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Abstract 

The arrangement graph was proposed as a generalization of the star graph topology. In this paper we investigate the 
topological properties of the (n, k)-arrangement graph &k. It has been shown that the (n, n - 2)arrangement graph An,+2 

is isomorphic to the n-alternating group graph AGn In addition, the exact value of average distance of A,,& has been derived. 
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Keywords: Interconnection networks; Graph isomorphism; Average distance 

1. Introduction 

Recently, a widely studied interconnection network 
topology called the star graph was proposed by Akers 
et al. [2]. It has been known as an attractive alternative 
to the hypercube [ 11. The star graph is node and edge 
symmetric, and strongly hierarchical as is the case 

of the hypercube. The n-star graph S, is regular of 
degree n - 1, the number of nodes n!, and diameter 
[3(n - 1)/2]. For a similar number of nodes, the star 
graph has a lower node degree, a shorter diameter, 
and a smaller average distance than the comparable 
hypercube. 

In addition, .low et al. presented another intercon- 
nection scheme based on the Cayley graph of the al- 
ternating group, called the alternating group graph [8]. 
The n-alternating group graph AG, is regular of de- 
gree 2(n - 2), the number of nodes n!/2, and diameter 

* Corresponding author. Email: wkchiang@dcs.ccl.itri.org.tw. 

13 (n - 2)/2J . The alternating group graph is also node 
and edge symmetric. 

A common drawback of & and AG, is the restric- 
tion on the number of nodes: n! for S,, and n!/2 for 

AG, . The set of values of n! (or n!/2) is spread widely 
over the set of integers; so, one may be faced with the 
choice of either too few or too many available nodes. 

Even before [8] was published, Day and Tripathi [5] 
proposed a generalized star graph, called the arrange- 
ment graph, as an attractive interconnection scheme 
for massively parallel systems. An arrangement graph 
is specified by two parameters n and k, satisfying 
1 < k < n - 1. The (n, k)-arrangement graph An,k 

is regular of degree k(n - k), the number of nodes 
n!/(n - k)!, and diameter [3k/2]. The (n, n - l)- 
arrangement graph An,n-l is isomorphic to the n-star 
graph S, [6]. The arrangement graph provides more 
flexibility than the star graph in terms of choosing the 
major design parameters: degree, diameter, and num- 
ber of nodes. The arrangement graph has been shown 

0020.0190/98/$19.00 0 1998 Published by Elsevier Science B.V. All rights reserved 

PII: SOO20-0190(98)00052-O 



216 W-K. Chiang, R.-J. Chen /Information Processing Letters 66 (1998) 215-219 

to be node and edge symmetric, strongly hierarchical, 
maximally fault tolerant, and strongly resilient [5]. 

In this paper we further look into the topological 
properties of the arrangement graph. We first show that 

the (n, n -2)arrangement graph An,n-2 is isomorphic 
to the n-alternating group graph AG,. Then, we derive 

the exact value for the average distance of An,k. Due 
to the isomorphism between A,,+_2 and AG,, the 
average distance derived here for the arrangement 
graph as well as those discussed in the literature [4-71 
can be applied directly to the alternating group graph. 
Therefore, we solve two of four open problems for the 

alternating group graph listed in [ 81: 
(1) enumeration of the node disjoint paths; and 
(2) exact value of the average distance. 

2. Graph definitions and basic properties 

In this section we introduce the definitions and no- 
tations of the arrangement graph and the alternating 
group graph, and address their basic topological prop- 
erties. 

2. I. Graph definitions 

For simplicity, let (n) = { 1,2, . . . , n) and (k) = 

(1,2,. . .,k). 

Definition 1 [5]. The (n, k)-arrangement graph 

A n,k=Wl,El), I<k<n-1, 

is defined as follows: 

V~={p~p2...p~I~~~(~)andp~#pjfori#j}, 

and 

Et={(p,q))pandqinVtandforsomeiin(k), 

pi#q;andpj=qjforj#i]. 

That is, the nodes of A,,k are the arrangements of k 
elements out of the n symbols (n), and the edges of 
An,k connect arrangements which differ in exactly one 
of their k positions. An edge of A,,k connecting two 
arrangements which differ only in position i is called 
an i-edge. An example of A,,,k for n = 4 and k = 2 is 
given in Fig. 1. 

Fig. 1. A (4,2)-arrangement graph. 

To define the alternating group graph, we describe 

some terminologies and notations for ease of exposi- 
tion.Inapermutationp=ptp~...pi...pj...p,,the 

pair (i, j), i < j, is said to constitute an inversion if 
pi > pj. A permutation p is called even or odd de- 
pending on the number of inversions in p being even 
or odd. The alternating group A,, is defined as the set 

of all even permutations of n elements [3]. 
Let 

g+ = (1 2 i), gi = (1 i 2), 

n=(g’13~i6n)U(gi13~i~n}, 

where 0 is known to be a generator set for A, [8]. Let 
cj denote the transposition that swaps the elements 
at positions i and j, then g+ = Tl7_ . T2i and gi = 
T2i ’ Tl2 for 3 < i < n. 

Definition 2 [S]. The n-alternating group graph 

AG, = (V2, E2) is defined as follows: 

Vz = A,, and 

E2 = {(P, q) I p, q E h, and 

where “0” is the composition operator. The nodes of 
AG, are even permutations of the n symbols (n). An 
edge of AG,, connecting two even permutations p and 
qiscalledani-edgeifq=pogpanda=+or-. 

Note that q = p o gt if and only if p = q o gi. An 
example of AG, for n = 4 is given in Fig. 2. 
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Fig. 2. A 4dtemating group graph AG4. 

2.2. Basic properties 

There are (n - l)!/(n - k)! nodes in An,k which 
have element i in position j, for any fixed i and j (1 < 
i < n, 1 < j < k). These nodes are interconnected in 
a manner identical to an An_t,k_t graph. For a fixed 
position j, an A,,k can be partitioned into n node- 
disjoint copies of An-t,k_t. This partitioning of A,,k 
into n copies of An_t,k_t can be done in k different 
ways corresponding to the k possible values of j (1 < 
j < k) and can be carried out recursively. Fig. 1 shows 
that A4,2 can be viewed as an interconnection of four 
A~,J’s by fixing the symbol in position 2. 

Due to the node symmetry of the (n, k)-arrangement 
graph, the problem of routing between two arbitrary 
nodes in An,k is reduced to the problem of routing be- 
tween an arbitrary node and the identity node &. In 

order to solve the problem of the routing, a cycle rep- 
resentation for the label of each node in An,k was in- 
troduced in [5]. The cycle representation of a node p 
with c cycles including e external cycles can be de- 

noted as 

C(p) = Cl, c2, . . ., ce, c:,, 1 c:,,, . . .t cl, 

where Ct,Cz,..., C, are external cycles and CL,, , 

c;+2,. . . , CL are internal cycles. Let m denote the 
total number of elements in these cycles. It has been 
shown in [5] that the distance d(p) from node p to the 

identity node Ik in A,,,k is given by: 

d(p)=c+m-2e. (1) 

In addition, it has been presented in [5] that the 
connectivity K(An,k) of An,k is k(n - k) and the fault- 

diameter Df(An,k) of An& is at most [3k/2J + 4. 
In [6], it has been known that the arrangement graph 
A ,,k, for 1 < k < n - 2, contains cycles of any 
arbitrary length L, 3 < L < ]An,kl, where ]An,kl is 
the number of nodes in An,k. Furthermore, it has been 
shown in [7] that an (n - k + 1) x (n - k + 2) x . . x 
(n - 1) x n grid can be embedded into An,k with unit 
expansion and dilation three. 

3. Isomorphism between An,n_:! and AG, 

In this section, we show the alternating group graph 
is a spatial arrangement graph. Before proving it, we 
give a formal definition of isomorphism between two 

graphs in the following. 

Definition 3. Two graphs Gt and G2 are isomorphic 

if there is a one-to-one function f from V(G1) 

onto V(G2) such that (p,q) E E(G1) if and only if 

(f(p), f(s)> E E(Gd, where f(p) is the image of p. 

Theorem 4. The (n, n - 2)-arrangementgraph An,*_2 

is isomorphic to the n-alternating group graph AG,. 

Proof. To prove that AG, and An,n_2 are isomorphic, 
we define a one-to-one function ft from the nodes of 
AC,, to those of An,n_2 by: 

fi(PlPZP3.~ .Pn-lPn)=P3...Pn-lPn. 

Note that .f-‘(43.. .qn-144 = aq2q3.. .qn-lqn or 

q2qtq3... qn_lq,, depending on which one is an even 
permutation. 

Now, we prove fr preserves adjacency. Let p and 
q be two nodes linked with an i-edge in AG,, . Then 
fl(p) and fl(q) are linked with an (i - 2)-edge in 
An,n_2. Conversely, let s and t be two nodes linked 
with a (j - 2)-edge in An,+2, i.e., 

s = s3 . . . Sj_lSjSj+] . . .S, and 

t = s3 . . .Sj_ltjSj+l . . .Sn. 

Without loss of generality, assume s is an even 
permutation, then 

fi-‘(S) = SlS2S3.. .Sj_lSjSj+l . . .Sn and 

ft-‘(t) = S2SjS3 . . Sj-ltjSj+l . . .S,, 
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where st < s2 and tj = ~1, and thus fi_’ (t) = fi-’ (s) o 

g;. That is, fi_‘(t) and fi-‘(s) are linked with a j- 
edge in AG,, . q 

The example for A4,2 in Fig. 1 is the resulting graph 
when ft is applied to AG4 in Fig. 2. 

The next corollary solves one of four open problems 
listed in [S]. We get the result by using Theorem 4 and 
the fact that for any two nodes of i&k, there exists 
k(n - k) node-disjoint paths of length at most four plus 
the distance between the two nodes [4]. 

Corollary 5. Given any distinct nodes s and t in an n- 

alternating group graph AG,, there are 2(n - 2) node- 

disjoint paths of length at most four plus the distance 

between the two nodes. That is, the connectivity 

K(AGn) of AG, is 2(n - 2) and the fault-diameter 
Df (AGn) of AG, is at most [3(n - 2)/2J + 4. 

The following corollary describes the routing dis- 
tance in AG, . Although the result was discussed in [8], 
here we get it directly by applying Eq. (1) with Theo- 
rem 4. 

Corollary 6. The distance d(p) from node p to the 
identity node I,, in AG, is: 

I 

nfk-1, if p1 = 1 and p2 = 2, 

n+k-l-2, tfpl # 1 and p2 = 2, 

d(p)= n-tk-l-2, ifpl=landp2#2, 
n+k-1-3, ifland2ECt, 

n+k-l-4, iflECiand2ECj, 

where k and 1 denote the numbers of cycles and 
invariants in C(p). 

Proof. The distance from p = plp2p3 . . . pn to In = 
123.. n in AG, is equivalent to the distance from 
p” = p3 . . . p,, to I{ = 3. . .n in An,n_2. Let c”, m”, 

and e” denote the number of cycles, the total number 
of elements in these cycles, and the number of external 
cycles in C(p”) with respect to I:; that is, d(p) = 
d(p”) = c” + m” - 2e”. Note that symbols 1 and 2 
with respect to Z: are foreign symbols. 
(a) If p1 = 1 and pz = 2, then c” = k, m” = n - 1, 

e” = 0, and d(p”) = n + k - 1. 
(b) If p1 # 1 and p2 = 2, then c” = k, m” = n - 1, 

e” = 1, and d(p”) = n + k - 1 - 2. 
(c) If pt = 1 and p2 # 2, then c” = k, m” = n - 1, 

e” = 1, and d(p”) = n + k - 1 - 2. 

(d) For 1,2 E Ci, if either p1 = 2, or p2 = 1, c” = k, 

m” = n - 1 - 1, e” = 1; otherwise, c” = k + 1, 
m” = n - 1, e” = 2. Therefore, d(p”) = n + k - 

l-3. 

(e) If 1 E Ci and 2 E Cj, c” = k, m” = n - 1, and 
e”=2;so,d(p”)=n+k-l-4. q 

4. Average distance 

In this section, we derive the exact values for the av- 
erage distances of the (n, k)-arrangement graph An,k 

and the n-alternating group graph AG,. The average 

distance of a symmetric interconnection network is de- 
termined by the summation of distances of all nodes 

from a given node over the total number of nodes. 
Average distance is a better indicator of the average 
message delay in an interconnection network than its 

diameter. Since &k is node-symmetric, its average 
distance among all pairs of nodes p and 4 (possibly 
p = q) equals the average distance from the identity 
node fk to all nodes. 

Let B(An,k) denote the average distance of An,k. 
The value of this measure for the (n, k)-arrangement 
graph is 

D(&,k) = c d(p)lN(n, k), 
P-&k 

where N(n, k) = n!/(n -k)!. 

It is known that the average number of cycles 
including invariants in a permutation of n symbols is 
H,, where Hn = c?‘=l l/i denotes the nth Harmonic 
number [9]. Here, we show the average number of 
cycles including invariants in a permutation of k 

elements out of n symbols is Hk. 

Lemma 7. The average number of cycles including 
invariants in a permutation of k elements out of n 

symbols is Hk. 

Proof. We consider a permutation p formed by choos- 
ing arbitrarily k elements out of the n symbols (n) . Let 
p’ be the permutation obtained from replacing each 
foreign element of p with its corresponding nonfor- 
eign element. Then the total number of cycles of C(p) 
is equal to that of C(p’). The number of cycles in all 
permutations of the k symbols (k) is k! x Hk. There- 



W-K. Chiang, R.-J. Chen /Information Processing Letters 66 (1998) 215-219 219 

fore, the total number of cycles in all permutations of 

k elements out of the n symbols (n) is 

x k! x Hk. 

Dividing it by the total number of permutations of 
k elements out of the n symbols (n), we derive the 
average number of cycles in a permutation as Hk. 0 

Given a node p, let u be the total number of in- 
variants, c* be the total number of cycles including 
invariants, and m* be the total number of misplaced 
symbols, i.e., m* = k - u. In Eq. (l), c denotes the to- 

tal number of cycles of C(p) excluding invariants, and 
m denotes the total number of elements in these cycles 
including the corresponding nonforeign elements for 
the external cycles. It then follows that for c and m as 
defined above, c = c* - u and m = m* + e. Similar to 
the argument of Theorem 2 in [l], we rewrite Eq. (1) 

as 

d(p)=k+c*-e-2u. (2) 

The following theorem gives the exact value for 
the average distance of &k, which is obtained by 
computing the total value of Eq. (2) for each node in 
An,k and then dividing by n!/(n - k)!. 

Theorem 8. The average distance B(A,,k) of the 
(n, k)-arrangement graph is given by: 

H +W-2) 
k -. 

n 

Proof. The first term in the summation of Eq. (2) over 

all nodes of &k is k x n!/(n - k)!, and the second 
term is Hk x n!/(n - k)!. The third term is the total 
number of foreign symbols in all nodes of An,k, i.e., 
k x (n -k) x (n - l)!/(n - k)!. The final term is the 

total number of symbols in the correct position for all 
nodes multiplied by -2, i.e., -2 x k x (n - l)!/(n - 
k)!. Therefore, 

D(A,,J = k + Hk - k x (n - k)/n - 2k/n 

=Hk+kx(k-2)/n. u 

The next corollary solves another open problem 
listed in [S]. That is, the exact value for the average 
distance of AG, is found while the result for the 
average distance of AG, proposed in [8] is just an 
upper bound. 

Corollary 9. The average distance D(AG,) oj’the n- 

alternating group graphs is 

n+H,fl- 
1 

- -6. 
n n-l 

Proof. By applying Eq. (3) with Theorem 4, 

D(AG~) = D(A,,,_~). q 
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