing the channel occupancy time distribution, it can also
be tied to the service quality and cost parameters. In this
paper, we, therefore, derive a general formula for the com-
putation of the handoff rate under general conditions, i.e.,
when the call holding times and cell residence times are
generally distributed with nonlattice distribution functions.

By studying the CCS network, Bolotin ([2]) observed that
the SS7 channel throughput under the actual call holding
time distribution is greater than the theoretical channel
throughput under exponential distribution approximation
for call holding time, and showed that the call holding time
cannot simply be modeled by exponential distribution. In
our study of MC/PCS networks, we address a similar
problem. We find that, for high mobility users, due to the
variation of the call holding time, the handoff rate in a call
and, hence, the handoff call arrival rate are significantly
different from the case when the call holding time is as-
sumed to be exponentially distributed. The exponential
distribution model for call holding time underestimates the
handoff call arrival rate, hence the overall cell traffic rate,
thus the blocking probability under the actual call holding

time, are higher than those under exponential approxima-
tion for channel holding time. This is due to the fact that the
exponential distribution only captures the effects of the
mean value. Our study shows that the effects of distribu-
tion models on the system performance parameters must be
accounted for in teletraffic analysis in order to design a
practical MC/PCS network.

Last, the technique proposed in this paper also leads to a
practical model for deriving performance evaluation of
GSM based mobile computing systems. GSM provides data
capabilities to support mobile computing applications. The
data capabilities include GSM phase 2 bearer data service,
phase 2+ high speed circuit switched data (HSCSD), and
general packet radio service (GPRS) ([6], [25]). These data
services are either circuit switched or packet switched at the
transport layer (i.e., at the wireline backbone network), but
are all circuit switched at the current radio interface. In
other words, a mobile computing user will occupy a traffic
channel similarly to a typical voice user, hence, when a mo-
bile user gets a channel in a cell, he/she will use the chan-
nel during the cell residence of the mobile user. Thus, the
modeling of radio resource allocation for GSM-supported
mobile computing system is similar to the radio channel
allocation for PCS, except that the computing session times
in mobile computing are unlikely to be exponentially dis-
tributed as in traditional PCS systems. As a result, previ-
ously proposed approaches ([5], [21], [23], [31], [33], [34])
are not appropriate for modeling these mobile computing
systems (due to the exponential call holding time assump-
tion). By allowing the use of general call holding time dis-
tribution, our model can be used to study GSM-based mo-
bile computing systems with arbitrary computing session
periods.

This paper is organized as follows: In the next section,
we discuss the properties of channel occupancy times and
the merged cell traffic. In the third section, we present ana-
lytical formulae for the computation of channel holding
time distributions for general cell residence times. In the
fourth section, we present results on handoff rate calcula-
tion. Performance study is provided in Section 5, with the
last section concluding the paper.

2 COMMENTS ON CLASSICAL ASSUMPTIONS
REGARDING HANDOFF TRAFFIC AND CHANNEL
OCCUPANCY TIMES

In order to find the blocking probability in MC/PCS net-
works, a commonly used assumption ([5], [9], [31], [34]) is
that the channel occupancy times are exponentially distrib-
uted. While this is a reasonable assumption for wired tele-
phone traffic and most currently used cellular networks, we
show that this assumption holds only for the case when cell
residence times are exponentially distributed, a property
which does not hold for emerging MC/PCS networks. The
second commonly used assumption is that the merged
traffic from the new call traffic and handoff call traffic in
a cell is a Poisson process ([5], [9], [23], [31], [33], [34]).
This assumption is needed to apply the well-known Er-
lang-B formula (or its extended version) using the
M/M/c/c (or M/G/c/c) queuing model to compute the
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blocking probability in a cell. Although this assumption
regarding merged traffic properties may be a good ap-
proximation for some cases, it cannot be expected to be ap-
propriate for most MC/PCS applications. In fact, the fit of
the exponential distribution for these applications has not
been quantified in the literature. We show that this as-
sumption is valid only for the case when cell residence
times are exponentially distributed.

We first consider the first assumption using the time
diagram in Fig. 1. Assume that the call holding times (the
times of requested connections to a MC/PCS network for
new calls) are exponentially distributed with parameter m.
Let tc be the call holding time for a typical new call, tm be
the cell residence time, r1 be the time between the instant
the new call is initiated at and the instant the new call
moves out the cell if the new call is not completed, rm (m > 1)
be the residual call holding time when the call finishes mth
handoff successfully. Let tno and tho denote the channel oc-
cupancy times for a new call and a handoff call, respec-
tively. Then, from Fig. 1, the new call channel occupancy
time is

tno = min{tc, r1},     (1)

and the handoff call channel occupancy time is

tho = min{rm, tm}.      (2)

Let tc, tm, r1, tho, and tno have density functions fc(t), f(t), fr(t),

fho(t), and fno(t) with their corresponding Laplace transforms

f s f s f s f sc r ho
∗ ∗ ∗ ∗( ), ( ), ( ), ( ) , and f sno

∗ ( ), respectively.
We next show that the handoff call channel occupancy

time tho is exponentially distributed if and only if the cell
residence time tm is exponentially distributed. From (2), we
obtain the probability

Pr(tho £ t) = Pr(rm £ t or tm £ t)

      = Pr(rm £ t) + Pr(tm £ t) - Pr(rm £ t, tm £ t)

      = Pr(rm £ t) + Pr(tm £ t) - Pr(rm £ t)Pr(tm £ t)

= Pr(tc £ t) + Pr(tm £ t) - Pr(tc £ t)Pr(tm £ t),      (3)

where we have used Pr(rm £ t, tm £ t) = Pr(rm £ t)Pr(tm £ t)
from the independency of rm and tm, and Pr(rm £ t) = Pr(tc £ t)
from the memoryless property of the exponential distribu-

tion, where rm is just the residual life of tc (either from the
Residual Life Theorem or the argument in [23]). Differenti-
ating (3), we obtain

f t f t f t f t t t t t f tho c c m c0 5 0 5 0 5 0 5 2 7 2 7 0 5= + − ≤ − ≤Pr Pr

= + +
∞ ∞

f t f d f t f t f dc t ct
0 5 0 5 0 5 0 5 0 5τ τ τ τ .       (4)

Suppose that the cell residence times are exponentially dis-
tributed with parameter h, then, from (4), we obtain

fho(t) = me-mt ¥ e-ht + he-ht ¥ e-mt = (m + h)e-(m+h)t,

which is an exponential distribution. Conversely, suppose
that the handoff call channel occupancy time has exponen-

tial distribution with parameter g, let Y t f d
t

( ) ( )=
∞

τ τ , then

&( ) ( )Y t f t= −  (overdot ◊ denotes the differentiation symbol).
From (4), we obtain

me-mtY(t) + e-mtf(t) = g e-g t,

i.e.,

&Y t Y t e t0 5 0 5 1 6= − − −µ γ γ µ ,

from which we obtain

Y t e Y e e d

e Y o e d e

t tt

t t t

0 5 0 5

0 5

0 5 1 6

1 6

= + −

= −%&'
()* =

− − −

− − −

µ µ τ γ µ τ

µ γτ γ µ

γ τ

γ τ

0
0

0
.

Thus, f t Y t e t( ) &( ) ( ) ( )= − = − − −γ µ γ µ , i.e., the cell residence
time must be exponentially distributed.

We now consider the new call channel occupancy time
distribution case. From (1) and a similar argument, we obtain

f t f t f d f t f dno c r tt ct
0 5 0 5 0 5 0 5 0 5= +

∞ ∞
τ τ τ τ .

Suppose that the new call channel occupancy time is expo-
nentially distributed with parameter, say, m1, from this
identity and a similar argument as for the handoff call
channel occupancy time case, we can deduce that

f t er
t0 5 2 7 2 7= − − −µ µ µ µ

1
1 ,

which is also an exponential distribution. Let F(t) denote

Fig. 1. The time diagram for call holding time and cell residence time.
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the distribution function of the cell residence time with
mean 1/h, from the Residual Life Theorem ([18], [26]), we
have

fr(t) = h(1 - F(t)),

from which we obtain

F t e t0 5 2 7= −
− − −1 1 1

µ µ
η

µ µ .

From this and F(0) = 0, we obtain m1 - m = h, so F(t) = 1 - e-ht,
and we conclude that the cell residence times are also expo-
nentially distributed. This shows that, for an MC/PCS net-
work with exponential call holding times, the new call chan-
nel occupancy time is exponentially distributed if and only if
the cell residence times are exponentially distributed.

In the preceding discussion, we separated calls into new
calls and handoff calls when considering the channel occu-
pancy times. If such distinction is not made, then we need
to consider the channel occupancy time distribution for any
call (either new call or handoff call), i.e., the channel occu-
pancy time for the merged traffic of new calls and handoff
calls, as used in current literature. We will simply call this
the channel occupancy time, without any modifiers such as

new call or handoff call. Let tco denote the channel occu-

pancy time and lh the handoff call arrival rate (which will
be discussed in a later section). Then, it is easy to show that

tco = tno with probability λ λ λ( )+ −h p∆  and tco = tho with

probability λ λ λh h q( )+ −∆ . Let fco(t) and f sco
∗ ( ) be its den-

sity function and the corresponding Laplace transform. It is
easy to obtain

f t pf t qf t

pf t f d pf t f d qf t

f d qf t f d

co no ho

c r rt c ct

t ct

0 5 0 5 0 5
0 5 0 5 0 5 0 5 0 5
0 5 0 5 0 5

= +

= + +

+

∞ ∞

∞ ∞

τ τ τ τ

τ τ τ τ

= − + + − +%&'
()*

− ∞
e p F d p q F t qf tt

t

µ µη τ τ η µ1 10 5 1 6 0 5 0 5 . (5)

It is straightforward to show that when the cell residence
times are exponentially distributed, then the channel occu-
pancy time is also exponentially distributed. Conversely,
suppose that the channel occupancy time is exponentially

distributed with, say, parameter g, i.e., fco(t) = g e-g t, from (5),
we obtain

p F d p q F t qf t e
t

tµη τ τ η µ γ γ µ1 1− + + − + =
∞ − −0 5 1 6 0 5 0 5 1 6 . (6)

From the left hand side of (6), with the properties of the
distribution function, we can deduce that g - m ≥ 0. Let

Y t F d
t

( ) [ ( )]= −
∞

1 τ τ , then F t Y t( ) &( )= +1 , &&( ) ( )Y t f t= , tak-

ing these into (6), we obtain

&& &Y t
p
q Y t

p
q Y t q e t0 5 0 5 0 5 1 6− +

�
��

�
�� + = − −η µ ηµ

γ γ µ .      (7)

One particular solution of (7) is in the form

Y1(t) = Be-(g-m)t,

where

B
q p q p

=
+ + +

>
γ

γ γ η µ µη2 01 6 .

Noticing that the characteristic equation of (7) is

s
p
q s

p
q s s

p
q

2 0− +
�
��

�
�� + = − −

�
��

�
�� =η µ ηµ µ η1 6 ,

which has roots s = m > 0 and s = (p/q)h > 0. If these two
roots are equal, then all solutions of (7) are given by

Y(t) = C1e
mt + C2te

mt + Be-(g-m)t,

where C1 and C2 are constants. Since limtÆ•Y(t) = 0, we
must have C1 = C2 = 0, so Y(t) = Be-(g-m)t. Similarly, if the two
roots are not equal, then all solutions of (7) are

Y(t) = C1e
mt + C2e

-[(p/q)h]t + Be-(g-m)t,

so C1 = C2 = 0 from the definition of Y(t). In any case, Y(t)
must be in the form Y(t) = Be-(g-m)t. So, we have

F t Y t B e t0 5 0 5 1 6 1 6= + = − − − −1 1& γ µ γ µ .

From F(0) = 0, we obtain B(g - m) = 1, hence F(t) = 1 - e-(g -m)t,
which implies that the cell residence times are exponentially
distributed. In summary, we have shown that the channel
occupancy time is exponentially distributed if and only if the
cell residence times are exponentially distributed.

Next, we discuss the second commonly used assump-
tion, i.e., the merged traffic of new calls and handoff calls in
a cell is Poissonian. Assume that, in a typical cell of an
MC/PCS network, the new call arrivals are Poisson, then
the handoff call arrivals to the cell are independent of the
new call arrivals. Let Nn(t) and Nh(t) be the numbers of new
calls and handoff calls, respectively, up to time t. Let N(t) be
the number of calls from the merged traffic of the new call
traffic and the handoff call traffic. Then, we have

N(t) = Nn(t) + Nh(t),      (8)

We use the Z-transform theory and the following result
([18]): For a traffic with counting process N(t), N(t) is a Pois-
son process if and only if its Z-transform E[zN(t)] is equal to
exp(-lt(1 - z)). If Nh(t) is a Poisson process, then, obviously,
N(t) is a Poisson process, i.e., the merged traffic is a Poisson
process. Suppose that N(t) is a Poisson process with pa-
rameter lm and Nn(t) is a Poisson process with parameter l,
then, from (8), we have

E z e E z

E z E z e E z

N t t z N t N t

N t N t t z N t

m n h

n h h

0 5 0 5 0 5 0 5

0 5 0 5 0 5 0 5

= =

= =

− − +

− −

λ

λ

1

1 .

From this, we obtain

E z eN t t zh m0 5 2 7 0 5= − − −λ λ 1 .

Thus, the handoff call traffic Nh(t) is also a Poisson process.
It is well known ([3], [18], [26]) that, for the M/G/c queuing
system with first-come-first-serve (FCFS) strategy, the de-
parture process is a Poisson process if and only if the serv-
ice time is exponentially distributed. We next observe that
the handoff call traffic is the departure process of the
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queuing system with the Poisson arrivals (the merged traf-
fic) and with two virtual “servers”: one “server” for the
calls which complete the connection successfully in the cell
(the service time distribution is exponentially distributed
due to the memoryless property of exponential distribu-
tion), the other “server” for calls which need handoffs
(which forms the handoff call traffic). The departure process
from the first server is a Poisson process, since the depar-
ture process from the M/M/1 queue is a Poisson process
([3]). As the handoff call traffic is Poisson from the above
discussion, from the earlier referenced Burke’s result, the
channel occupancy time must be exponentially distributed,
hence, the cell residence times must be exponentially dis-
tributed, too.

Summarizing the preceding discussion, we finally obtain:

THEOREM 1. For an MC/PCS network with exponential call
holding times and Poisson new call arrivals, we can state:

1)� the new call channel occupancy time is exponentially
distributed if and only if the cell residence times are ex-
ponentially distributed,

2)� the handoff call channel occupancy time is exponentially
distributed if and only if the cell residence times are ex-
ponentially distributed,

3)� the channel occupancy time is exponentially distributed
if and only if the cell residence times are exponentially
distributed, and

4)� the merged traffic from the new call traffic and handoff
call traffic is still Poissonian if and only if the cell resi-
dence times are exponentially distributed.

3 CHANNEL OCCUPANCY TIMES

In the preceding section, we concluded that, for channel
occupancy time to be exponentially distributed, the cell
residence times had to be exponentially distributed. How-
ever, the assumption of exponential cell residence times is
too restrictive, since it is important to know the distribution
of channel occupancy time for generally distributed cell
residence times. It is furthermore important to find out how
“close” is the exponential distribution to the distribution of
channel occupancy times. We address these issues next.

From (4), applying Laplace transform, we obtain

f s f s f s e f t f d dt

e f t f d dt

f s f s e f d dt

e e f t dt

s
s

s f s

ho c
st

c

t

st
c

t

c
s t t

st t

∗ ∗ ∗ −∞

−∞

∗ ∗ − +∞

− −∞

∗

= + − −

= + − −

−

= + + + +

0 5 0 5 0 5 0 5 0 5
0 5 0 5

0 5 0 5 0 5

4 9 0 5

1 6

1 6

0 0

0 0

0 0

0
1

τ τ

τ τ

µ τ τ

µ
µ µ µ

µ

µ

.

From this, it is easy to obtain that the expected handoff call
channel occupancy time is given by (we will use h(i)(x) to
denote the ith derivative of any function h(x) at point x in
the subsequent development)

E t f fho ho= − = −∗ ∗1 0
1

10 50 5 1 64 9µ µ .

Similarly, from (1), we obtain

f s s
s

s f sno r
∗ ∗= + + + +0 5 1 6µ

µ µ µ . (9)

Since r1 is the residual life of the cell residence time, from
the Residual Life Theorem ([18], [26]), we have

f s s f sr
∗ ∗= −0 5 0 5η

1 ,

where h = 1/E[tm], i.e., the cell residence rate. Taking this
into (9), we obtain

f s s
s

s
f sno

∗ ∗= + +
+

− +0 5 1 6 1 6µ
µ

η

µ
µ2 1 ,

from which we also obtain the expected new call channel
occupancy time

E t f fno no= − = − −∗ ∗1
20

1
10 50 5 1 6µ

η
µ

µ .

Similarly, we can obtain formulae for channel occupancy
time.

It is commonly assumed that the new call channel occu-
pancy time and the handoff call channel occupancy time
have the same distribution. However, we claim that this is
true only when the cell residence times are exponentially
distributed. In fact, suppose that channel occupancy times
for both new call and handoff call have the same distribu-
tion, then their Laplace transforms are equal, f s f sno ho

∗ ∗=( ) ( ) ,

we obtain that f *(s + m) = h/(s + m + h), hence, f *(s) = h/(s + h);
this implies that the cell residence times must be exponen-
tially distributed.

Summarizing the above discussions, we arrive at:

THEOREM 2. For an MC/PCS network with exponential call
holding times and Poisson new call arrivals with arrival
rate l, we have:

1)�The Laplace transform of the density function of the new
call channel occupancy time is given by

f s s
s

s
f sno

∗ ∗= + +
+

− +0 5 1 6 1 6µ
µ

η

µ
µ2 1 , (10)

and the expected new call channel occupancy time is

E t fno = − − ∗1
12µ

η
µ

µ1 6 ;      (11)

2)�The Laplace transform of the density function of the
handoff call channel occupancy time is given by

f s s
s

s f sho
∗ ∗= + + + +0 5 1 6µ

µ µ µ ,        (12)

and the expected handoff call channel occupancy time is

E t fho = − ∗1
1µ µ1 64 9. (13)

3)�Let lh denote the handoff call arrival rate to a cell, then
the Laplace transform of the density function of channel
occupancy time is given by
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f s f s f sco
h

no
h

h
ho

∗ ∗ ∗= + + +0 5 0 5 0 5λ
λ λ

λ
λ λ ,        (14)

and the expected channel occupancy time is given by

E t fco
h

h= −
+

− −
�
��

�
��

�
!  

"
$##

∗1
1 12µ

λη
λ λ µ

λ µ
λη µ2 7 1 6 .  (15)

4)�The new call channel occupancy time and the handoff
call channel occupancy time have the same distribution
if and only if the cell residence times are exponentially
distributed.

REMARK. The expected channel occupancy times E[tno] and E[tho]
given in (11) and (13) have also been obtained in [22] from
a direct approach.

Using Theorem 2, we can obtain the channel occupancy
time density functions by the inverse Laplace transform,
from which the distribution functions can be obtained. In
order to observe how “close” the exponential approxima-
tions can be, we have to determine which exponential dis-
tribution functions should be chosen. It is known that an
exponential distribution is uniquely determined by its ex-
pected value. It is reasonable to use the exponential distri-
bution whose expected value is equal to the real expected
value of channel holding time (either (11), (13), or (15)).
There are many criteria to evaluate this approximation,
known in statistics as the “goodness of fit.” A good choice
will be the distance between the distribution functions of
the real data and the exponential data. Hong and Rappa-
port ([11]) proposed the following measure for the “good-
ness of fit”:

G
F t e dt

F t dt

at

=
− −

−

−∞

∞

0 5 4 9
0 52 7

1

2 1

0

0

,

where F(t) is the distribution function of real data and a is
the expected value of the exponential distribution used for
the approximation. This measure is the normalized accu-
mulated difference of distribution functions. Comparisons
can also be done graphically by drawing distribution func-
tions, which will be used in the performance analysis in
fifth section.

4 HANDOFF RATE FOR GENERAL CALL HOLDING
TIMES AND CELL RESIDENCE TIMES

As pointed out in the introduction, it is necessary to study
the handoff rate (i.e., the expected number of handoffs oc-
curring in a call) if one wishes to evaluate a MC/PCS net-
work. For certain special cases, results for handoff rate exist
in the current literature. In [27], Nanda presented an ana-
lytic result of handoff rate for the case when the call hold-
ing time is exponentially distributed and no handoff failure
occurs (which is equivalent to the case where each cell has
an infinite number of channels available). This is, of course,
the ideal case. Lin et al. ([23]) considered the more practical
case where handoff failures are taken into consideration
and presented a formula for the case when call holding
times are distributed exponentially. In this section, we pres-
ent a formula for the general case where the call holding
times and cell residence times are generally distributed, and
handoff failures are accounted for.

Consider a typical call. Let t1, t2, L denote the cell resi-
dence times with expected value 1/h and r1 denote the re-
sidual life of the new call (i.e., the time interval between the
call arrival and the exit of the cell of the portable). Let tc
denote the call holding time for the typical call with ex-
pected value 1/m. We use Fig. 2 to indicate the time dia-
gram for k handoffs. Let H be the number of handoffs of a
typical nonblocking call (either completed or forced to ter-
minate) during the call connection. We can now study the
property of the number H of handoffs under a general call
holding time and cell residence time distributions.

Let f *(s) and f sc
∗( ) be defined as in the last section. We

will assume that t1, t2, º have independently and identi-
cally distributed (iid) nonlattice distributions and that the
call holding time has generally distributed nonlattice distri-
bution ([26]). The following is apparent: H = 0 if and only if

the call is not blocked and the call holding time tc is shorter

than the residual life r1, i.e., the call completes before the
portable moves out of the cell; H = 1 if and only if the call is
not blocked initially, then it either makes a successful
handoff and completes the call successfully in the new cell
or is forced to terminate because of the first handoff failure,

and so on. If the blocking probability for a new call is po and

Fig. 2. The time diagram for k handoffs.
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the probability for a handoff call to be forced to terminate is

pf, then we have
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We first calculate Pr(H = 0). Since the Laplace transform

of f drt
( )τ τ

∞
 is ( ( ))1 − ∗f s sr  and the independency of tc and

r1, from the first equation in (16) and the inverse Laplace
transform, we have
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where s is a sufficiently small positive number which is
chosen for the Laplace inverse transform.

Next, we compute Pr(H = k) for k > 0. Before we do that,

we need to compute Pr(r1 + t2 + L + tk £ tc). Let x = r1 + t2 +

L + tk. Let fx (t) and f sξ
∗( ) be the density function and the

Laplace transform of x. From the independency of r1, t2, t3,
L, we have
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Also, the Laplace transform of Pr(x £ t) (the distribution
function) is f s sξ

∗( ) . Thus, we have

Pr Prr t t t t f t dt

j

f s f s

s e dsf t dt

j

f s f s

s f s ds

k c c

r

k

st
cj

j

r

k

cj

j

1 2 0

0

1

1

1
2

1
2

+ + + ≤ = ≤

=

= −

∞

∞
∗ ∗ −

− ∞

+ ∞

∗ ∗ −

∗

− ∞

+ ∞

L2 7 1 6 0 5
0 5 0 5 0 5

0 5 0 5 0 5

ξ

π

π

σ

σ

σ

σ
.

Taking this into (16), we obtain
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Now, we find the Z-transform (moment generating func-
tion) for the number of handoffs. Let H(z) be the moment
generating function, from (17) and (18), we have
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(19)

where f s f s sr
∗ ∗= −( ) ( ( ))η 1 . It is obvious that when izi £ 1,

the integrand without term f sc
∗ −( ) is analytic on the right

half open complex plane. If f sc
∗ −( ) has no branch point and

has only finite possible isolated singular points in the right
half plane (which is equivalent to saying that f sc

∗( ) has only
finite possible isolated singular point in the left half plane),
then the Residue Theorem can be applied to (19) using a
semicircular contour in the right half plane. Indeed, if we
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use sc denote the singular points of f sc
∗ −( ) in the right half

complex plane, then, from (19) and the Residue Theorem
([20]), we obtain

THEOREM 3. If the density function of the iid calling holding
times has only finite possible isolated singular points, then
the moment generating function for the number of handoffs
is given by
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where Res
s p=

 denotes the residue at singular point s = p.

PROOF. Choosing such s that all singular points of f sc
∗ −( ) in

the right half plane are on the right of vertical line s = s,
and choosing the contour enclosed by the semicircle
at center s = s + j0 and with radius sufficiently large,
then we can apply the Residue Theorem to complete
the proof. o

Theorem 3 can be used to obtain the moments of the
number of handoffs or we can apply (19) to easily find the
handoff rate E[H]. Differentiating H(z) at z = 1, we obtain
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Applying the Residue Theorem, we obtain

THEOREM 4. If the density function of the iid calling holding
times has only finite possible isolated singular points, then
the handoff rate for a nonblocking call is given by
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If the call holding times are exponentially distributed
with parameter m, then f s sc

∗ − = − +0 5 µ µ( ) , which has a

unique singular point, and sc = {m}. From Theorem 4, we
obtain
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This has been obtained in [22] and [23] using different
approaches.

If there is no blocking and no forced termination (the
ideal case when there are infinitely many number of chan-
nels available in each cell), then po = pf = 0 and, from (23),
E[H] = h/m, which is also obtained in [27]. If there are
handoff failures, the handoff rate is intuitively smaller. In-
deed, for any handoff schemes, since 1 - f *(m) £ 1 - (1 - pf)f 

*(m)
for any pf (0 £ pf £ 1), we have, from (23),
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Assume that the call holding times are iid with Erlang
distribution
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where a = mh is the scale parameter and m is a positive in-
teger. When m = 1, it gives the exponential distribution. Let
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Then, f s sc
m∗ − = − +( ) ( )α α  has a unique singular point

sc = {a}, from Theorem 4, we obtain
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For this case, if there is no handoff failure, i.e., po = pf = 0, from

(25), we have g(s) = 1/s2 and g(m-1))(a) = (-1)m-1m!a-(m+1).
From (26), we have

E H
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η
µ .

In fact, it can be shown that, for the ideal case (po = pf = 0),
the handoff rate for any cell residence time distribution and
any call holding time distribution is E[H] = h/m. Indeed,
from (21), if pf = 0, we obtain
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Next, we show how to find the handoff call arrival rate
to a cell from the handoff rate in a call. It is easy to observe
that, for each nonblocking new call, there will be, on the
average, E[H] number of handoff calls induced, so the
handoff call traffic will have arrival rate lh = lE[H]. From
Theorem 4, we obtain

THEOREM 5. If the density function of the iid calling holding
times has only finite possible isolated singular points, then
the handoff call traffic has the arrival rate given by
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The traffic intensity in a cell is given by

r = lE[tno] + lhE[tho],    (28)

where E[tno] and E[tho] are the channel occupancy times for
new calls and handoff calls, respectively.

PROOF. We only need to prove the formula for the cell traffic
intensity. The overall traffic arrival rate is l + lh and
the expected channel occupancy time is

λ
λ λ

λ
λ λ+ + +h

no
h

h
hoE t E t ,
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hence, (28) is straightforward. This completes the
proof. o

If the call holding times are exponentially distributed,
then, from Theorem 5 and (23), we have
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and if we further assume that the nonprioritized handoff
scheme is used (i.e., po = pf), then, from Theorem 5, we have
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If the call holding times are Erlang distributed according
to (24), then we have
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The cell traffic intensity can be computed from this formula
and the expected channel occupancy time.

When the call holding times are Erlang distributed, we
have to compute the derivatives of g(s) (in (25)) for the
computation of the handoff rate in a call and the handoff
call arrival rate to a cell. However, the explicit expressions
for the derivatives of g(s) may be difficult. We therefore de-
velop the following recursive algorithm for their computa-
tions. Let

h(s) = s2[1 - (1 - pf)f 
*(s)].

Using the formula
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Since we have g(s)h(s) = 1 - f *(s), differentiating both sides,
we obtain (p > 0)
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From this, we obtain the following recursive algorithm to

compute g(m-1)(a):
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5 PERFORMANCE STUDIES

This section presents several demonstrative examples
showing how the derived results can be used to study
properties of channel occupancy times and handoff rate in
the emerging MC/PCS networks, from which we observe
how distribution models for call holding times and cell
residence times affect the channel holding times, the
handoff rate in a call, and handoff call arrival rate to a cell.

From [16], we know that any distribution of a
nonnegative random variable can be approximated by the
average summation of Erlang distributions (the so-called
mixed Erlang distribution). The Erlang distribution is a
special case of the mixed Erlang distribution, so, in this sec-
tion, we will concentrate on Erlang distribution for the
modeling of cell residence time. The mixed Erlang cases
will be studied in the future.

First, we assume that the call holding times are expo-
nentially distributed with parameter m. The following iden-
tity is useful for this example:
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The distribution function F(t) of the Erlang distribution is
given by
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We consider the handoff call channel occupancy time dis-
tribution first. From (3), we can find the distribution func-
tion Fho(t) of the handoff call channel occupancy time as
follows:
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It is important to compare the real distribution function
of handoff call channel occupancy time and its exponential
fitting. Since expected value must be the same, we use (13)
to compute the expected value, and use its inverse as the
parameter which determines the exponential function.
Varying the shape parameter m from 2 to 5, we obtain the
comparative plots in Fig. 3. From this figure, we observe
that the exponential approximation is not good, and it be-
comes worse when m grows. As we know, the variance of
the cell residence time is 1/(mh2), which decreases when
m increases. Hence, we can conclude that the exponential
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approximation is not suitable for the handoff call channel
occupancy time distribution when the variance of the cell
residence time is very small.

Next, consider the new call channel occupancy times. Let
Fno(t) denote the distribution function of the new call chan-
nel occupancy time, then, from (1), we obtain
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From Fig. 4, we observe that the new call channel occu-
pancy time is less sensitive to the variance of cell residence
times than the handoff call channel occupancy time, and the
exponential fitting for new call channel occupancy time is
better than the handoff call channel occupancy time.

From (32), (33), and Theorem 2, we can obtain the distri-
bution Fco(t) of channel occupancy time as follows:
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Fig. 5 shows the channel occupancy time (used in calcu-
lating the blocking probabilities). We observe that the chan-
nel occupancy time can be appropriately approximated by
the exponential distribution when m = 2. However, there
are significant discrepancies between the distributions of
the actual channel occupancy time and the exponential
distribution approximations when m becomes larger (i.e.,
the variance of the cell residence times becomes small).

Figs. 6, 7, and 8 show the distributions of the new call
channel occupancy time, handoff call channel occupancy
time, and channel occupancy time, respectively, when the

Fig. 3. Distribution of handoff call channel occupancy time (solid line)
and its exponential fitting (dashed line).

Fig. 4. Distribution of new call channel occupancy time (solid line) and
its exponential fitting (dashed line).

Fig. 5. Distribution of channel occupancy time (solid line) and its expo-
nential fitting (dashed line).
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mobility h/m is small (i.e., the customers are less mobile
than the previous case). We observe that the new call chan-
nel occupancy time distribution has a good approximation
by the exponential distribution, while there is still a signifi-
cant mismatch between the handoff call channel occupancy
time distribution and the exponential distribution. How-
ever, the channel occupancy time distribution can be better
approximated by the exponential distribution.

Finally, we turn our attention to the handoff rate. As-
sume that the call holding times are Erlang distributed. We
shall use (26) and the recursive algorithms given at the end
of the previous section. The cell residence times are Gamma
distributed with the density function

f t
t

e f s s
t0 5 1 6 0 5= = +

�
��

�
�� =

−
− ∗β

γ
β

β β γη
γ γ

β
γ1

Γ
, , ,

where g is the shape parameter, b is the scale parameter,

and the G(g) is the Gamma function. The mean and variance
of this distribution are 1/h and 1/(g h2), respectively.

Figs. 9 and 10 show the handoff rate for different block-
ing probabilities and forced termination probabilities. We
observe the following:

1)�The handoff rate for fixed variance of the cell resi-
dence times (i.e., fixed m) is increasing as the mobility
h/m increases;

2)�The handoff rate is increasing for fixed mobility as the
variance of the cell residence times decreases (i.e., m is
increasing);

3)�The handoff rate is smaller than in the ideal case
(when there is no blocking and no forced termina-
tion), which confirms our earlier expectations and
conforms with general intuition;

4)�The handoff rate is insensitive to the variance of the
cell residence times when mobility h/m is small; while
it is very sensitive to the variance of the cell residence
time when the mobility h/m is high;

5)�When handoff calls are given priority over new calls,
the variance of the cell residence times affects the
handoff rate more significantly.

One most important observation needs to be emphasized
as follows. Since the handoff call arrival rate is equal to the
new call arrival rate times the handoff rate in a call (see
(27)), we observe from Figs. 9 and 10 that, for high mobility
users, the handoff rate is much greater for the Erlang dis-
tributed call holding times (m > 1) than that for exponential
call holding time. This implies that the exponential as-
sumption for call holding time underestimates the handoff
rate, hence, the blocking probabilities. This suggests that
MC/PCS network designers have to carefully consider the
distribution model for call holding time and cell residence
time in order to meet the blocking probability requirement:
Exponential distribution approximation for cell residence
times and call holding times may not be enough for the real
MC/PCS design.

Fig. 6. Distribution of new call channel occupancy time (solid line) and
its exponential fitting (dashed line): small mobility h/m.

Fig. 7. Distribution of handoff call channel occupancy time (solid line)
and its exponential fitting (dashed line): small mobility h/m.

Fig. 8. Distribution of channel occupancy time (solid line) and its expo-
nential fitting (dashed line): small mobility h/m.
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6 CONCLUSIONS

This paper investigates the channel occupancy times and
handoff rates (the expected number of handoffs) for GSM
based mobile computing networks and integrated MC/PCS
networks. It has been shown that, except for the case of ex-
ponentially distributed cell residence times, the channel
occupancy time is not exponentially distributed, the
handoff traffic is not Poisson, and the merged call traffic to
a cell is not Poisson, contrary to commonly made assump-
tions in the past. Analytical expressions were derived for
channel occupancy time distributions, and comparisons

were provided with channel occupancy time distributions
and the exponential fitting. The results presented here can
be used to evaluate the goodness of the exponential distri-
bution approximation. The paper also studied handoff rate
in a call and handoff call arrival rate to a cell; general ana-
lytical results for these two quantities under generally dis-
tributed call holding times and generally distributed cell
residence times are provided. The above results were dem-
onstrated to be useful in the traffic study, performance
evaluation, management, and billing of MC/PCS networks.

Fig. 9. Handoff rate: solid lines for m = 1 – 5 with pf = po = 0.02, dashed line for the ideal case (po = pf = 0).

Fig. 10. Handoff rate: solid lines for m = 1 – 5 with po = 0.1 and pf = 0.05, dashed line for the ideal case (po = pf = 0).
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