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We report a theoretical analysis of nonlinear optical sum-frequency generation from the bulk of a chiral liquid
in the dipole approximation. In our theoretical formulation the circular birefringence effect of a chiral me-
dium was properly taken into account. The angular dependence of the reflected and transmitted sum-
frequency signals on the incident angles of two input beams was calculated to yield the optimal geometry for
probing bulk chirality. We also derived a microscopic expression for the totally antisymmetric part of a
second-order nonlinear optical susceptibility to elaborate unique features in the studies of chirality-related
properties with sum-frequency generation. © 1998 Optical Society of America [S0740-3224(98)01706-8]
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1. INTRODUCTION
Molecules that cannot be superimposed with their mirror
images are called chiral molecules. Two possible configu-
rations, of l and d forms (l is levrotatory and d is dex-
trorotatory), exist for each molecule. Many biologically
and pharmaceutically important molecules have chiral
structures. It is interesting to know that, in a typical
pharmaceutical process, only one enantiomer will assist
the treatment of diseases while the other may lead to
counterproductive effects. Chiral segments in a biologi-
cally active molecule also play an important role in deter-
mining the molecular folding structure. The existence of
a chiral purity1 in living systems remains a major mys-
tery in life science. Inasmuch as optical probes can be
applied to any medium that is accessible to light, the de-
velopment of new optical techniques for investigating
chirality-related structures and properties becomes
highly desirable. Such techniques will also improve our
understanding of many interesting phenomena ranging
from a living system to an artificial device made with
ferroelectric liquid-crystal materials.2

In linear optics, optical rotatory dispersion (ORD) and
circular dichroism (CD) are popular markers for probing
molecular chirality. The former is based on the differ-
ence in the index of refraction between left-hand circu-
larly polarized (LHCP) and right-hand circularly polar-
ized (RHCP) light, whereas the CD technique measures
the difference in absorption coefficients between the two
kinds of circularly polarized light. These linear optical
effects originate from coupling between the magnetic and
the electric transition dipole moments in a molecule3;
therefore the resulting signals are usually weak, with a
typical response (D«/«) of 0.1% in a CD measurement.4

Recently Hicks and co-workers4–8 successfully extended
ORD and CD to surface second-harmonic generation
(SHG). The resultant SHG-CD and SHG-ORD tech-
niques, which originate from electric-dipole effects, pro-
duce a stronger signal than those from chirality-induced
0740-3224/98/061698-09$15.00 ©
linear optical effects. The normalized difference of the
detected SHG intensity with LHCP and with RHCP light
was found to be as large as 0.25. Their results also
showed that the SHG-CD signal can be deduced from two
separately measured SHG spectra with LHCP and RHCP
light. Other experiments,9,10 which measured the SHG
intensity difference between two kinds of linearly polar-
ized light, yielded a similar sensitivity to molecular
chirality. Owing its high sensitivity and surface specific-
ity, SHG has been considered to be superior to the linear
optical techniques for probing the surface chirality in
various materials.

Sum-frequency generation (SFG),11–13 which is also a
second-order nonlinear optical process, has been demon-
strated to be a useful tool for studying surface and inter-
facial phenomena with molecular specificity. The sum-
frequency signal from an isotropic medium vanishes
under the dipole approximation. However, a nonlinear
polarization from the electric-dipole transitions can
readily be produced inside an isotropic chiral medium,
which makes SFG sensitive to bulk chirality.

SFG can be properly described in terms of second-order
nonlinear optical susceptibility x ijk

(2) . The totally anti-
symmetric part (A)x ijk

(2) of the third-rank tensor x ijk
(2) is de-

fined by

~A!x ijk
~2 ! 5 xa

~2 !« ijk , (1)

where xa
(2) [ @« ijkx ijk

(2)#/6, where « ijk is the Levi-Civita
symbol. Owing to the pseudotensor nature of « ijk ,14 xa

(2)

becomes a pseudoscalar that is invariant under rotational
transformation but changes sign under mirror reflection.
Therefore, in a chiral liquid in which no mirror symmetry
exists, the pseudoscalar does not vanish. The theory of
SFG from a chiral liquid was described by Giordmaine in
1965.15 The experimental demonstration was later per-
formed by frequency mixing the fundamental beam from
a ruby laser at 694.3 nm with its second harmonic in a
1998 Optical Society of America
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solution of arabinose.16 The study showed that a trans-
mitted sum-frequency signal generated from a suscepti-
bility pseudoscalar does not vanish only when the nonlin-
ear optical process involved is nondegenerate (v1 Þ v2),
near resonance, and in a noncollinear beam geometry.

A totally antisymmetric tensor changes sign by ex-
changing any two indices. For the SHG process (v1
5 v2) the nonlinear susceptibility is zero because the
last two indices of this third-rank tensor commute. Note
that Kleinman symmetry17 must be violated to yield a
nonvanishing totally antisymmetric susceptibility, which
explains why chirality-induced SFG processes occur only
near resonance. In a collinear geometry the induced
nonlinear polarization is nearly parallel to the direction of
the transmitted sum-frequency beam. An oscillating di-
pole does not radiate along the dipole direction, so the
SFG signal will vanish in a collinear beam configuration.

When an incident beam is refracted into a chiral me-
dium, it splits into two parts with different refractive
angles and polarizations. One beam is LHCP and the
other is RHCP. This effect is called circular birefrin-
gence and can lead to energy coupling between s- and
p-polarized waves. Therefore the nonlinear reflection
and transmission for s- and p-polarized waves in a chiral
medium cannot be solved separately. Some researchers
have studied SFG reflection from a chiral medium by ig-
noring the circular birefringence effect.18,19 In this paper
we include circular birefringence in our formalism to yield
a more-accurate description. As far as SFG-CD and
SFG-ORD are concerned, it is also important to estimate
the nonlinear optical response from the bulk of a chiral
medium. Our theoretical formalism enables us to design
an optimum experimental geometry for SFG-CD and
SFG-ORD. Our results also show that the surface sum-
frequency signal can be distinguished from that from bulk
with an appropriate polarization combination of the input
and output beams.

This paper is organized as follows: Section 2 outlines
the calculation procedure for the reflected and the trans-
mitted sum-frequency signals from a chiral liquid. The
chirality-induced nonlinear polarizations are then de-
scribed. We then derive a microscopic expression for the
totally antisymmetric part of a second-order nonlinear op-
tical susceptibility. Some numerical results and discus-
sion are presented in Section 3. Finally, some conclu-
sions are drawn in Section 4.

2. BASIC THEORY
A. Solutions of Nonlinear Reflection and Transmission
In the following discussion, LHCP light will be indicated
by 1 and RHCP by 2 in the subscript of a vector. The
polarization basis vectors for the LHCP and RHCP waves
are ê6 5 (1 /A2)( ŝ 6 ip̂), where ŝ 5 ŷ and p̂ 5 k̂ 3 ŝ
and k̂ is the unit vector of the wave vector depicted in Fig.
1. For SFG with noncollinear geometry (see Fig. 2), two
beams, of frequencies v1 and v2 , are incident upon a
semi-infinite chiral medium at incident angles of u1i and
u2i . After refraction, each beam splits into two circu-
larly polarized waves with different angles of refraction.
Four possible combinations of the wave vectors can be
chosen to generate the nonlinear polarization; they are
ks,1 5 k1t1 1 k2t1 ,

ks,2 5 k1t1 1 k2t2 ,

ks,3 5 k1t2 1 k2t1 ,

ks,4 5 k1t2 1 k2t2 . (2)

The total nonlinear polarization can be expressed as

P~2 !~v3 5 v1 1 v2!

5 (
j51

4

P j
~2 ! 5 (

j51

4

pj
~2 ! exp@i~k s, j • r 2 v3t !#. (3)

Note that angles of reflection and refraction for each
beam can be determined from the nonlinear Snell’s law:

Fig. 1. Schematic showing the s- and p-polarized directions and
the propagation directions of the incident, refracted, and re-
flected waves.

Fig. 2. Vector diagram showing the relative orientations of the
wave vectors for the incident, reflected, and refracted waves and
the nonlinear polarization source. The splitting of the refracted
wave vector by circular birefringence is neglected.
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k1i sin u1i 1 k2i sin u2i 5 k3r sin u3r 5 k3t1 sin u3t1

5 k3t2 sin u3t2 5 ks, j sin us, j

5 k1t6 sin u1t6 1 k2t6 sin u2t6

5 k1t6 sin u1t6 1 k2t7 sin u2t7 .

(4)

Chirality is introduced into our theory through the consti-
tutive relations20

D 5 «E 1 ijcB,

H 5 B/m 1 ijcE, (5)

where «, m, and jc are, respectively, the dielectric con-
stant, permeability, and chirality admittance of the chiral
medium. By substituting the constitutive relations into
the Maxwell equations we obtain the following two equa-
tions:

¹ • @E~v3! 1 4pP ~1 ! 1 4pP j,i
~2 !# 5 0 (6)

¹ 3 ¹ 3 E~v3! 2 2v3mjc~v3!¹ 3 E~v3! 2 v3
2m«E~v3!

5
4pv3

2

c2 P j,6
~2 ! , (7)

where P j,i
(2) indicates the component of P j

(2) along ks, j ;
P j,1

(2) and P j,2
(2) represent the projections of Pj

(2) onto the
RHCP and LHCP waves with a wave vector of ks,j .
Equation (6) determines the longitudinal part of the sum-
frequency amplitude, and Eq. (7) governs the wave propa-
gation of the transverse components with Pj,6

(2) as the driv-
ing source. The general solution of Eqs. (6) and (7) can
be expressed as a summation of the homogeneous solution
and a particular solution. The homogeneous solution can
be written as
further decompose the jth nonlinear polarization in terms
of the three orthogonal basis vectors, ê j,1 , ê j,2 , and k̂s, j :

Pj
~2 ! 5 ~ pj,1ê j,1 1 pj,2ê j,2 1 pj,ik̂s, j!

3 exp@i~ks, j • r 2 v3t !#, (9)

and then a particular solution is found to be

Epar 5 F 4pv3
2 pj,1

c2~ks, j
2 2 2 j̄cks, jk3t 2 k3t

2 !
ê j,1

1
4pv3

2 pj,2

c2~ks, j
2 1 2 j̄cks, jk3t 2 k3t

2 !
ê j,2 2

4ppj,i

«~v3!
k̂s, jG

3 exp@i~ks, j • r 2 v3t !#. (10)

Equation (10) shows that the transverse and the longitu-
dinal fields have different proportional constants with re-
spect to the nonlinear polarization. The inclusion of
chirality ( j̄c Þ 0) also introduces a small difference in the
proportional constants between the two transverse field
components. Neglect of the difference in the proportions
of the nonlinear optical polarization between the trans-
verse and the longitudinal fields had led to inaccurate re-
sults in previous publications.18,19

We express the reflected sum-frequency field as

E3r 5 E3rsê3rs exp@i~k3r • r 2 v3t !#

1 E3rpê3rp exp@i~k3r • r 2 v3t !# (11)

and then apply the continuity condition to the tangential
electric and magnetic fields across the planar boundary.
This procedure leads to four equations with which the
four unknown parameters, E3t1 , E3t2 , E3rs , and E3rp ,
can be determined. These four equations can be written
in a compact matrix form:
3
1 0

21

A2

21

A2

0 cos u3r

i

A2
cos u3t1

2i

A2
cos u3t2

0 2k3r

i

A2
k3t1

2i

A2
k3t2

k3r cos u3r 0
1

A2
k3t1 cos u3t1

1

A2
k3t2 cos u3t2

4 F E3rs

E3rp

E3t1

E3t2

G 5 (
j51

4 F 2S1, j

S2, j cos us, j 1 S3, j sin us, j

ks, jS2, j

ks, jS1, j cos us, j 1 ijc~v3!
v3

c
S4, j

G , (12)
Eh 5 E3t1ê3t1 exp@i~k3t1 • r 2 v3t !#

1 E3t2ê3t2 exp@i~k3t2 • r 2 v3t !#. (8)

Here k3t6 5 k3t(6j̄c 1 A1 1 j̄c
2) 5 n6(v3 /c), with j̄c

5 jc(v3)Am/«(v3) and k3t 5 (v3 /c)Am«(v3). Note that
n1n2 5 m«(v3). E3t1 and E3t2 are two constants that
can be determined with the boundary conditions. We can
where

S1, j 5
21

A2
F 4pv3

2 pj,1

c2~ks, j
2 2 2 j̄cks, jk3t 2 k3t

2 !

1
4pv3

2 pj,2

c2~ks, j
2 1 2 j̄cks, jk3t 2 k3t

2 !
G ,
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S2, j 5
2i

A2
F 4pv3

2 pj,1

c2~ks, j
2 2 2 j̄cks, jk3t 2 k3t

2 !

2
4pv3

2 pj,2

c2~ks, j
2 1 2 j̄cks, jk3t 2 k3t

2 !
G ,

S3, j 5
4ppj,i

«~v3!
,

S4, j 5 S2, j cos us, j 1 S3, j sin us, j. (13)

We can then solve Eq. (12) to determine the reflected and
the transmitted SFG amplitudes.

B. Calculation of the Nonlinear Polarization of a
Chiral Liquid
For an isotropic chiral medium, the second-order nonlin-
ear susceptibility tensor possesses six nonvanishing com-
ponents. In a laboratory coordinate (x, y, z) system (see
Fig. 1) these components are related to one another by a
single independent parameter, xa

(2) :

xa
~2 ! 5 xxyz

~2 ! 5 xyzx
~2 ! 5 xzxy

~2 ! 5 2xxzy
~2 ! 5 2xyxz

~2 ! 5 2xzyx
~2 ! .

(14)
The transmitted electric-field amplitudes in the medium
can be expressed as

E1t 5 E1tsê1ts 1 E1tpê1tp ,

E2t 5 E2tsê2ts 1 E2tpê2tp . (15)

The transmitted field amplitudes are related to the inci-
dent fields by means of the Fresnel coefficients,21 which
are described in more detail in Appendix A. Assuming
that the refractive angles of the v1 and v2 beams are u1t
and u2t , respectively, we can determine the x, y, and z
components of the induced nonlinear polarization:

px
~2 ! 5 xa

~2 !~E1tsE2tp sin u2t 2 E1tpE2ts sin u1t!,

py
~2 ! 5 xa

~2 !E1tpE2tp sin~u2t 2 u1t!,

pz
~2 ! 5 xa

~2 !~2E1tpE2ts cos u1t 1 E1tsE2tp cos u2t!.
(16)

The four nonlinear polarization terms in Eq. (3) can be
generated with appropriate polarization combinations as
the input fields in Eqs. (16). For example, by substitut-
ing (E1ts , E1tp) 5 (1/A2, i/A2)E1t1 and (E2ts , E2tp)
5 (1/A2, i/A2)E2t1 into Eqs. (16), we can deduce the x, y
and z components of p1

(2) . The parameters that we need
to describe a SFG process are optical frequencies
(v1 , v2), incident angles (u1i , u2i), incident field ampli-
tudes (E1is , E1ip) and (E2is , E2ip) of the v1 and v2
beams, refractive indices @n6(v1), n6(v2), n6(v3)#, and
the value of the totally antisymmetric part of the second-
order susceptibility xa

(2) . Note that in Eqs. (16) xa
(2) can

be factored out of the expression for the nonlinear polar-
ization. It is therefore useful to define a normalized in-
tensity by dividing the sum-frequency intensity by uxa

(2)u2.
The resulting normalized sum-frequency intensity de-
pends only on the linear optical properties of the chiral
medium.

C. Microscopic Description of xa
(2)

The expression for second-order nonlinear polarizability
can be derived from the density matrix formalism22 and
was found to contain eight terms. In terms of molecule-
fixed Cartesian coordinates (j, h, z ) these terms can be
written as

ajhz
~2 ! ~v 5 v1 1 v2!

5 2
e3

\2 (
g,n,n

F ~rj!gn~rh!nn8~rz!n8g

~v 2 vng 1 iGng!~v2 2 vn8g 1 iGn8g!

1
~rj!gn~rh!nn8~rz!n8g

~v 2 vng 1 iGng!~v1 2 vn8g 1 iGn8g!

1
~rj!gn8~rh!n8n~rz!ng

~v 1 vng 1 iGng!~v2 1 vn8g 1 iGn8g!

1
~rj!gn8~rh!n8n~rz!ng

~v 1 vng 1 iGng!~v1 1 vn8g 1 iGn8g!

2
~rj!ng~rh!n8n~rz!gn8

~v 2 vnn8 1 iGnn8!
S 1

v2 1 vn8g 1 iGn8g

1
1

v1 2 vng 1 iGng
D 2

~rj!ng~rh!n8n~rz!gn8

~v 2 vnn8 1 iGnn8!

3 S 1

v2 2 vng 1 iGng
1

1

v1 1 vn8g 1 iGn8g
D Grg

~0 ! .

(17)

By transforming the molecular-fixed frame into a system
of laboratory coordinates (i, j, k) we found that

xa
~2 ! 5

1
6

« ijkx ijk
~2 ! 5 NK 1

6
«jhzajhz

~2 ! L
5 N

1
6

«jhzajhz
~2 ! 5 Naa

~2 ! , (18)

where N denotes the molecular density and ^ & is the ori-
entational average of the quantity contained within, over
a random distribution. The orientational average in Eq.
(18) can be removed because the contraction of «jhz and
ajhz

(2) is invariant under the rotational transformation.
By substituting the expression for ajhz

(2) in Eq. (17) into Eq.
(18) we can write xa

(2) as
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xa
~2 !~v 5 v1 1 v2! 5 2N

1

6\2 (
g,n,n8

F mgn • ~mnn8 3 mn8g!

~v 2 vng 1 iGng!~v2 2 vn8g 1 iGn8g!~v1 2 vn8g 1 iGn8g!

2
mgn8 • ~mn8n 3 mng!

~v 1 vng 1 iGng!~v2 1 vn8g 1 iGn8g!~v1 1 vn8g 1 iGn8g!

1
mng • ~mn8n 3 mgn8!

~v 2 vnn8 1 iGnn8!~v2 1 vn8g 1 iGn8g!~v1 1 vn8g 1 iGn8g!

2
mng • ~mn8n 3 mgn8!

~v 2 vnn8 1 iGnn8!~v1 2 vng 1 iGng!~v2 2 vng 1 iGng!
G ~v1 2 v2!rg

~0 ! . (19)
The important feature of xa
(2) } (v1 2 v2) from Eq. (19)

allows us to conclude that there should be no second-
harmonic signal from xa

(2) because xa
(2) 5 0 as v1 5 v2 .

Furthermore, from Eq. (19) we find that the totally anti-
symmetric part is proportional to the scalar triple product
of the three successive transition dipole moments [i.e.,
xa

(2) } mgn • (mnn8 3 mn8g)] that are involved in a three-
photon process. To yield a nonvanishing xa

(2) , the three
successive transition dipole moments must not be copla-
nar; the molecule should therefore possess stereostruc-
tures. Note that mnn8 3 mn8g exhibits the transformation
property of an axial vector. Therefore the inner product
of a polar vector mgn and the axial vector mnn8
3 mn8g generates a pseudoscalar that changes sign under
mirror reflection, which explains why xa

(2) can sensitively
reflect molecular chirality.

3. NUMERICAL RESULTS AND DISCUSSION
The first SFG measurement with a 2.46-M solution of
arabinose16 showed that the magnitude of xa

(2) is ;1
3 10210 esu. With the known number density of mol-
ecules, the chirality-induced nonlinear polarizability aa

(2)

is estimated to be 1 3 10231 esu, which is approximately
5% of a typical achiral nonlinear polarizability component
ajjj

(2) .23

In a non-phase-matching three-wave-mixing process
the effective interaction length is limited mainly by the
coherence length. Inasmuch as the coherence length lc

in a liquid is ;1 3 1023 cm, the value of xa
(2)lc can be as

large as 1 3 10213 esu. With a detectability of x (2)lc
' 1 3 10217 esu in a typical detection system, we con-
clude that submicromolar chiral concentration should be
detectable by SFG. Note that we can further verify the
sum-frequency signal from bulk chirality with an obser-
vation of a vanishing signal from a racemic mixture. The
absorption of a chiral medium may reduce the value of the
effective interaction length. We can take the absorptive
effect at frequency v j into account in our formalism by in-
troducing complex wave vectors kjt6 → k8jt6 1 ib j6 in
Eqs. (2) and (8), where b j6 is the attenuation coefficient at
frequency v j with polarization along ê6 . For a strongly
absorptive medium the effective interaction can be re-
duced to 1/b.

A. Numerical Results
In Fig. 3 the reflected and transmitted SFG signals are
plotted as a function of the incident angle of beam 1 with
three different polarization combinations of the two input
beams. The incident angle of beam 2 was fixed at 40°.
Here sp denotes that input beam 1 is s polarized and
beam 2 is p polarized. The frequencies and the refractive
indices used in the calculations are v1 5 10 000
cm21, v2 5 20 000 cm21, and (n16 , n26 , n36)
5 (1.38, 1.40, 1.43). We first neglect the circular bire-
fringence of the chiral liquid. The resulting SFG signals
with three polarization combinations of pp, sp, and ps
are shown in Fig. 3 by dotted, solid, and dashed curves,
respectively. Owing to the vanishing intensity, we do not
present the sum-frequency signal with an ss polarization
combination in Fig. 3. All SFG intensities have been nor-
malized to uxa

(2)u2uE1iu2uE2iu2. The polarization combina-
tions of sp and ps generate a p-polarized SFG signal in
the reflected and the transmitted directions, whereas the
pp polarization combination generates an s-polarized sig-
nal. It is interesting to note that, in a collinear beam ge-
ometry (u1i 5 u2i > 40°), the transmitted SFG signal
vanishes for all polarization combinations, whereas at

Fig. 3. Calculated sum-frequency intensities [(a), (b) in reflec-
tion; (c), (d) in transmission] plotted as a function of the incident
angle of input beam 1. In the calculations, the incident angle of
beam 2 was fixed at 40°. Left, the input polarizations for two
input beams are p polarized. Right, the curves are generated
with ps ( p for beam 1 and s for beam 2) or sp input polarization
combinations. The circular birefringence of the material is ne-
glected.
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this incident angle the reflected SFG signal with the sp-
and ps-polarization combinations achieves a maximal
value. This result indicates that the noncollinear re-
quirement can be eliminated in an oblique-incidence con-
figuration if the reflected SFG signal is detected.

In Fig. 4(a) the reflected SFG signal is plotted as a
function of the incident angle of beam 1 with the incident
angle of beam 2 varying from 20° to 80°. The sp polar-
ization combination was chosen in the calculations. The
maximum reflected SFG signal first increases when the
incident angle of the beam 2 is increased from u2i 5 20°
to u2i 5 60° and then decreases when u2i is increased fur-
ther. The decrease of the SFG peak intensity at u2i
5 80° can be ascribed to the effect of the reduced trans-
missivity at the grazing incidence, in which only a small
portion of incident light is refracted into the chiral me-
dium to induce the nonlinear polarization. Therefore
there exists optimum incident angles for beams 1 and 2 to
generate a maximal reflected SFG signal. Detailed
analyses show that the maximum SFG intensity can be
achieved with the incident angle of beam 1 fixed at 54°
and that of beam 2 fixed at 63°.

In Fig. 4(b) the transmitted SFG signal is plotted. The
maximal SFG signal decreases as u2i increases from 20°
to 80°. The transmitted intensity vanishes at the collin-
ear geometry. Further analyses show that the maximal
signal can be achieved with the s-polarized wave (beam 1)

Fig. 4. (a) Reflected sum-frequency signal with sp input polar-
ization combination plotted as a function of the incident angle of
beam 1. The incident angle of beam 2 is increased as shown.
(b) Similar results for the transmitted sum-frequency signal.
incident at u2i 5 0°, whereas the p-polarized wave (beam
2) is incident near the Brewster angle.

The reflected SFG intensity depends both on the mag-
nitude of the nonlinear polarization and on the angle be-
tween the nonlinear polarization and the reflected direc-
tion of the SFG signal. The nonlinear polarization
generated from a chiral liquid is proportional to the cross
product of the two transmitted fields of two input beams
@P(2) 5 xa

(2)E1t 3 E2t#. The transmitted Fresnel coeffi-
cients for both s- and p-polarized light are monotonically
decreasing functions of the incident angle. Thus the
product of the s- and the p-polarized transmitted fields
reaches a maximum at normal incidence. The depen-
dence of the reflected SFG signal on the angle between
the nonlinear polarization and the propagation direction
of the reflected SFG signal suggests that the SFG inten-
sity should reach a maximum when this angle is 90°.
This condition can be attained with two input beams both
incident at the Brewster angle, which has a value of 54.5°
for the medium considered here. The optimal incident
angles that we found above for two input beams to gener-
ate the maximum reflected SFG signal are close to the
Brewster angle. This result suggests that the angle be-
tween the nonlinear polarization and the propagation di-

Fig. 5. Calculated SFG intensity corrections for the circular bi-
refringence of material. The dotted curves shown in Fig. 4 with
u2i 5 60° and a vanishing circular birefringence were chosen for
the intensity references. The corrections for n1 . n2 are shown
at the left; at the right the corrections for n1 , n2 are presented.
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rection of the reflected SFG signal play a crucial role in
determining the magnitude of the reflected SFG signal.

Figure 5 shows the SFG intensity corrections caused
by the circular birefringence effect of a chiral me-
dium. The dotted curves in Fig. 4 with u2i 5 60° are
used for the intensity references without circular bire-
fringence. The intensity corrections with n1 . n2 rela-
tive to the references are shown on the left in Fig. 5,
and at the right the corrections with n1 , n2 are pre-
sented. To take circular birefringence into account we
used (n11 , n21 , n31) 5 (1.3800, 1.4000, 1.4300) and
(n12 , n22 , n32) 5 (1.3803, 1.4004, 1.4306) in the left
column and (n11 , n21 , n31) 5 (1.3800, 1.4000, 1.4300)
and (n12 , n22 , n32) 5 (1.3797, 1.3996, 1.4294) in the
right column of Fig. 5. We found that a nonvanishing
s-polarized signal can emerge from an sp input polariza-
tion combination when the circular birefringence effect is
included, which indicates that circular birefringence
causes the nonlinear polarization to point away from the
plane of incidence. In addition, circular birefringence
leads to a slight increase in the p-polarized SFG intensity
with n1 . n2 and to a decrease with n1 , n2 .

In a surface sum-frequency measurement, an azimuth-
ally isotropic polar layer with an effective surface suscep-
tibility of xs

(2) can generate only an s-polarized SFG signal
by use of an sp input polarization combination.24,25

Based on our analysis of the bulk contribution from a chi-
ral liquid, both the sp and the ps polarization combina-
tions produce a p-polarized sum-frequency field when the
circular birefringence effect is neglected. From the
s-polarized intensity variations shown in Figs. 5(a) and
5(b) and the p-polarized intensity reference [the dotted
curve in Fig. 4(a)] we can deduce that DI3rs /I3rp
' 1027. Looking at the dotted curves in Figs. 4(a) and
4(b), we can observe that the peak value of the transmit-
ted SFG intensity is approximately ten times larger than
that of the reflected SFG intensity. This finding indi-
cates that the effective nonlinear susceptibility for re-
flected SFG, xeff,r

(2) , is approximately three tenths of that
for the transmitted SFG, xeff,t

(2) . Inasmuch as xeff,t
(2) for a

2.46-M solution of arabinose was measured to be ;1
3 10210 esu,16 xeff,r

(2) can be estimated to be 3
3 10211 esu. For a solution of arabinose, the value of
uxs

(2)/(xeff,r
(2) lc)u2 was therefore found to be ;1023, which is

much larger than DI3rs /I3rp . This result implies that
the nonvanishing s-polarized sum-frequency signal
caused by the circular birefringence effect of a chiral me-
dium is negligible compared with the surface contribu-
tion. One can therefore distinguish the surface signal
from the bulk contribution by measuring the s-polarized
SFG signal for the surface contribution and the
p-polarized SFG signal for the bulk contribution by using
either sp or ps as the input polarization combination.

B. Spectroscopic Applications
Although electronic CD spectroscopy was developed at the
end of last century, the first vibrational CD26,27 was not
demonstrated until the 1970’s. During the past few de-
cades, vibrational CD had been rigorously developed into
a useful tool for probing chirality with molecular specific-
ity. From a theoretical point of view, a vibrational wave
function is better understood and is easier to calculate
than an electronic wave function. Therefore structural
information will be more reliably extracted from a mea-
sured vibrational spectrum through a careful comparison
with theoretical calculation. Vibrational spectra from an
intramolecular functional group have been shown to be
highly sensitive to the perturbation from a nearby chiral
center.28,29 Therefore a sum-frequency process that com-
bines an optical photon and a frequency-tunable infrared
photon is a promising tool for studying chirality-induced
phenomena.30

In an infrared-visible SFG experiment one can investi-
gate the resonant behavior of xa

(2) by tuning the incident
infrared beam across some vibrational resonance of a chi-
ral molecule. Unlike linear optical CD, for which one
needs to extract a small differential signal from a large
background because of the weak coupling between the
magnetic and the electric transition dipole moments,26,27

SFG spectroscopy as discussed above is purely electric-
dipole contributed and background free. Furthermore,
the SFG spectroscopic characterization of xa

(2) can offer
valuable information about the substructure of a chiral
molecule.

The chirality specificity of our proposed spectroscopic
technique can facilitate the study of solvation processes.
For an accurate measurement of molecular nonlinear op-
tical properties in condensed phase the solute–solvent in-
teraction must be carefully taken into account. Unfortu-
nately, the solvation processes31 of a molecule are not well
understood. As far as a second-order nonlinear optical
process is concerned, an ordered polar structure is needed
and the resulting nonlinear optical signal depends on the
order of the orientational distribution. To investigate
the influence of the surrounding solvent on the nonlinear
optical response of the solute molecules we must first
have a clear picture of the molecular orientational distri-
bution. Chiral molecules can serve as useful probes for
studying the solvent effect because the totally antisym-
metric part of second-order susceptibility is sensitive only
to molecular chirality. Thus the resulting SFG signal
will originate purely from the chiral solute if the solvent
is achiral. Furthermore, note from Eq. (18) that the to-
tally antisymmetric part, which is rotationally invariant
under rotational operation, permits a fairly straightfor-
ward connection of xa

(2) 5 Naa
(2) between the macroscopic

nonlinear susceptibility x (2) and the microscopic nonlin-
ear molecular polarizability a (2). Thus the nonlinear
molecular polarizability can easily be determined from
the measured nonlinear susceptibility. The solvent effect
may be also reflected in a relative peak shift or a magni-
tude change in the spectra of chiral molecules in different
solvents. The quadrupole contribution from the achiral
solvent may mask these chirality-induced signals in a di-
lute solution. The SFG amplitude ratio of the quadru-
pole to the dipole contribution can be roughly estimated
from the spatial dispersion parameter a/l, where a is the
characteristic dimension of the molecules and l is the
wavelength. In the visible range, a/l is 1022 –1024. To
avoid the masking effect from the solvent’s quadrupole
contribution, the volume fraction of the chiral solute must
exceed 1022.
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4. SUMMARY
We have solved the problem of the nonlinear reflection
and transmission for sum-frequency generation from the
bulk of a chiral liquid. The dependence of the SFG inten-
sity on the incident angles and the polarizations of two in-
cident beams was analyzed. The optimal experimental
arrangement that gives the strongest SFG signal has
been discovered. We also included the circular birefrin-
gence effect of a chiral medium in our formalism. Our
calculations showed that the circular birefringence of a
chiral medium makes only a small correction to the SFG
intensity. The potential of chirality-induced SFG in
spectroscopic applications was also assessed and dis-
cussed.

APPENDIX A: FRESNEL COEFFICIENTS
Owing to the appearance of circular birefringence in a chi-
ral medium, the beam refracted into the medium will split
into a LHCP and a RHCP wave. Because the eigenwaves
in a chiral medium are circularly polarized, we can not
separately describe the reflection and the transmission of
s- and p-polarized waves. To determine the amplitude of
a refracted wave, we first decompose the incident and the
reflected electric fields into s and p components, Eis , Eip ,
Ers , and Erp , and then decompose the refracted wave
into LHCP and RHCP components, Et1 and Et2 . The
same decomposition is also applied to the magnetic fields.
Continuity of the tangential components of electric fields
across a planar boundary yields the following two equa-
tions:

Eis 1 Ers 5
1

A2
~Et1 1 Et2!,

2Eip cos u i 1 Erp cos ur 5
i

A2
~2Et1 cos u t1

1 Et2 cos u t2!. (A1)

Continuity of the tangential components of magnetic
fields across the boundary provides two additional equa-
tions:

His 1 Hrs 5
1

A2
~Ht1 1 Ht2!,

2Hip cos u i 1 Hrp cos ur 5
i

A2
~2Ht1 cos u t1

1 Ht2 cos u t2!. (A2)

The electric and magnetic fields are connected by means
of the following equations:

His 5 2
c

m0v
kiEip , Hip 5

c
m0v

kiEis ,

Hrs 5 2
c

m0v
krErp , Hrp 5

c
m0v

krErs ,
Ht1 5 2
c

mv
ikt1Et1 , Ht2 5

c
mv

ikt2Et2 . (A3)

For nonmagnetic media for which m 5 m0 , Eqs. (A1) and
(A2) can be solved to yield the following matrix equation:

3
1 0

21

A2

21

A2

0 cos ur
i

A2
cos u t1

2i

A2
cos u t2

0 2kr
i

A2
kt1

2i

A2
kt2

kr cos ur 0
1

A2
kt1 cos u t1

1

A2
kt2 cos u t2

4
3 F Ers

Erp

Et1

Et2

G 5 F 2Eis

Eip cos u i

kiEip

kiEis cos u i

G . (A4)

By solving Eq. (A4) we can express Ers and Erp in terms
of Eis and Eip :

F Ers

Erp
G 5 F r11 r12

r21 r22
G F Eis

Eip
G , (A5)

FEt1

Et2
G 5 F t11 t12

t21 t22
G F Eis

Eip
G . (A6)

The matrix elements have been determined to be

t11 5
A2
D

~n2 cos u i 1 cos u t2!2 cos u i ,

t12 5
2iA2

D
~n2 cos u t2 1 cos u i!2 cos u i ,

t21 5
A2
D

~n1 cos u i 1 cos u t1!2 cos u i ,

t22 5
iA2
D

~n1 cos u t1 1 cos u i!2 cos u i ;

r11 5
21
D

@~n1n2 2 1 !~cos u t1 1 cos u t2!cos u i

2 ~n1 1 n2!~cos2 u i 2 cos u t1 cos u t2!#,

r12 5
2i
D

~n1 cos u t1 2 n2 cos u t2!cos u i ,

r21 5
22i
D

~n2 cos u t1 2 n1 cos u t2!cos u i ,

r22 5
1
D

@~n1n2 2 1 !~cos u t1 1 cos u t2!cos u i

1 ~n1 1 n2!~cos2 u i 2 cos u t1 cos u t2!#,

(A7)

where
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D [ ~n1n2 1 1 !~cos u t1 1 cos u t2!cos u i 1 ~n1 1 n2!

3~cos2 u i 1 cos u t1 cos u t2!. (A8)
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