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Abstract 

A unified analysis of a weighted least squares finite element method (WLSFEM) for 
approximating solutions of a large class of first-order differential systems is proposed. 
The method exhibits several advantageous features. For example, the trial and test func- 
tions are not required to satisfy the boundary conditions. Its discretization results in 
symmetric and positive definite algebraic systems with condition number O(h 2 + u~). 
And a single piecewise polynomial finite element space may be used for all test and trial 
functions. Asymptotic convergence of the least squares approximations with suitable 
weights is established in a natural norm without requiring extra smoothness of the so- 
lutions. If, instead, the solutions are sufficiently regular, a priori error estimates can be 
derived under two suitable assumptions which are related respectively to the symmetric 
positive systems of Friedrichs and first-order Agmon-Douglis-Nirenberg (ADN) ellip- 
tic systems. Numerous model problems fit into these two important systems. Some se- 
lective examples are examined and verified in the unified framework. © 1998 Published 
by Elsevier Science Inc. All rights reserved. 
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1. Introduction 

The purpose of this paper is to give a unified analysis of a weighted least 
squares finite element method (WESFEM) applied to a large class of first-order 
differential systems. The Friedrichs symmetric positive systems [24] and the 
first-order Agmon-Douglis-Nirenberg (ADN) elliptic systems [l] are of partic- 
ular interest in this general framework. 

Although there has been considerable attention to the use of least squares 
principles in connection with finite element applications during the last decade, 
the modern theory of least squares finite element methods (LSFEMs) for the 
approximate solution of elliptic boundary value problems dates back at least 
from the work of Bramble and Schatz [7,8] in 1970. In Refs. [7,8], the approx- 
imate solution is defined to be the minimizer of a least squares functional over 
a finite-dimensional approximating function (trial function) space. The func- 
tional consists of a weighted sum of the residuals occurring in the differential 
equation and the boundary condition. This method has the feature that the tri- 
al and test functions are not required to satisfy the boundary condition. On the 
other hand, it requires that the trial and test functions are smooth enough to lie 
in the domain of the elliptic operator. For example, they must be in the space 
H2"(Q) for a 2mth-order problem. Thus, many seemingly natural finite ele- 
ments are never admissible. However, this difficulty may be circumvented by 
introducing the derivatives of the unknown function as new dependent vari- 
ables (in general, the combinations of these new dependent variables present 
certain physical meanings such as, fluxes, vorticity, and stresses, etc.), then 
the original higher order problem can be reformulated as a system of differen- 
tial equations of first-order with possibly additional compatibility equations. 
Applying the least squares principles on this extended first-order system, the 
smoothness requirement on the trial and test function spaces can then be re- 
laxed, which eliminates the main disadvantage of this approach. 

The least squares approach to boundary value problems of first-order sys- 
tems represents a fairly general methodology that can produce a variety of al- 
gorithms. Thus, various LSFEMs appeared in the literature. Roughly speaking, 
according to the boundary treatment, these methods can be classified into the 
following two categories. 
• The least squares functional involves only the residuals in the differential 

equations. In this case, the trial and test functions are required to fulfill 
the homogeneous boundary conditions and thus more than L 2 regularity, 
say H I/2, for the given boundary functions is necessary in the nonhomoge- 
neous cases. See, e.g., Refs. [5,11,13,14,17 20,22,23,26,35]. 

• The least squares functional consists both of the residuals in the differential 
equations and the boundary conditions. The trial and test functions need not 
satisfy the boundary conditions. Hence, only L 2 boundary data is required 
whenever the problem is well posed. See, e.g., Refs. [2,4,12,15,16,25,37]. 



S.-E Yang, J.-L. Liu / Appl. Math. Comput, 92 (1998) 9 27 I I 

Both types of least squares functionals can be combined with the weighting 
techniques to enhance the stability and accuracy of the approximate solution, 
even allowing different equations and boundary conditions equipped with dif- 
ferent weights [2,5]. 

Motivated by the WLSFEM of Aziz and Liu [4], we generalize the method 
(of the second category) in a unified framework for both Friedrichs' and ADN 
systems. More specifically, the method is applied to the boundary value prob- 
lems of first-order systems in the general form: 

0u 
L f u : = ~ . . , A i ~ x i + A o u = f  inf2, (1) 

i~l 

. ~u:=Bu=g on0~2, (2) 

where f2 c ~d  d ~> 2, is a bounded domain with a smooth boundary 0f2, and 
u -- (ul . . . .  ,urn) t, f -- (fl . . . .  ,fro) t, g = (g l , . . .  ,g,)¢. In the sequel, we shall al- 
ways assume that the entries of m × m matrices Ai E [L~(E2)] m×m, 0 <<. i <<. d, and 
of n × m boundary matrix B E ILk(Of2)] "×m are regular enough on ~ and 0f2, 
respectively, such that problem (1), (2) has a unique solution u E [H 1 (~c2)]m with 
the given functions f c [L2(f2)] ", g E IL2(Of2)] ". 

LSFEMs offer many attractive features in practice when applied to boun- 
dary value problems formulated in first-order systems, we refer to the refer- 
ences mentioned in the above. We summarize our results as follows. 
• With a minimum regularity of the (known or unknown) functions as posed 

in Eqs. (1) and (2), asymptotic convergence of the approximate solutions ob- 
tained by the WLSFEM is given for the general problem (1) and (2). 

• Under suitable assumptions ((19) and (20) in Section 4), an analysis of a pri- 
ori estimates for both Friedrichs' and ADN systems is presented. In partic- 
ular, the recent works on LSFEMs for the Stokes equations by Bochev and 
Gunzburger [5], Chang et al. [18,19], and Jiang and Chang [26] may be ex- 
tended by using the WLSFEM. Consequently, the regularity requirement on 
the boundary conditions can be lessened and the trial and test functions are 
not required to satisfy the boundary conditions. However, it is not clear that 
the estimates are sharp under the general assumptions. If, in addition, 
stronger conditions such as, e.g., that of Ref. [37] are met, optimal conver- 
gence can be expected for certain systems. 

• The condition number of the resulting system of linear equations is 
O(h -2 + w2), where h denotes the mesh parameter and w the weighting pa- 
rameter. 

• The framework is independent of the type of differential systems, i.e., it is for 
elliptic, parabolic, hyperbolic, or mixed type problems. 
The remainder of the paper is organized as follows. Some notation and pre- 

liminary results will be introduced in Section 2. The WLSFEM is presented in 
Section 3 with its fundamental properties and asymptotic convergence result. 
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A priori estimates are derived in Section 4 under the two general assumptions. 
Two model problems, namely, the neutron transport equation and the Stokes 
equations cast in the framework of Eqs. (1) and (2) are examined in Section 5 
to validate the assumptions. An estimate for the condition number of the re- 
sulting symmetric positive definite matrix is given in Section 6. Finally, some 
concluding remarks are drawn in Section 7. 

2. Notation and preliminaries 

Throughout this paper, we shall require some function spaces defined on f2 
and 092 [33]. The classical Sobolev spaces H+(~2), s ~> 0 integer, and L2(0f2) with 
their associated inner products (., .)~..~, (., ")0,0e and norms ]]. [IL,'.Q' 11' II0.0e are 
employed. As usual, L2(~):=H°(~) .  For the Cartesian product spaces 
[H~(~)] m and [L2(0(2)] ", the corresponding inner products and norms are also 
denoted by (., ).,.a, ( ,  )o,00 and l l  ]1.+.~, [1 ll0.o~2, respectively, when there is no 
chance for confusion, 

By L ~(~2) and L ~(0~2) we denote the usual Banach spaces of measurable 
and essentially bounded real-valued functions defined on ~2 and 0~  with the 
norms II' [l~.a and 11. I]~.0~2, respectively, 

Since the boundary 0~  of the bounded domain f2 is smooth, there exists an 
operator 70 : H~ (~2) ---+ L2(0f~), linear and continuous, such that 

70v = restriction of v on 0• for every v c C 1 (~). 

The space 70(H j (Q)) is not the whole space L2(0(2), it is denoted by HI/2(0(2) 
and define its norm by 

II~IP~/2,oQ = inf{llvll,,n; v ~ H ' ( n ) ,  70v = ~}, 

which makes it a Hilbert space. Also, the associated norm of the product space 
[HI/2(Of2)] " is still denoted by PI " ]ll/2,0Q. 

Define the following bilinear form and linear form: for any v, w c [H 1 ((2)] m, 

a+(v, w) = ( d v ,  ~w)0~, + w(.~v, :~w)0 o+,, (3) 

g,~(v) = (f, Sv)0.Q + w(g, .Sv)0 o,2 , (4) 

where w is a positive weight maybe depending on the mesh parameter h which 
will be introduced later. It is easily seen that, for each weight w, a,,.(., .) defines 
an inner product on the space [H l (Q)}m × [H l (~2)lm, and the reduced norm shall 
be given by 

Ilvll~. = a+(~, v) Vv ~ Et/' (~)]". (5) 

Note that the homogeneous property of ]] - H~ is ensured by the fact that prob- 
lem (1) and (2) possesses a unique solution in [Hl((~)] " for given functions 
f E [L2(g2)] ~, g E [L2(On)] ". 
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To approximate (1) and (2), we consider a regular family [21] of  triangula- 
tions {,Y-h : 0 < h < 1 } of O, where the parameter h measures the mesh size of  
each discretization. For  each h, define the finite element space ~F'h,p C [H ~ 
(~2)] ~, p ~> 1 integer, which is assumed to possess the following approximation 
property: for any v • [H p+I ((2)] m there exists Vh.p • ~°h.p such that 

IIv - v,,,,~ll,,.~ ÷ hllv - v~.,,ll,.o ~ C,h'~+' Ilvll,,+,.~, (6) 

where C~ is a positive constant independent of v and h. 
Using the following lemma, further approximation properties of the finite 

element space ~"h.p can be deduced• 

Lemma 2.1. There is a positive constant C2 such that, ,['or any v • [m I (Q)]m and 
a n y  ~; ~ O, 

( 1 ) 
I/vllo.,,~ ~< c2 ~llvll,.~ ÷- I lv l lo .~ ,  • (7) 

g;, 

A proof  of Lemma 2.1 can be found in, for example, Refs. [9,33]• With (6) and 
(7), we immediately have: 

Lemma 2.2. Let v • [Hp+I ( (2)] m, p ~ 1 integer. Then there exists Vh,p • :t h.p such 
that, Jor an)' e > O, 

( l hp+l ) I1 v - "~,,,11,,.~ ~< C3 ~ h " +  - Ilvll,,+,,~, (8) 

where C3 is a positive constant independent o f  v, ~, and h. 

Lemma 2.3. Let v e [H p+I (~r~)]m P ~ 1 integer. Then there exists Vh,p • ~th.p such 
that 

II v - Vh.,,II,,, ~< C4(hP+ whP+')ilvlkp.,,~ (9) 

Jbr some positive constant C4 independent o f  v, w, and h. 

Proof. Let Vh,p be the same as in (8) with e, = 1/xfw, by (5) and (3), 

IIv - v~,,H.,, <~ I I S ( v  - v ~ p ) l l 0 ~  + v ~ l l . ~ ( v  - v~, ,) l l0~,~ 

~< c5(11., - v,,. l l , .o + v%l l v  - v~.llo.,),P 

C6(hP + (h p -I- w h " + ' ) ) l l v l l , , ~ , . , ~ ,  ( lO) 

where the second inequality is ensured by the fact that cj~ is a first-order differ- 
ential operator and Ai • [L~(Y2)] m×m, O<~ i<~d, B • [L~(0(2)] ~×~. This com- 
pletes the proof. [] 
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3. Weighted least squares approximations 

Define a weighted least squares functional J :  [H i (f2)] m ~ ~ as 

j ( v )  II ev fl[2o,~ + wll v 2 - -  - - gll0,o , ( l l )  

where w is the same parameter of  (3) and (4). Evidently, the exact solution 
u E [H ~ (f2)] m of problem (1) and (2) minimizes the functional and vice versa, 
i.e., 

J ( u ) :  min j ( v ) .  (12) 
v~[H~(Q)]" 

Taking the first variation, the solution equivalently satisfies the equation 

aw(U,V) = gw(V) Vv • [Hl(~r~)] m, (13) 

where the bilinear form and linear form are given in (3) and (4), respectively. 
The WLSFEM for problem (1) and (2) is then to find UhW • ¢~h,p such 

that 

a,.(u~'p, Vh,p) = gw(Vh,p) VVh,p • Uh,p. (14) 

Note that the trial and test functions are not required to satisfy the boundary 
conditions in the approximation. 

We first have the following results concerning existence, uniqueness, stability 
estimates, and some important properties of the approximate solution. 

Theorem 3.1. Let u be the exact solution of problem ( 1 ) a n d  (2) 
f E [L2((2)] m, g E [L2(0(2)] ". 

with 

(i) Problem (14) has a unique solution u~,p E ~/~h,p for each given positive 
weight w, and the solution satisfies the following stability estimate: 

Ilu~,llo,, ~< Ilfllo,Q + v~[Igllo,o~. (15) 
(ii) The matrix of the linear algebraic system associated with problem (14) is 

symmetric and positive definite. 
(iii) The following orthogonality relation holds: 

aw(u-u  w v ~ = 0  VVh,pC~hp (16) h,p ~ h,p ] , . 

(iv) The approximate solution UhWp is a best approximation of u in the II " [la~,- 
norm, that is, 

[ lu-  u~"p[[ .... = inf I lu-  Vh,pl[a,. (17) 
Yh.pE I h.p 

Proof. To prove the unique solvability, it suffices to prove the uniqueness of  
solution since the finite dimensionality of ~h,p. Let uhWp be a solution of 
problem (14) then, by (5) and (4) and the Cauchy-Schwarz inequality, 
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w 2 a ( u  w U w ~ 
Iluh.pL[,,+ = w~ h,p', h,pl 

= (f,L-~ w , +,. uh,p)o. Q + w(g, ~Uh.p)O,O~ 

f w ~ w 

f w ]Aft w ~< I1 II0.~llu~,plk, + v~llglt0,o~llu~.vll.+. 

Thus, we obtain (15). Consequently,  the solution u)ilp of  problem (14) is un- 
ique. 

Part  (ii) follows from the fact that  the bilinear form uw(., .) is symmetric and 
positive definite. 

Part  (iii) follows easily f rom Eqs. (13) and (14), since ~' ),.v is a subspace of  
[H' (~2)]". 

Finally, to prove (iv), by (16) and the Cauchy-Schwarz  inequality, 

I1" + , 2  + +, - %,11 .... - -  "~,1 ( u I ~h  ,,,, u I Uh ,p ) 

&/w( u w U - -  

: __ Uh,p~ Vh,p) 

~< II. - .LII . , ,  II. - vh+,ll .... 

for all vt,.v c ~ )w. This completes the proof.  [] 

As a consequence of  part  (iv) in Theorem 3.1, we have the following asymp- 
totic convergence. 

T h e o r e m  3.2. Suppose that the positive weight w in the least squares 
approximation Eq. (14) is a constant or a bounded mesh-dependent fzmction in 
h E (0, 1). Then we have 

liml]u - u L I  < -- 0. (18)  
h ~ 0  

P r o o f .  Without  loss o f  generality, let constant  C7 > 0 represent an upper bound 
of  x/~ on (0, 1). Let ~ ( Q )  denote the linear space of  infinitely differentiable 
functions on ~2 such that  all the derivatives have cont inuous extensions to 0Q. 
Since [~ (~ ) ] "  is dense in [H l ((2)] 'n with respect to the ]]. Ill.Q-norm+ for any 
c > 0, there exists u * E [~(P)I  m independent  of  h such that 

I[u - u+ll~ +~ < 2C5(1 + 2C2C7) ' 

which implies (cf. (10) and (7)) 

C, 
Ilu - u+ll.~ ~< c 5 ( 1  + 2 c 2 c v ) l l u  - u+ll,.~ < ~.  

For  this fixed smooth  function u* E [~y(~)]m by (6), we can find Hh,pU* E ~ h,v 
so that 
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which implies, for sufficiently small h, 

g, 
Ilu* - n~,t,u*ll~,,, ~<c~(1 + 2c~_c7)11u* - r / j * H , . ~  < ~ .  

By Eq. (17), we immediately obtain 

0~<  Ilu - u',i',,ll,,, ~< Ilu - r/ , ,~u*llo, ,  ~< Ilu - u ' L , ,  + Ilu* - r / ~ u * l l ~ , ,  < ~. 

This completes the proof. [] 

4.  Error  e s t i m a t e s  

Theorem 3.2 indicates that, for example w = const, the approximate solu- 
tion u})'p satisfies the differential equations and the boundary conditions asymp- 
totically in the I1" ]10.e -n°rm and the [1. I]0.oe-norm, respectively, without 
assuming additional regularity assumption on u, that is, 

I I ~ u ~  - f l l0,~ - ~  0 a s  h - ~  0,  

II/~u2,t, - gll0.e,.~ - ~  0 as h ~ 0. 

Of course, one may expect better convergence properties for the approxima- 
tion provided that the exact solution is sufficiently regular and that the system 
(1) and (2) satisfies certain coercivity conditions. In fact, these conditions asso- 
ciated with some specific numerical methods are often circumstantial and hence 
somewhat restrictive to a wider class of problems. For example, the LSFEMs 
of the references cited in the second category in Section 1 are similar in princi- 
ple and yet quite different in terms of the coercivity conditions or some related 
approximation assumptions. On the other hand, an attempt to create a univer- 
sal conditions for the general system (1) and (2) in the context of LSFE approx- 
imation is very intractable if not impossible. Nevertheless, with WLSFEM (14), 
we classify the conditions for the Friedrichs and ADN systems by the following 
two respective assumptions. 

(H1) There exists a constant Cs > 0 such that: 

Ilvllo,~ ~< Cs(ll~vllo.~ + II,~vllo.~) Vv ~ [HI(~r~)] m. (19) 

(H2) There exists a constant C9 > 0 such that: 

Ilvll, ~ ~< C+(llSvll0~ + [I.~vll~/2,0~) Vv c [H~(~)] ". (20) 

Associated with the assumption (H2), we also need the following inverse as- 
sumption [21] on the finite element space ~'h,p: there exists a constant 
G0 > 0 such that 
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11 ~vh,~ II ~/2o~ ~< C~oh-'/2 II~vh,~/10.o4 Vvh,~ C ~h,p. (21 ) 
This type of assumption is commonly used in WLSFEMs (see, e.g., Refs. 
[2,15,25,36,37]) and holds for a large class of  finite element spaces Y'~h,p. More 
precisely, if the family {¢-h } of triangulations of  O is quasi-uniform [21,27], i.e., 
there exists a positive constant v independent of h such that 

h ~< vdiam(f2~) VO~ E-Y-h, .Y-h E {3-h}, (22) 

then the inverse estimates (21) are satisfied. 
We now state the main results for the approximate solution u w tl .p " 

Theorem 4.1. Suppose that the exact solution u of  problem (1) and (2) belongs to 
[H p+I (f2)] m. Then there exists a constant C > 0 independent of  u, w, and h such 
that 

U w I Ilu - ,,~ ,,,, ~< C{hP + whP+'}llull,,~,.~, 

C_~uW ~,, - f l l0~ ~< C{hP + wh ~+' } Ilull~+, ~, 

r h , '  } 
II.~uL, - glloo~ ~< c ~  + v ~ h  ~+~ Ilull~+, ~. 

I f  in addition, (HI) holds then 

[[u-u)[pl,0,~ ~< C { (1 q - ~ w ) h P q  - ( w +  V/w)h p+I },[u[[p+l.~. ~. 

I f  (H2) and (21) hold with 1/w = O(h), then 

Ilu - u  ~'h,~ I ,Q -.~-< C{ (1 + v%)hP+w3/2hp+'}l[ullp+,. ~. 

(23) 

(24) 

(25) 

(26) 

(27) 

Proof. Let vh,p E ~t'h,p such that (9) hold with v replaced by u. Then, by (17), 
we get (23) immediately. By the definitions (5) and (3), we obtain 

u w i/2 w . . . .  Uh~) II;.o~" Uh,p) IIo.Q + w l l ~ ( u  Ilu h,, ..... I I ~ ( u  w 2 

Then estimates (24) and (25) follow easily from (23). 
The estimate (26) is an immediate consequence of (HI), (24) and (25). 
To prove (27), assume that assumptions (H2) and (21) hold with 

1/w = O(h). Then we obtain, for any Vh,p ¢ "l%.p C [H 1 (f2)] m, 

Ilvh,,,ll[,~ ~< C~(ll~ev~,,llo, + II~vhpll,/2.~,o 

<~ c~(ll  sv,,.,~llo.~ + h -~ ~ 

C13aw(Vh,p, Vh,p). (28) 
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Apply ing  inequali ty (28) to u~i p -vh,p c ;tJ'h,p and using (16), we have 

w - -  V U w a"' - v~,~ll l .~ ~< c l 3 a ~  Uh, p h,p h,p ~ h.p - -  Vh,p 

U w __ V h , p )  Cl3aw (u  - Vh.p~ h,p 

V ~ ~< c . 4 { J l .  - , , , , l l , ~ l t . , , p  - v ~ l l ,  ~, 

Apply ing  L e m m a  2.1 to Uu - Vh.pllo,o~2 and [lu~i¢, - Vh.pll0o~ with e = l / v @  and 
e = 1, respectively, we get 

uW ~ I h.t, - v~,t, ll. .~ -< c , 4  Ilu - v,,.,,ll,.~,llu~i,, - v~,, , l l , .~ 

+ c: ( liu - + .,'J21tu-v .,ilo, ) 

+ H<, 

Hence,  

I l u£1 , , -  v,,,~ll,.Q -< C15{ Ilu - v,,,,,ll,..~ + v % l l u  - v~.,ll,.o + w3/~llu - v~.,,ll,,.o } .  

Using the approximation property (6), we can choose Vh.p E "~"h4, SO that 

Ilu - v,,,,,ll0.Q + h l lu  - v~., , l l , .~ ,< C , h ~ - '  I tul l , ,+, .~.  

Then,  by the triangle inequality, 

uW i w 
Ilu - ~.,, ,.~ -< Ilu - vh.~l l , .~ + IIv~.p - u~.~lt, .: ,  

-< Gh" l lu l l , ,+  ,.~ + c,s{ClhellUjjp~,.~+Civ@h'liull,,T,.a 
-~- CI W3/2hp÷l Ilull~+l,~,} 

~< C{ ( I  + x/w)h t' + u,'3/2hP+l }llullp+l.O. 
The p r o o f  is complete.  [] 

Corollary 4.2. Under the same  assumpt ions  as in Theorem 4.1, / f  we take  

w = const  or w = h I then the error es t imates  (23)-(26) become respectively as 
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Ilu - u~',,llo., ~< Ch"llult , ,+ , ,o ,  

l l~u,~'p - f l lo.~ ~< ChPllul[ , ,+~,~,  

w Ch p+k u II~uh,~ - gll0,o~ <~ ,, ,,~+,,~, 

Nu - u~',,l[o,~ ~< Ch~llull~+~,~, 

19 

(23') 

(24') 

(25') 

(26') 

where k = 0 i f  w = constant ,  and k = ½ i f  w = h -I . Moreover,  i f  w = h i then 

(27)  becomes  as 

Ilu - u~pll 1,Q ~ ChP-(1/2)Ilull~+l,~. (27') 

R e m a r k  4.3. Evidently, the error estimates (26) and (27) are not optimal. It is 
unclear if these estimates are sharp under the above assumptions. For certain 
systems, it is possible to achieve optimal convergence with stronger conditions 
(see, e.g., Section 8.4 in Ref. [37]). 

5. First-order sys tems  

There are many important first-order problems such as the Friedrichs and 
ADN systems that satisfy (H1) or (H2). 

5.1. Friedrichs '  symmetric '  posi t ive s y s t ems  

In Ref. [24], Friedrichs introduced the notion of symmetric positive linear 
differential equations independent of type. The criterion of symmetric- positive- 
ness has many advantageous features. For example, suitable boundary condi- 
tions can always be determined and equations of different types are treated in a 
unified way. In particular, the Friedrichs theory has been shown to be a very 
useful tool in the theoretical analysis for mixed type PDEs such as the Tricomi 
equation and the forward-backward heat equation that are cast into equivalent 
first-order systems. For the details, we refer to Refs, [3,4,24,28-31]. 

Consider the following system of differential equations of first-order which is 
a special form of problem (1) and (2), 

d OU 
LPU : :  ~ _ A i ~ x i  + A0U = f in (2, (29) 

i : 1  

.~u := (/~ - ]7)u = 0 on  01"2, (30) 

d A where/7 = ~i=l ni i, the n~, 1 ~< i ~< d, being the components of the unit outer 
normal vector n on 0(2, # is a given continuous m x m matrix defined along 
0(2. The differential operator L/~ in (29) and the boundary conditions (30) are 
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symmetric  positive and admissible, respectively, in the following sense. The op- 
era tor  50 is symmetric positive if 
1. the m x m matrices Ai, 1 ~< i ~< d, are symmetric on (2, 
2. M = Ao + A~ - ~ d  OA~/Ox~ >~ c J  inEL 
where c~ is a positive constant  and 1 denotes the m x m identity matrix. The 
boundary  condit ions Eq. (30) is admissible if 
3. tt + / -It ~ 0 . . . .  on 0Q, 
4. Ker(p  - fi) @ Ker(ll  + fl) = ~"  on 0~2. 

To  verify the assumption (H1), we use the well-known (second) identity of  
Friedrichs [24] 

2(v, Lfv)0,~ + (v,,Sv)0.a ~ = (v, Mv)0.~ + (v, l,v)0.0~2 Vv E [HI(Q)] m. (31) 

Assume further  that  tt +/~t ~> c2I on 0EL c2 > 0 constant  (see also Theorem 2.1 
in Ref. [28]). Then, by the Cauchy-Schwarz  inequality and the basic inequality, 
ab <<. (e2a2/2) + (b2/2~2), for  all real numbers  a, b, and ~, > 0, we get 

c, Ilvllo.~ + ~c2llvll0.o~ ~< 21rvllo.,,llSvllo., + Ilvllo.o~ll~vllo.o~ 

for any posit ive constants ~1, ~,2. Choosing ~1, e2 such that C18 := cl - 1 /~  > 0 
and 1 /2~  = c2/2, we thus have 

which illustrates (H 1). 

Example 5.1 (The neutron transport equation). Let d = (1, 1) t c ~2. Consider 
the following neut ron t ranspor t  equat ion in plane that  no neutrons are entering 
the system from outside, 

V u . d + u = f  i n ( 2 : = ( 0 ,  l) x (0,1), (32) 

u = 0 on 0~2 , 

where 0~2_ is the inflow boundary  defined by 

o ~  = {x c o ~ :  n ( x ) . d  < 0} 

= {(0,y)t :  y E (0, 1)} U {(X,0)t : X E (0, 1)}, 

n(x) being the outward  unit normal  vector to 0 ~  at the point  x E Or2. Then 
problem (32) is a simple symmetric positive system with m = 1, 
A1 = A 2 = A 0 =  1, f i = n ( x ) . d  and t t = i f l [ =  1 > 0 .  Thus, the assumption 
(H I) is fulfilled. 
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5.2. First-order A D N  elliptic systems 

Another interesting class of differential systems are the first-order ADN el- 
liptic systems. In Ref. [1], the ellipticity of the general system of partial differ- 
ential equations is determined by three ordered sets of integral indices 
{Si} = (SI,... ,Sm) , s i l O  , {tj} = (h , . . .  ,tm), tj >1 0, and {rk} = ( r l , . . .  ,r,) cor- 
responding respectively to differential equations, unknown functions, and 
boundary conditions. Based on the ADN theory, the operators Lf, ~ appear- 
ing in (1) and (2) must satisfy the so-called uniform ellipticity condition, sup- 
plementary condition and the complementing boundary condition in order 
to have the following coercive type estimates. 

For each l/> 0, there exists a constant C20 > 0 such that if v = (Vl,. . . ,  Vm) t, 
/)j E Ht+t~(O), j = 1, . . .  ,m, then 

 llvjll,+,,,  c20 + II( v)klt/_r  , (33) 
j=I k=l 

where 5¢v = ((~/~¥)1, ' ' ' ,  (~¥)m)  t' '~¥ = ( ( ~ ¥ ) 1 ' " " ' '  (~¥)n) t" 
We shall not state these conditions here. To fulfill these three conditions in 

turn leads to a rather complicated algebraic checking on the three ordered sets 
{s~}, {tj}, and {rk}. 

Recently, Bochev and Gunzburger [5], Chang et al. [18,19], and Jiang and 
Chang [26] have successfully formulated the Stokes equations into first-order 
systems in two- or three-dimensional bounded regions and then proved that, 
under appropriate formulation (see the next two examples), (33) is satisfied 
with 

{s,} = (0 , . . . ,0 ) ,  

{tj} = (1 . . . .  ,1), (34) 

{rk}= ( - 1 , . . . , - 1 ) .  

Consequently, we have (H2) by taking l = 0. 

Example 5.2 (The Stokes equations in the velocity-vorticity-pressure formula- 
tion). Let Q C ~2 be a bounded domain with smooth boundary 0fL The Stokes 
equations for incompressible flow can be expressed as 

- A u + g r a d p = f  in (2, 

d i v u = 0  in [2, (35) 

where u = (ul, u2) t denotes the velocity, p the pressure, and f = 0q,f2) t the 
body force. By introducing the vorticity o3 := curlu = Ou2/Ox - Oul/Oy as an 
auxiliary variable and utilizing another two-dimensional curl operator 
curl~o = (e~y,-~ox) t, (35) can be transformed into the following first-order sys- 
tem in velocity-vorticity-pressure form 



22 S.-Y Yang, £-L. Liu I Appl. Math. Comput. 92 (1998) 9~7 

c u r l ~ + g r a d p = f  in (2, 

- ~ o + c u r l u = O  in (2, 

div u = 0 in (2. (36) 

If system (36) is supplemented with the following boundary conditions, 

p = 0  on 0(2, 
ulnl + u2n2 = 0 on 092, (37) 

then Eqs. (36) and (37) is an ADN elliptic system and (33) holds with (34) (cf. 
Ref. [5]). Unfortunately, if system (36) is imposed by the homogeneous velocity 
boundary conditions, 

u l = 0  on 0~2, 
u 2 = 0  on 0(2 (38) 

with (p, 1)0,a = 0, (34) will not hold, i.e., the assumption (H2) fails to hold for 
this problem. However, the following formulation works well for this type of 
boundary conditions which are more useful. 

Example 5.3 (The Stokes equations in the velocity-stress-pressure formulation). 
In Ref. [19], the velocity-stress-pressure formulation for the two-dimensional 
Stokes equations is proposed as follows: 

Oq) 1 0(t9 2 Op 
Ox Oy + ~ = J '  "~ 

inf2, 

0(/91 0@3 Op 
Oy OX + ~y = f2 in(2, 

--&-x +-b-f-Y&°J &°3 = 0 in (2, (39) 

&°i & ° 2 - 0  in (2, 
Oy Ox 

d i v u = 0  in (2, 

c u r l u - o 3 + ~ p 2 = 0  in (2 

with (p, l)o,a = 0, where the auxiliary variables ¢Pl, q~2, and ~P3 are introduced as 

Oul 
in ~, ~ol- Ox 

Oul in (2, (40) 
~ 2 -  Oy 

Ou2 in (2, ~°3-- Ox 
and their combinations represent the usual stresses. If system (39) is supple- 
mented with the boundary conditions 
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n l (P2  --  nzcPl = 0 o n  OQ, 

nlq~l  + n 2 ¢ P 3 : 0  o n  0~2, (41) 
nlul + n2u2 : 0 o n  00, 

which are equivalent to (38), then it is an ADN elliptic system and (33) holds 
with (34). 

Many other boundary value problems can also be proved to have the esti- 
mates (33) with (34) by using the ADN theory. For the details, we refer to Refs. 
[1,2,13,14,16]. 

6. Condition number 

In this section, we analyze the asymptotic conditioning of the linear system 
arising from problem (14). Let {u~,. . . ,  uK} be a set of basis functions for the 
finite element space ~%,p and we assume the basis is chosen so that the follow- 
ing two conditions hold [2,6,25]. 

There exist positive constants A~ and A 2 such that for all ~ . . . .  , ~K E ~, 

A , h a Z ~  ~ <~ ~iUi, Z ~ j u j  <~ A 2 h a Z ~ ,  (42) 
i=l \ i=l ]=1 ,It 0,I2 i=1 

¢iUi~ ~jUj ~ A2hd-2 .2 g~. (43) 
"= IZ2 i=1 

Note that the above inequalities hold for most finite element spaces ~/%,p if con- 
dition (22) is satisfied. 

Theorem 6.1. Suppose that the basis conditions (42) and (43) are satisfied. I f  
(H1) hold.~ with w >~ 1, or (H2) and (21) hold with 1/w = O(h), then the 
condition number of  the resulting linear system of (14) is O(h -2 + w2). 

Proof. Since the matrix 

M : :  (Mij)Kx  = (aw/ui,uj)) xK 

is symmetric and positive definite, we find that 

2~ax max p(E) 
condition number of M - 7 - 

Zmin min p(E) ' (44) 

where 2max and '~min are the largest and smallest eigenvalues of M, p(E) is the 
Rayleigh quotient, 
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D(E)  : =  Eta,  - -  Et, ~, 

for any E = (~ l , . . . ,~x)  t C N~, E # 0. 
Let Vh,p = ~ixl  ~iu~. Suppose (H1) holds with w ~> 1, then, by (42), 

Ajhd Z 2 
i=1 j=l 0,Q 

.< c~ (ir~evh~llo~+ll~v~pfloo~) 2 

Or 2 ~- C21 (H~Vh,p]]:.(~ ~-]]~¥h,p]]o,oQ) 

= Czlaw(Vh,p, vh,p). 

If (H2) and (21) hold with 1/w = O(h), by (42) and (28), we have 

Athd Z 2 ~i <~ ~iu,, ~juj = [Ivh,~ll~,~ ~< IIv~,pll2~.~ 
i=1 0,Q 

C13aw(V,~.p, Vh,p). 

On the other hand, by (3), we obtain (cf. (10)) 

aw(Vh,p, ¥h,p) = (~Q-Q~V,~,p, ~v,~,p)0,~ + W(~Vh,p, ~Vh,p)o,O~ 2 

By Lemma 2.1, we get 

IIv~,AIo,o~ ~< 2c= ~ £11v~,~ll~,~ + 1 j IIv~,pllo,~ 

Taking e 2 = 1/w in (49), then (48) becomes 

aw(Vh,p, Vh,p)~< C23 (]]Vh,pH~,~ + w (  1 ,]Vh,pl,~,e + w][Vh,p]]:,e)) 

2 2 2   4Grv plll o + iiv  lt0o) 
K 

2 d 2 <. C=4A:(h ~ ~ + w h ) ~ 
i=1 

The proof  is completed by (44)-(47), and (50). [] 

(45) 

(46) 

(47) 

(48) 

(49) 

(5o) 
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7. Concluding remarks 

A unified analysis of a weighted least squares finite element method applied 
to a general class of first-order differential systems is presented. The method is 
based on the minimization of a least squares functional that is a sum of the re- 
siduals in the differential equations and the residuals with the same weight in 
the boundary conditions. Compared with other LSFEMs, the most significant 
feature of the method is that the trial and test functions need not satisfy the 
boundary conditions. Consequently, it applies to a broad scope of problems 
with only L 2 regularity required on the boundary data. 

Asymptotic convergence is established in a natural norm without any extra 
regularity conditions on the exact solution. Many mathematical model prob- 
lems fit into this general framework. In particular, we present two types of as- 
sumptions which are respectively suitable for Friedrichs' symmetric positive 
systems and for first-order Agmon-Douglis-Nirenberg elliptic systems. Under 
these assumptions, more specific convergence properties can be analyzed. The 
resulting linear system is symmetric positive definite with condition number 
O(h-2+ W2). Three examples, namely, the neutron transport equation and 
two first-order formulations for the Stokes equations with various boundary 
conditions are examined. 

It is evident that the least squares approximation involves more degrees of 
freedom in the solution procedure since there are more unknowns to be deter- 
mined at each nodal point and more equations to be approximated under the 
reduced first-order system. Nevertheless, with its advantageous properties such 
as symmetric positive definiteness and uniform finite element spectral order, 
this drawback may be alleviated via effective and efficient adaptive process 
[32,34] and/or parallel implementation. 
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