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In our earlier work, we proposed a new microcanonical ensemble method and showed
that the numerical results of this method are correct in 1D models. In this paper, the
numerical data in 2D models are presented. One of our calculations is concentrated
on fermionic models, because fermionic models behave quite differently from bosonic
models when the dimension is larger than two (there may be boson-fermion duality
in1D). Our results come out to be consistent with exact values. To our knowledge,
there is no other numerical methods which can present reliable calculation on fermionic
models with large lattice, especially when the temperature is low. In addition to the
test on fermionic models, we also show our results on quantum 2D XY model. We
calculate longitudinal spin-spin correlation, specific heat, vortex density and vortex
pair density. These results agree with the calculations by other methods. The data of
vortex density and vortex pair density seem to display directly the unbinding of vortices

- and antivortices.

PACS. 05.30.Ch - Quantum ensemble theory.
PACS. 65.50.4+m — Thermodynamic properties and entropy.

I. Introduction

This paper is a subsequent work of our earlier work [1] where we proposed a new
microcanonical canonical ensemble method and showed that its application in calculations
in1D models seems successful. The anti-commutation relation problem in fermionic models
has been a unsolved difficulty in computational physics. So, a successful numerical method
for fermionic models processes very important meanings. The success of our method in
1D fermionic models is a garting point in developing a convincing tool for fermionic and
bosonic models. The primary concept in our method is based on the proof: Expectation
values of the energies, rather than the eigenenergies, of quantum states can be used to
evaluate the ensemble average of the energy in the standard microcanonical theory. If the
energy and the related entropy, which are defined in our method, are well evaluated to their
extreme vaues, our method will produce the same statistical properties as in the standard
microcanonical theory in the thermodynamic limit. One important point, which is implied
in our proof, is that the entropy calculated in our method should be no larger than the
value from the standard theory. This fact promises the stability in our method. That is
if we can control the numerical error in caculations, the calculated entropy in our method
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will converge to the true value from the lower side and the numerica error of each datum
will be of the same order. In the present work we extend our calculations to 2D modds. In
later sections, we will demonstrate that our numerical results are also consistent with exact
values of solvable 2D fermionic models. But for other numerical methods, the numerica
calculations for fermionic models with large lattice size still encounter difficulty in treating
the anticommutation relation of fermion operators. The consistency of our 2D results with
exact values indicates that our numerical method provides a way to resolve that issue.

In this paper we also compute quantum 2D XY model. Since the work of Kosterlitz
and Thouless(KT)[2], 2D XY model, either classical or quantum, has been of interest
to statistical physicists [3-9]. There are till debates [8,9] on whether the KT type phase
transition exists in this quantum model. Our computation on quantum 2D XY modd is not
only to test our method on bosonic model but also to hope to obtain results of interests. We
calculate the specific heat, spin-spin correlation, vortex density and vortex pair density of
2D XY modd. The data of vortex density and vortex pair density seem to show directly the
unbinding of vortices and antivortices. However, as we mentioned in Ref. 1, the accuracy
of the 2D data are not good enough at the speed of our computer facility. We do not expect
to obtain very precise numerical data

In our computations, the speed of computer is about 40 mflops. The cpu time is from
20 to 50 cpu days and the disk memory needed is 1 to 3 Gbytes.

The rest of the paper is organized as. In sec. Il, we will show the numerical data on
2D spinless fermionic modds for testing our method. In sec. 1ll, we present our results for
guantum 2D XY moded. In sec. 1V, we draw our conclusions.

Il. Two-dimensional fermionic models

I1-1. Description of models
Two Hamiltonians of 2D spinless fermionic models are considered in this paper. They

are
Hy =) t:C¥C; (1)
ij
and
Hy =Y tCHCi+ 3 t:CHCy (2)
ij ik

where 7,7 are nearest neighbor sites and ¢, k are next nearest neighbor sites of a square
lattice. The t; is set to be -1 eV and the ¢ is set to be -0.5 eV.C;',C; and C;, are fermionic
operators. Our calculation are done on 64 x 64 lattices and the exact statistical values are
evaluated on 400 x 400 lattices by canonica ensemble method. Open boundary condition
is used, because it is easier in our numerical method.

I1-2. Results and discussion
Our numerical results and the corresponding exact values are shown in Fig. 1 to Fig.
4. Figs. 1 and 2 are for Hy, and Figs. 3 and 4 are for Hz. The low temperature C, data
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of Figs. 1 and 2 are better than those in the 1D cases [1]. We think it may result from
the smaller quantum fluctuation in 2D. But the low temperature C, data of Figs. 3 and
4 are not very satisfactory. This may be due to two factors. First, the energy band width
for Hy is wider than for Hr. This means that at the same temperature the accuracy of
C, data for H, is worse. Second, we use open boundary in our computation. When the
lattice is small the fluctuation of particle density is large. Thus, this will introduce larger
particle density deviation when we combine energy states into bundles. But whether the
second factor introduces larger deviation for Hamiltonian Hs than for H; is not clear to us.
It needs more accurate calculations and more extensive tests on other models to clarify the
reason. The numerical program for periodic boundary condition is more complicated. We
must evaluate the state energies under periodic boundary condition, and then get rid of the
contribution from boundary when calculate the hopping and interacting matrix elements,
which are used to merge lattices at the next step of computation. These surveys are planed
to finish in future.
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FIG. 1. Data for Hamiltonian H;, when the particle density < n >is1/4. (a) Specific heat over
k as a function of temperature (in unit of Kelvin); the line shows the exact value and the
sguares show our data. (b) Same as (8) except that the temperature is higher. (c) Density
correlation < ngn, > for r = 1, 4/2, 2 as a function of temperature; the lines show exact
values and our data are marked by triangles (r =1), crosses (r = /2) and squares (r = 2).
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FIG. 2. Same as Fig. 1 except that the particle densty < n >=1/2 and in (c) r= 1, \/2,/5. We
do not shewr = 2 data, because they are amost the same as r =,/2 data.

The higher temperature C,, data, except for Fig. 4(b), are quite consistent with exact
values when the temperature is not very high (when T is lower than 5000 K). For very high
temperature, the C, vaue is higher than the exact value, because the calculated energies
are larger than exact values by 6 to 7%. Therefore, the curvature of the calculated energy
vs. entropy data will be larger than exact values at high temperature.

The data of density correlation are basically consistent with exact values. As we
mentioned above, due to the open boundary condition the density fluctuation is larger at
smaller lattice. This fact also reflects in correlation data. The truncation effect, which
results from the finite number of bundles of states and the finite matrix dimension, is more
apparent in 2D than in 1D.

I1l. Two-dimensional XY model

I11-1. Description of the model
The following quantum 2D spin Hamiltonian is considered.

H = 2037(5752+5¢SY) (3)

1y
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Fig. 3. Same as Fig. 1 except that the Hamiltonian is H,.

where the S¥,S5%,57 and Sj-’ are spin 1/2 operators and i,j are nearest neighbor sites of a
square lattice. We map this spin model to the hard core boson model with Hamiltonian

H =7 cte, (4)
ij

where C} and C; are hard core boson operators (that is [C;F, C;]=[Cs, Cj]=[C}, C]f)

= 0 for i#[Ci,C] = 1 and CHC}=C.C; = 0). Square 64 «64 lattice is used in
computation.

111-P. Results and discussion
In Fig. 5 we show the specific heat, spin-spin correlation, vortex density and vortex

pair density data. The vortex density and vortex pair density are defined by Betts et al.
[3]. The total density of vortices is

<V?>= (1 -2<dfak-o¥aY0ial>)/4 (5)

The vortex pair density is
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FIG. 4. Same as Fig. 1 except that the Hamiltonian is H; and the particle density < n >=1/2.

<P>= (1 ~4<o0fo5>+2<ofof >+ <o{oj0fos > +2 < 0f0y0%0y >
6
t2 < ofojofoy > -4 <o¥oljoial >)/8. )
The number subscripts are the same as those used by Betts et al. [3]. o are Pauli operators.
In Fig. 5, the temperature is in unit of 2J. These data are consistent with other
calculations [3-6]. The ground state energy per site is -0.528 (in unit of 2J). Our results
support that the C, peak is finite. But our numerical data in the temperature below C,
peak are quantitatively not very accurate. The reason is that the state energies change very
dlightly in this range of temperature. So, we must use larger number of bundles of states and
larger matrix dimension to overcome the deviation introduced by numerical computation.
On the other hand, we think that if we use periodic boundary condition, the accuracy will
also be improved. Because the state energies converge to final values much faster. As shown
in the estimate of the ground state energy by Oitmaa et al. [7], even when the lattice is
8 x 8 the state energies are very close to final energies in large lattice.
In Fig. 5(b) itis interesting to note that the data seem to display directly the un-
binding of vortices and antivortices. At low temperature the vortex density is amost two
times of vortex pair density. The vortex density begins to grow larger than two times of
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FIG. 5. Data for 2D XY model. (a) Specific heat over k£ as a function of temperature (in unit of

25). (b) Vortex density, < V2>, (triangles) and vortex pair density, < P >, (crosses) as a
function of temperature. (c) Spin-spin correlation < S%S? > for r = 1, /2,2 as a function
of temperature; the data are marked by triangles (r =1), crosses (r =+/2) and squares

(r = 2).

vortex pair density when the temperature is near 0.4. Due to the uncertainty of our data in
this temperature range, we are not sure at what temperature when this begins to happen.
But it is confirmed that the change is gradual.

In Fig. 5(c), the longitudinal spin-spin correlation is shown. Because of the truncation
effect, as we mentioned in Ref. 1, the correlation can not be calculated at a long distance.
Therefore, we do not focus on the computation of this part, for example the evaluating
of the correlation length. The spin-spin correlation < S§S7 > of ground state for r =
1,\/5,2,\/5,2\/5 are -0.0466, -0.0056, -0.0015, -0.0038 and -0.0004. Except that some
fluctuations exist when the correlation values are very small, the change of correlation with
distance is consistent with other calculations [6,7].

IV. Conclusions

As a summary of our computations, we may say that the numerical results are
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reasonable. Although the accuracy of data is not very satisfactory in the 2D models, no
strange deviation of the data is found in our caculations. The most important meaning of
the present numerical results for fermionic models is that our new numerical method can
overcome effectively the difficulty in treating the anti-commutation relation of fermions.
The difficulty resulting from anticommutation relation has been a long-time problem. In
future work, if we can confirm that our method is applicable for all fermionic models, it will
be a very vauable advance in computational physics. The accuracy of the data for 2D XY
model in present work are not good enough. To improve the accuracy, at one hand we can
use a faster computer in future to perform the calculations, at the other hand we can modify
the procedure, like the boundary condition, in calculation. The open boundary, which we
use in calculation, seems to introduce not small deviation in numerical data (this is not
apparent in 1D). We believe that if the periodic boundary is used, the energy deviation will
be improved by 2 to 3% and thereafter the C, and correlation data be improved.
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