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Short Papers

Distribution of Current Induced on Metal-Strip
Gratings by Plane Wave

C. M. Shiao and S. T. Peng

Abstract—In this paper, we present a rigorous analysis of current dis-
tribution induced on a metal-strip grating by an incident plane wave. The
metal strips of the grating are characterized by a complex permittivity,
with a large imaginary part to account for their finite conductivity. Such
a scattering problem is formulated by the mode-matching method to
determine the scattered fields everywhere, so that the volume distribution
of current within a metal strip can be explicitly obtained. Numerical
results are given to illustrate the effects of the dielectric constant of the
surrounding media, as well as the incident angle and polarization on the
current distribution induced by an incident plane wave. The air and metal
modes form the basis for physical explanations of the numerical results
obtained.

Index Terms—Current density, electromagnetic scatterings, gratings,
periodic structures.

I. INTRODUCTION

In this paper, we present a new approach to the determination of
current distribution on the metal strips of a grating, as induced by an
incident plane wave. The metal strips are realistically characterized
by a finite thickness and a complex dielectric constant with a large
imaginary part to account for their large, but finite, conductivity.
Thus, the metal grating can be treated as a dielectric one, in which the
electromagnetic fields can be obtained everywhere, and this permits
the evaluation of the volume distribution of current within the metal
strips.

In the ideal case of perfectly conducting strips, the grating has
been often assumed to have a vanishing thickness, and the induced
current distributes over the conducting surface. It is well known that
the current density is finite for the component perpendicular to the
edges of the strips and exhibits singular behavior for the component
parallel to the edges [1], [2]. Such a singular behavior can be related
to the edge condition of a conducting wedge, which was first studied
by Meixner [3]; for the strip-type transmission lines with perfectly
conducting strips of zero thickness, the singular behavior had been
included as a built-in factor in the assumed current distribution.
For example, in the spectral-domain method, the unknown current
distribution on a microstrip line or a coplanar waveguide had been
expressed as a summation of basis functions which exhibit singular
or smooth behavior near the edges, depending on the polarization of
the guided wave. In doing so, the resultant system of linear equations
derived from the electric-field integral equation can be solved with
relative ease.

In the scattering of a plane wave by a metal grating, it is expected
that the singular behavior of the field component parallel to the edge
should still manifest itself in the current distribution on the metal
strips, but should depend on other factors, such as the thickness of
the grating. In fact, when the thickness is larger than the skin depth,
as is usually the case in practice, we have to deal with the volume

Manuscript received April 2, 1997; revised December 19, 1997.
The authors are with the Department of Communication Engineering,

National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
Publisher Item Identifier S 0018-9480(98)04054-X.

Fig. 1. Plane-wave scattering by a metal grating in a uniform medium.

distribution of current, which has not been studied so far, and this
is what we set forth to do in this paper. Specifically, with a finite
conductivity of metal considered, the electromagnetic fields in the
grating region may be expressed as a superposition of Floquet-mode
functions, so that we may investigate the volume current distribution
on a metal-strip grating, as induced by an incident plane wave. Thus,
the singular or smooth behavior of the current distribution may be
interpreted in terms of the simple field variations of the Floquet-
mode functions. This provides a transparent physical insight into the
problem on hand.

II. STATEMENT OF PROBLEM AND THEORETICAL BACKGROUND

A metal-strip grating is sandwiched between two uniform media,
and a plane wave is incident at an angle�, as depicted in Fig. 1. For
simplicity, the incident medium will be referred to as the air region,
with the dielectric constants"a, and the transmitted medium will be
referred to as the substrate region, with the dielectric constants"s. The
metal strips are characterized by two parameters: the conductivity�

and the thicknesstg. In this paper,� will take a very large, but finite,
value, whiletg must take a nonzero value in order for the grating
to be meaningful. The other grating parameters are: the width of
metal stripdm and the width of air spaceda. The period of grating
is denoted byd = dm + da. With a finite conductivity, the metal
regions are characterized by a complex permittivity"m = 1�j60��,
where� is the incident wavelength. With such a characterization, the
metal grating may be treated as a dielectric one, which had been
extensively studied in the literature [4].

In this paper, our effort is to evaluate the current distribution that
is related directly to the local fields on the surfaces of the grating;
therefore, the results to be presented in this paper will be a critical
test of the accuracy obtainable from the numerical analysis. In the
case of periodic array of metal layers, the dispersion relation may be
rewritten for either of the two polarizations in the following form [4]:

sin �ada sin �mdm

=
2ZaZm

Z2
a + Z2

m

[cos �ada cos �mdm � cos(k0d sin �inc)] (1)

where�a and�m are the propagation constant, andZa andZm are
the wave impedance in the air and metal region, respectively. The
dispersion relation in (1) may be taken as a transcendental equation
to solve for the roots of�a or �m, as will be further explained.
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When the finite conductivity of the metal is taken into considera-
tion, we have� < 1 andZm 6= 0, and the dispersion relation (1)
can be manipulated into the following two equations:

sin �ada =�a (2)

sin �mdm =�m (3)

where�a and�m are small, but nonvanishing, quantities for good
conductors. It then follows that the two subsets of eigenvalues can
be obtained as

�ada =n� + sin
�1

�a; for n = 0; 1; 2; � � � (4)

�mdm =n� + sin
�1

�m; for n = 1; 2; � � � (5)

which reduce to the ideal sets in the limit of infinite conductivity.
We observe that the dispersion roots in the case of a metal grating
with a finite conductivity differ only slightly from those of the ideal
case of perfectly conducting grating. The modes determined from (4)
have their fields distributed mostly inside the air regions, with a tail
penetrating laterally into the adjacent metal region due to the skin
effect (for simplicity, they will be referred to as the air modes). On
the other hand, those mode determined from (5) have their fields
distributed almost sinusoidally across the metal strips, and they have
their energy residing mostly inside the metal strips (for simplicity,
they will be referred to as the metal modes). Mathematically, these
two subsets of modes constitute a complete set to form a basis for a
judicial representation of the electromagnetic fields inside the grating
layer, as done in this paper.

With the dispersion roots explicitly determined as described above,
the Floquet-mode functions can be obtained in a closed form, as is the
current distribution associated with each mode. Referring to Fig. 1,
we have the coordinate system with the origin at the center of the
bottom surface of a metal strip. From the Floquet-mode functions of
the grating region, the current distribution inside a metal strip comes
from the contributions of both air and metal modes. For TE-polarized
air modes, we have

J
(a)
y (x; z) =Ja(z)e

�(� +j� )(d =2�x)
; for 0 < x <

dm

2
(6)

whereJa(z) represents the vertical variation of the current density
to be determined by the boundary-value problem, and�m and �m
are the lateral decay and propagation constants of the air mode,
respectively. Such a current distribution is exponentially laterally
decaying away from the edges of the strips; therefore, when the strips
are very thin, the currents appear only near the edges, and are called
the edge currents. From each mode function, it can be shown that
Ja(z) is proportional to

p
�, the square root of the conductivity of

the metal. As expected, when the conductivity is increased to infinity,
the edge current will become singular in its distribution. On the other
hand, for a TE-polarized metal mode, we have

J
(m)
y (x; z) = Jm(z) cos �mx; for 0 < x <

dm

2
(7)

whereJm(z) represents the vertical variations of the current density
to be determined by the boundary-value problem, and�m is the
propagation constant of the metal mode in the metal region. Such
a sinusoidal current distribution will be responsible for the surface
current on the broadside of the metal strips.

III. N UMERICAL RESULTS

The current distribution associated with an individual mode can be
obtained simply, as described above, and it will form a basis for our
analysis. For the total current on a strip, it is necessary to analyze the

Fig. 2. The induced sheet current distribution in the lateral direction for TM
plane-wave incidence with different incident angles where� = 120�. The
structure parameters are� = 5:8 � 10

4 S/mm,da = dm = 0:6 mm, and
tg = 10�.

scattering problem as a rigorous boundary-value problem from which
all the modal amplitudes in the grating region have to be determined.
In this paper, it is noted that we consider only the special case of
principal plane incidence, e.g., an incidence with the azimuth angle
� = 0

�, so that the polarization is conserved in the scattering process.
Specifically, in such a special case, the electric field has only a single
component (Ey) for the case of TE incidence, while it has two com-
ponents (Ex andEz) for the case of TM incidence. Thus, the induced
current will flow along the metal strips for the case of TE incidence
and will flow in the cross-sectional plane in the case of TM incidence.

In general, the current density for metal strips of finite thickness
is a volume distribution, i.e., a function of the two cross-sectional
coordinates. In order to compare with the published results by other
methods, such as the spectral-domain approach [2], we first consider
a grating of very small thickness (tg = 10�), where� is the skin
depth of the metal. For the case of TM incidence, the induced current
density has two components (Jx andJz), as does the electric field.
Since the strips are so thin that theJz component of the current can
be ignored, we present here numerical results only for the current
componentJx. In order for a comparison with published results,
we integrate the volume current density in the vertical direction to
obtain a sheet-current density distributed in the lateral direction across
a metal strip. Fig. 2 shows the results for four different angles of
incidence:� = 0

�, � = 15
�, � = 30

�, and � = 60
�; they agree

extremely well with those published in the literature [2]. It is noted
that the case of� = 30

� was not shown in [2]; nevertheless, it is
included here to stress the peculiar behavior of the induced current
which is more pronounced than those at other larger or smaller
incident angles. Such a phenomenon may be explained as follows. For
the width of the metal strips chosen, we have the eigenvalue of the
fundamental mode obtained from (5) as�m = k0=2. For the incident
angle of� = 30

�, the propagation constants of the fundamental and
n = �2 space harmonics are given bykx; 0 = �kx;�2 = k0=2. This
means physically that the metal modes happen to be in resonance with
the space harmonics at the incident angle of� = 30

�, leading to the
pronounced effect on the current distribution.

In this paper, our analysis allows for the general case of a grating
sandwiched between two half-spaces of different dielectric constants.
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Fig. 3. The induced sheet current distribution in the lateral direction for TM
plane-wave normal incidence with different upper half-space medium. The
parameters are the same as in Fig. 2.

Fig. 3 compares the current distributions induced by a plane wave
at the normal incidence for three different values of"s, while
keeping "a = 1 fixed. We observe that the current distributions
are all symmetrical with respect to the center line of the strips.
The reason for such a behavior is that the antisymmetrical metal
modes cannot be excited because both the structure and excitation
are symmetrical. From the shape of the current–distribution curve, the
fundamental metal mode is the dominate one for the case of"s = 1,
although the existence of the higher order symmetrical modes are
evident. When the dielectric constant of the substrate is increased
(say,"s = 4:3), the current distribution changes considerably; here,
the second higher order symmetrical metal mode becomes important
and it interferes with the fundamental one to produce the resonant
behavior of the curve. As the dielectric constant of the substrate is
further increased (say,"s = 9:5), the results show that the third
higher order symmetrical metal mode comes into play. Evidently, the
higher the dielectric constant, the larger the number of metal modes
excited. Since the characteristic impedance of a plane wave in the
substrate is proportional to1=

p
"s, the substrate becomes a medium

of vanishing impedance in the limit of"s ! 1. In this case, the
presence of the thin metal strips on the interface between the air and
substrate half-spaces is immaterial, because the whole interface has a
uniformly vanishing impedance. When a plane wave is scattered by
such an interface, only the specular reflection will occur, without the
presence of any higher space harmonics. This means physically that
the current distribution should appear piecewise uniform across the
metal strips, which will require a large number of the metal modes
to synthesize. In this paper, our results exhibit such a trend on the
physical basis.

Consider now, the case of TE incidence onto the same structure as
before. Fig. 4 shows the current distribution, exhibiting a very high
concentration of near the edges of the strips. This is a case where

Fig. 4. The induced sheet current distribution in the lateral direction for TE
plane-wave normal incidence. The parameters are the same as in Fig. 2.

the electric field has only a single component parallel to the strips
and must exhibit the singular behavior in the extreme case of infinite
conductivity, as proven by Meixner [3]. With this paper’s method,
the edge current comes from the contribution of the air modes, as
explained in Section II, and it should have a finite amplitude, as
shown here. In comparison, the current distribution obtained from
our calculation is more concentrated than those previously published
[2].

IV. CONCLUSION

The scattering of a plane wave by a metal grating is analyzed by
the mode-matching method, and the distribution of current induced on
the metal strips are determined in terms of the Floquet modes of the
grating layer. The effects of the incident angle and dielectric constant
on the current distribution are investigated for incident plane waves
of both polarizations. This approach yields transparent insight into
the physical processes involved and provides a better understanding
of the scattering of a plane wave by a metal grating.

REFERENCES

[1] C. M. Butler, “General solutions of the narrow strip (and slot) in-
tegral equations,”IEEE Trans. Antennas Propagat.,vol. AP-33, pp.
1085–1090, Oct. 1985.

[2] K. Uchida, T. Noda, and T. Matsunaga, “Spectral domain analysis of
electromagnetic wave scattering by an infinite plane metallic grating,”
IEEE Trans. Antenna Propagat.,vol. AP-35, pp. 46–52, Jan. 1987.

[3] J. Meixner, “The behavior of electromagnetic fields at edges,”IEEE
Trans. Antenna Propagat.,vol. AP-20, pp. 442–446, July 1972.

[4] S. T. Peng, “Rigorous formulation of scattering and guidance by
dielectric grating waveguides: General case of oblique incidence,”
J. Opt. Soc. Amer. A, Opt. Image Sci.,vol. 16, pp. 1869–1883, 1989.

[5] S. T. Peng and C. M. Shiao, “Scattering of plane waves by metallic
gratings,” presented at the IEEE MTT-S Symp. Dig., San Diego, CA,
May 23–27, 1994.


