

Tetrahedron 54 (1998) 5967-5982

TETRAHEDRON

Chemical Transformation of Tetraacetal Tetraoxa-Cages to Aza-Cages and Amido-Cages Mediated by Iodotrimethylsilane and the Combination of Chlorotrimethylsilane and Sodium Iodide in Nitriles

Jyh-Haur Chern and Hsien-Jen Wu*

Department of Applied Chemistry, Chiao-Tung University, Hsinchu, Taiwan, China

Received 23 December 1997; revised 24 March 1998; accepted 26 March 1998

Abstract: An one-pot conversion of tetraacetal tetraoxa-cages 1a-e to aza-cages 2a-e mediated by iodotrimethylsilane in alkyl nitriles at 25 °C via the ring expansion compound 9 as the reaction intermediate was discovered. A Ritter-type reaction was proposed for the mechanism of this conversion. On the other hand, reaction of tetraacetal tetraoxa-cages 1 with Me₃SiCl and NaI in nitriles at 25 °C gave the amido-cages 12. Conjugated nitriles and Lewis acids, such as TiCl₄ or BF₃OEt₂ were found to be ineffective for the conversion of oxa-cages to aza-cages. The structures of 2a and chemical transformation product 16 were proven by X-ray analysis. © 1998 Elsevier Science Ltd. All rights reserved.

Introduction

The reaction chemistry of acetals has been greatly expanded by the use of Lewis acidic promoters particularly in conjunction with silicon-containing nucleophiles.^{1.} In recent times much interest has been shown in the mechanism and origin of stereoselectivity of substitution of chiral acetals,² a concept initiated by Johnson *et al.*³ Usually, acyclic and monocyclic acetals are the objects for study. Recently, we accomplished the synthesis of novel oxa-cage compounds, such as tetraacetal tetraoxa-cages,⁴ tetraacetal pentaoxa-cages,⁵ triacetal trioxa-cages,⁶ diacetal trioxa-cages,⁷ and pentaacetal pentaoxa-cages (the pentaoxa[5]peristylanes).⁸ For instance, the tetraoxa-cages **B** were synthesized by ozonolysis of 2,3-bis-*endo*-diacylnorbornenes **A** (Scheme 1).^{4a} Afterward, we developed a new entry for the synthesis of tetraoxa-cages **D** *via* ozonolysis of 2-*endo*-7-*anti*-diacylnorbornenes **C**.^{4e} All these oxa-cages contain acetal and ketal groups on the molecule, and they are new systems for the study of the reaction chemistry of acetals. Thus, we also investigated the chemical nature of the acetal group of tetraoxa-cages and discovered a remarkable effect of C-O-C bond angle strain on the regioselective double nucleophilic substitution of the acetal group of tetraoxa-cages and a novel hydride rearrangement of tetraoxa-cages.⁹ As part of a program that involves the synthesis, chemistry, and applications of new heterocyclic cages, we report here the full detail of the conversion of tetraacetal tetraoxa-cages to aza-cages mediated by iodotrimethylsilane in nitriles.¹⁰ We also wish to demonstrate that, in reaction with the combination of chlorotrimethylsilane and sodium iodide in nitriles, the tetraoxa-cages were converted to the amido-cages rather than the aza-cages.

Scheme 1

Results and Discussion

The tetraacetal tetraoxa-cages 1a-e, desired for the chemical transformations, were prepared via Scheme 1.⁴ Reaction of 1a-e with three equivalents of iodotrimethylsilane in acetonitrile at 25 °C for 4 h gave the aza-cages 2a-e in 80-85% yields (Scheme 2). No detectable amount of the other regioisomers 3, 4, or 5 was obtained. The IR spectra of 2a-e showed absorptions near 3350 cm⁻¹ for the NH group. The ¹H NMR spectrum of 2a revealed one doublet at δ 5.17 for the two azaacetal protons on C-3 and C-5, which exhibited 0.26 ppm upfield shift in comparison with the acetal protons of 1a, while the other proton absorptions of 2a remained almost unchanged as 1a. The ¹³C NMR spectrum of 2a displayed one peak at δ 89.67 for the azaacetal carbons, which exhibited 13.1 ppm upfield shift in comparison with the acetal carbons of 1a, while the other carbon absorptions of 2a remained almost unchanged as 1a. The ¹³C NMR spectrum of 2a displayed one peak at δ 89.67 for the azaacetal carbons, which exhibited 13.1 ppm upfield shift in comparison with the acetal carbons of 1a, while the other carbon absorptions of 2a remained almost unchanged as 1a. The ¹³C NMR spectra showed that compounds 2a-c possess a symmetry plane. The mass spectra of 2a-e showed odd numbers for the parent molecular ion peaks with correct values for each compounds. Thus, we have discovered an one-pot conversion of tetraacetal tetraoxa-cages to aza-cages mediated by iodotrimethylsilane in acetonitrile, a convenient and efficient method for the synthesis of aza-cages.

Scheme 2

Treatment of 2a with sodium hydroxide in aqueous THF, followed by addition of benzyl bromide at 25 °C, gave the N-benzylation product 6 in 65% yield. Tosylation of 2a with tosyl chloride in pyridine at 25 °C gave the sulfonamide 7 in 90% yield (Scheme 3). The structure of these heterocyclic cages 2a-e was finally proven by X-ray analysis of the crystalline compound 2a (Figure 1). The nitrogen atom N-4 is shown to be in the boat comformation with respect to the apical carbon atom C-10. The bond angles of C(3)-N(4)-C(5) and C(9)-C(10)-C(11) are 119.5° and 100.3°, respectively.

Scheme 3

This one-pot conversion from oxa-cages to aza-cages takes place regioselectively on the C(3)-O(4)

or O(4)-C(5) bond of 1. We attribute the highly regioselective oxygen-nitrogen conversion reaction to the unusually large bond angle of C(3)-O(4)-C(5) of the tetraoxa-cages 1. While the other C-O-C bond angles of these tetraoxa-cages are in between $111^{\circ}-108^{\circ}$, the C(3)-O(4)-C(5) bond angle is 117.5° , remarkably larger than the ordinary bond angles with sp³-hybridized atoms.^{4a} In the case of 1b, only 2b was obtained. Thus, the steric factor for the regioselective conversion was excluded. The stability and size of the ring may also play an important factor for the high regioselectivity.

Reaction of 1 with excess of chlorotrimethylsilane in acetonitrile at 25 °C remained unchanged. Reaction of 1a-c with Lewis acids, such as TiCl4 and BF3 OEt2, in acetonitrile at 25 °C for 4 h gave the hydride rearrangement products 8a-c in 80-85% yields (Scheme 4). No detectable amount of the corresponding aza-cages 2a-c was obtained. In the case of 1b, only 8b was obtained. We attribute the highly regioselective hydride rearrangement to the unusually large bond angle of C(3)-O(4)-C(5)of the tetraoxa-cages 1. Reaction of 1a with three equivalents of iodotrimethylsilane in acrylonitrile or benzonitrile at 25 °C for 4 h gave the hydride rearrangement product 8a. No detectable amount of the aza-cage 2a was obtained. Thus, carbon-carbon double bond conjugated nitriles are inactive for the one-pot conversion from oxa-cages to aza-cages.

Scheme 4

$$1 \xrightarrow{\text{Me}_{3}\text{SiCl}} \text{unchanged} \qquad 1a-c \xrightarrow{\text{TiCl}_{4} \text{ or } BF_{3} \cdot OEt_{2}} \xrightarrow{\text{O}}_{R} \overset{\text{Sa} R = CH_{3}}{\underset{\text{CH}_{3}\text{CN}}{25 \text{ °C}}} \overset{\text{O}}{\underset{\text{CH}_{3}\text{CN}}{\underset{\text{C}}{25 \text{ °C}}}} \overset{\text{O}}{\underset{\text{C}}{\underset{\text{C}}{1 \text{ or } BF_{3} \cdot OEt_{2}}}} \overset{\text{O}}{\underset{\text{C}}{\underset{\text{C}}{I}}} \overset{\text{O}}{\underset{\text{C}}{I}} \overset{\text{$$

In order to understand the reaction mechanism for the conversion of tetraoxa-cages to monoazatrioxa-cages, various reaction conditions were performed. Reaction of 1a-c with one equivalent of iodotrimethylsilane in acetonitrile at 0 °C for 2 h gave the ring expansion products 9a-c in 80-85% yields (Scheme 5). Treatment of 9a-c with excess of iodotrimethylsilane in acetonitrile at 25 °C gave the aza-cages 2a-c in 80% yields. Thus, the ring expansion compound 9 is the intermediate for the conversion of oxa-cage 1 to aza-cage 2. Reaction of 1a with one equivalent of iodotrimethylsilane in propionitrile, butyronitrile, and benzyl cyanide at 0 °C for 2 h gave the ring expansion products 9d-f in 80-85% yields. The proposed mechanism for this interesting reaction involves a Ritter-type reaction¹¹ of the oxonium ion 10 with alkyl nitriles via the nitrilium ion 11 to give the intermediate 9. Reaction of 9 with excess of iodotrimethylsilane may proceed via the intermediate 11A, which followed by aqueous hydrolysis, to give the aza-cages 2.

Scheme 5

We also prepared iodotrimethylsilane in $situ^{12}$ for the conversion of oxa-cages to aza-cages. Treatment of 1a and 1b with excess of sodium iodide and chlorotrimethylsilane in acetonitrile, propionitrile, and benzyl cyanide at 25 °C for 48 h gave the amido-cages 12a-e in 85-90% yields (Scheme 6). Reaction of 1a with a catalytic amount of iodotrimethylsilane in acetonitrile at 25 °C for 48 h gave the amido-cage 12a in 8% with a large amount of unreacted compound 1a. Reaction of 12 with iodotrimethylsilane in acetonitrile at 25 °C remained unchanged. The IR spectra of 12a-e showed strong absorptions near 1670 cm⁻¹ for the amide group. The ¹H NMR spectrum of 12a revealed two doublets at δ 6.33 and 5.75 for the two azaacetal protons, which exhibited the partial double bond character for the amide C-N bond due to resonance. The amido-cage 12a was also obtained by treatment of 2a with acetic anhydride and triethylamine in dichloromethane at 25 °C. Thus, We have demonstrated that, in reaction with oxa-cages 1, the combination of chlorotrimethylsilane and sodium iodide in acetonitrile behaves different nature from iodotrimethylsilane. The reaction mechanism for the formation of the amido-cages 12 is not clear.

Scheme 6

Hydrolysis of 12a,d with concentrated HCl in aqueous THF at refluxing temperature for 4 h gave the aza-cages 2a,b in 75-80% yields (Scheme 7). Treatment of 12a,d with diisobutylaluminum hydride (DIBAL-H) in dry THF at 0 °C gave 2a,b (55-60%) and compounds 13a,b (10-15%). This results provide another procedure for the preparation of aza-cages. Scheme 7

> 12a,d $\xrightarrow{\text{HCl}}$ 2a,b Δ 12a,d $\xrightarrow{\text{DIBAL-H}}$ 2a,b $\xrightarrow{\text{Et}}$ \xrightarrow{N} \xrightarrow{R} 12a,d $\xrightarrow{\text{DIBAL-H}}$ 2a,b + \xrightarrow{R} 13 a R = CH₃ b R = H

Treatment of 12a with triethylsilane in the presence of TiCl4 in dichloromethane at -25 °C gave

compound 14. The ¹H and ¹³C NMR spectra of 14 revealed one pair of conformational isomers as 14A and 14B, an interesting spectral phenomena. Hydrolysis of 14 with concentrated HCl in aqueous THF at refluxing temperature gave the aza-cage 15 in 70% yield. Treatment of 12a with cyanotrimethylsilane in the presence of TiCl₄ in dichloromethane at 25 °C gave compound 16 in 75% yield. The structure of 16 was finally proven by X-ray analysis (Figure 2).

Scheme 8

Figure 2. ORTEP diagram of 16.

Conclusion

We have discovered an one-pot conversion of tetraacetal tetraoxa-cages to aza-cages mediated by iodotrimethylsilane in alkyl nitriles at 25 °C. The ring expansion compounds **9a-f** were found to be the reaction intermediates. The reaction mechanism for the conversion of oxa-cages 1 to aza-cages 2 may involve a Ritter-type reaction of the oxonium ion 10 with nitriles via the nitrilium ion 11 to give the intermediate 9. We have also demonstrated that reaction of oxa-cages 1 with the combination of

chlorotrimethylsilane and sodium iodide in nitriles gave the amido-cages 12, different results from the reaction of 1 with iodotrimethylsilane. Carbon-carbon double bond conjugated nitriles and Lewis acids, such as TiCl4 or BFs-OEt2, are ineffective for the oxa-cages to aza-cages conversion. Instead, a hydride rearrangement took place. Chemical transformations of amido-cages with triethylsilane and cyanotrimethylsilane were also performed. The structures of the aza-cages 2 and compound 16 were proven by X-ray analysis of the crystalline compounds 2a and 16.

Experimental Section

General. Melting points were determined in capillary tubes with a Laboratory Devices melting point apparatus and uncorrected. Infrared spectra were recorded in $CHCl_3$ solutions or on neat thin films between NaCl disks. ¹H NMR spectra were determined at 300 MHz, and ¹³C NMR were determined at 75 MHz on Fourier transform spectrometers. Chemical shifts are reported in ppm relative to TMS in the solvents specified. The multiplicities of ¹³C signals were determined by DEPT techniques. High resolution mass values were obtained with a high resolution mass spectrometer at the Department of Chemistry, National Tsing Hua University. X-ray analysis were carried out on a diffractometer at the Department of Chemistry, National Tsing Hua University. For thin-layer chromatography (TLC) analysis, precoated TLC plates (Kieselgel 60 F_{254}) were used, and column chromatography was done by using Kieselgel 60 (70-230 mesh) as the stationary phase. THF was distilled immediately prior to use from sodium benzophenone ketyl under nitrogen. CH_2Cl_2 was distilled from CaH₂ under nitrogen.

General Procedure for the One-Pot Conversion of Tetraoxa-Cages 1a-e to Aza-Cages 2a-e. To a solution of 1a (0.21 g, 1.0 mmol) in acetonitrile (30 mL) was added iodotrimethylsilane (0.60 g, 3.0 mmol) at 25 °C. The reaction mixture was stirred at 25 °C for 4 h. To this solution was added saturated Na₂S₂O₃ solution (20 mL). After extraction with ether (3 x 30 mL), the organic layer was washed with brine, dried over MgSO₄, and evaporated, and the residue was purified by column chromatography to give the aza-cage 2a (0.18 g, 85%).

1,7-Dimethyl-4-aza-2,6,13-trioxapentacyclo[5.5.1.0^{3,11}.0^{5,9}.0^{8,12}]tridecane 2a: white waxy solid; mp 81-82 °C; IR (CHCl₃) 3350, 2980, 1070 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.17 (d, J = 7.2 Hz, 2H), 3.17 (dd, J = 5.1 Hz, J = 2.7 Hz, 2H), 2.94-2.89 (m, 3H), 1.89 (d, J = 11.7 Hz, 1H), 1.74-1.68 (m, 1H), 1.50 (s, 6H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 115.34 (2C), 89.67 (2CH), 59.61 (2CH), 44.95 (2CH), 30.99 (CH₂), 25.81 (2CH₃); LRMS m/z (rel int) 209 (M⁺, 100); HRMS (EI) calcd for C₁₁H₁₆O₃N 209.1052, found 209.1047.

4-Aza-2,6,18-trioxapentacyclo[5.5.1.0^{8,11}.0^{6,9}.0^{8,12}]tridecane 2b: white waxy solid; mp 70-71 °C;

yield 80%; IR (CHCls) 3350, 2980, 1060 cm⁻¹; ¹H NMR (300 MHz, CDCls) δ 5.73 (d, J = 5.7 Hz, 2H), 5.17 (d, J = 7.2 Hz, 2H), 3.45-3.41 (m, 2H), 3.00 (brs, 1H), 2.88-2.81 (m, 2H), 1.93 (d, J = 11.7 Hz, 1H), 1.87-1.81 (m, 1H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 108.15 (2CH), 89.50 (2CH), 55.15 (2CH), 44.45 (2CH), 31.26 (CH₂); LRMS m/z (rel int) 181 (M⁺, 100); HRMS (EI) calcd for C₃H₁₁O₃N 181.0739, found 181.0733.

1,7-Diphenyl-4-aza-2,6,13-trioxapentacyclo[5.5.1.0^{3,11}.0^{5,9}.0^{8,12}]tridecane 2c: white waxy solid; mp 92-93 °C; yield 80%; IR (CHCl₃) 3350, 2980, 1600, 1070, 750, 700 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.62-7.58 (m, 4H), 7.40-7.29 (m, 6H), 5.51 (d, J = 7.2 Hz, 2H), 3.55 (dd, J = 5.1 Hz, J = 2.7 Hz, 2H), 3.22 (brs, 1H), 3.14-3.07 (m, 2H), 2.03 (d, J = 11.7 Hz, 1H), 1.83-1.76 (m, 1H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 142.32 (2C), 128.08 (4CH), 127.93 (2CH), 125.57 (4CH), 116.51 (2C), 90.64 (2CH), 62.69 (2CH), 45.36 (2CH), 31.11 (CH₂); LRMS m/z (rel int) 333 (M⁺, 100); HRMS (EI) calcd for C₂₁H₁₉O₃N 333.1365, found 333.1358.

1-Methyl-4-aza-2,6,13-trioxapentacyclo[5.5.1.0^{3,11}.0^{5,9}.0^{8,12}]tridecane 2d: white waxy solid; mp 66-68 °C; yield 80%; IR (CHCl₃) 3350, 2980, 1060 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.73 (d, J = 6.0 Hz, 1H), 5.17 (d, J = 7.2 Hz, 1H), 5.16 (d, J = 7.2 Hz, 1H), 3.54-3.46 (m, 1H), 3.10 (dd, J = 10.8 Hz, J = 7.2 Hz, 1H), 2.96-2.80 (m, 3H), 1.91 (d, J = 11.7 Hz, 1H), 1.80-1.73 (m, 1H), 1.50 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 115.69 (C), 108.12 (CH), 89.88 (CH), 89.41 (CH), 58.56 (CH), 56.23 (CH), 45.01 (CH), 44.51 (CH), 31.17 (CH₂), 25.43 (CH₃); LRMS m/z (rel int) 195 (M⁺, 100); HRMS (EI) calcd for C₁₀H₁₃O₃N 195.0895, found 195.0891.

1-Methy-7-benzyl-4-aza-2,6,13-trioxapentacyclo[5.5.1.0^{3,11}.0^{5,9}.0^{8,12}]tridecane 2e: white waxy solid; mp 55-56 °C; yield 85%; IR (CHCl₃) 3350, 2980, 1600, 1070, 750, 700 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.31-7.22 (m, 5H), 5.15 (d, *J* = 7.2 Hz, 1H), 5.11 (d, *J* = 7.2 Hz, 1H), 3.14 (dd, *J* = 10.2 Hz, *J* = 7.5 Hz, 1H), 3.02 (brs, 3H), 2.94 (dd, *J* = 10.2 Hz, *J* = 7.2 Hz, 1H), 2.83, 2.43 (ABq, *J* = 18 Hz, 2H), 1.78 (d, *J* = 12.6 Hz, 1H), 1.61-1.54 (m, 1H), 1.43 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 136.91 (C), 130.52 (2CH), 127.81 (2CH), 126.39 (CH), 117.06 (C), 115.55 (C), 89.73 (CH), 89.67 (CH), 59.14 (CH), 56.90 (CH), 44.98 (CH), 44.89 (CH), 43.99 (CH₂), 30.88 (CH₂), 25.37 (CH₃); LRMS *m/z* (rel int) 285 (M⁺, 22), 208 (100); HRMS (EI) calcd for C₁₇H₁₉O₃N 285.1365, found 285.1360.

N-Benzylation of 2a. To a solution of 2a (0.21 g, 1.00 mmol) in THF (20 mL) and H₂O (5 mL) was added NaOH solution (1 M, 5 mL) and benzyl bromide (0.17 g, 1.0 mmol) at 25 °C. The reaction mixture was stirred at 25 °C for 2 h. To this reaction mixture was added saturated NH₄Cl (20 mL). After extraction with ether (4 x 30 mL), the organic layer was washed with brine, dried over MgSO₄, and evaporated, and the residue was purified by column chromatography to give the *N*-benzylation product 6 (0.19 g, 63%): pale yellow oil; IR (CHCl₃) 2970, 1600, 1070, 750, 700 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.23 (m, 5H), 4.95 (d, J = 7.5 Hz, 2H), 4.10 (s, 2H), 3.14 (dd, J = 5.1 Hz, J = 3.0 Hz, 2H),

2.88-2.85 (m, 2H), 1.98-1.94 (m, 1H), 1.74-1.67 (m, 1H), 1.51 (s, 6H); ¹³C NMR (75 MHz, CDCls, DEPT) δ 138.43 (C), 128.77 (2CH), 128.28 (2CH), 126.97 (CH), 115.31 (2C), 92.91 (2CH), 59.93 (2CH), 51.77 (CH₂), 45.17 (2CH), 30.53 (CH₂), 25.90 (2CH₃); LRMS *m/z* (rel int) 299 (M⁺, 11), 91 (100).

Tosylation of 2a. To a solution of 2a (0.21 g, 1.0 mmol) in pyridine (20 mL) was added tosyl chloride (0.28 g, 1.5 mmol) at 25 °C. The reaction mixture was stirred at 25 °C for 12 h. To this mixture was added 1 M HCl (30 mL) at 0 °C. After extraction with ether (4 x 30 mL), the organic layer was washed with saturated NaHCO₃, brine, dried over MgSO₄, and evaporated, and the residue was purified by column chromatography to give the sulfonamide 7 (0.33 g, 90%): white waxy solid; mp 137-138 °C; IR (CHCl₃) 3020, 2980, 1610, 1350, 1100 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.91 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 5.99 (d, J = 7.5 Hz, 2H), 3.15-3.12 (m, 2H), 3.05-3.01 (m, 2H), 2.40 (s, 3H), 1.82-1.79 (m, 2H), 1.41 (s, 6H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 143.08 (C), 137.90 (C), 129.01 (2CH), 128.00 (2CH), 116.91 (2C), 88.63 (2CH), 58.66 (2CH), 45.86 (2CH), 30.17 (CH₂), 25.38 (2CH₃), 21.55 (CH₃); LRMS m/z (rel int) 363 (M⁺, 100); HRMS (EI) calcd for C₁₈H₂₁O₅NS 363.1140, found 363.1132.

General Procedure for the Reaction of 1a-c with Lewis Acids, such as TiCl₄ and BF₃·OEt₂ in Acetonitrile. To a solution of 1a (0.11 g, 0.52 mmol) in acetonitrile (10 mL) was added TiCl₄ (0.19 g, 1.00 mmol) at 25 °C. The reaction mixture was stirred at 25 °C for 4 h. To this mixture, H₂O (20 mL) was added. After extraction with ether (4 x 20 mL), the organic layer was washed with brine, dried over MgSO₄, and evaporated, and the residue was purified by column chromatography to give the hydride rearrangement product 8a which was obtained by a different reaction procedure.⁹

General Procedure for the Reaction of 1a with MesSiI in Acrylonitrile and Benzonitrile. To a solution of 1a (0.11g, 0.52 mmol) in acrylonitrile (10 mL) was added iodotrimethylsilane (0.30 g, 1.5 mmol) at 25 °C. The reaction mixture was stirred at 25 °C for 4 h. To this solution was added saturated Na₂S₂O₃ solution (10 mL). After extraction with ether (3 x 20 mL), the organic layer was washed with brine, dried over MgSO₄, and evaporated, and the residue was purified by column chromatography to give the hydride rearrangement product 8a which is a known compound.⁹

General Procedure for the Formation of the Ring Expansion Compounds 9a-f. To a solution of 1a (0.42 g, 2.0 mmol) in acetonitrile (30 mL) was added iodotrimethylsilane (0.40 g, 2.0 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for 4 h. To this solution was added saturated Na₂S₂O₃ solution (30 mL). After extraction with ether (3 x 30 mL), the organic layer was washed with brine, dried over MgSO₄, and evaporated, and the residue was purified by column chromatography to give the ring expansion intermediate 9a (0.46 g, 85%).

5977

1,5,9-Trimethyl-4-aza-2,6,8,15-tetraoxapentacyclo[7.5.1.0^{3,13}.0^{7,11}.0^{10,14}]-5-pentadecene 9a: white waxy solid; mp 57-58.5 °C; IR (CHCl₃) 2980, 1070 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.20 (d, J = 8.1 Hz, 1H), 6.06 (d, J = 7.2 Hz, 1H), 3.30-3.28 (m, 2H), 3.14-3.10 (m, 2H), 2.84 (s, 3H), 1.92-1.86 (m, 1H), 1.81-1.77 (m, 1H), 1.56 (s, 3H), 1.55 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 208.46 (C), 117.83 (2C), 89.46 (CH), 89.40 (CH), 59.13 (CH), 59.05 (CH), 45.46 (CH), 44.84 (CH), 34.03 (CH₃), 28.86 (CH₂), 25.26 (CH₃), 25.21 (CH₃); LRMS m/z (rel int) 251 (M⁺, 100); HRMS (EI) calcd for C₁₃H₁₇O₄N 251.1158, found 251.1152.

5-Methyl-4-aza-2,6,8,15-tetraoxapentacyclo[7.5.1.0^{3,13}.0^{7,11}.0^{10,14}]-5-pentadecene 9b: white waxy solid; mp 82-83 °C; yield 80%; IR (CHCl₃) 2980, 1070 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.13 (d, J = 7.8 Hz, 1H), 6.05 (d, J = 7.5 Hz, 1H), 5.87 (d, J = 3.6 Hz, 1H), 5.86 (d, J = 3.6 Hz, 1H), 3.58-3.54 (m, 2H), 3.09-3.05 (m, 2H), 2.85 (s, 3H), 2.06-1.99 (m, 1H), 1.90-1.86 (m, 1H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 209.00 (C), 110.04 (2CH), 89.33 (CH), 89.22 (CH), 54.65 (CH), 54.61 (CH), 44.82 (CH), 44.23 (CH), 34.09 (CH₃), 28.85 (CH₂); LRMS m/z (rel int) 223 (M⁺, 100); HRMS (EI) calcd for C₁₁H₁₃O₄N 223.0845, found 223.0849.

1,9-Diphenyl-5-methyl-4-aza-2,6,8,15-tetraoxapentacyclo[**7.5.1.0**^{3,13}.0^{7,11}.0^{10,14}]-**5-pentadecene 9c**: highly viscous oil; yield 85%; IR (CHCl₃) 2980, 1600, 1060, 755, 705 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.60-7.56 (m, 5H), 7.43-7.32 (m, 6H), 6.38 (d, *J* = 7.5 Hz, 1H), 3.68-3.64 (m, 2H), 3.35-3.29 (m, 2H), 2.92 (s, 3H), 1.99-1.97 (m, 2H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 209.08 (C), 140.71 (2C), 128.56 (2CH), 128.35 (2CH), 128.17 (2CH), 125.77 (2CH), 125.56 (2CH), 118.85 (2C), 90.18 (2CH), 62.27 (CH), 62.03 (CH), 46.11 (CH), 45.37 (CH), 34.36 (CH₃), 29.06 (CH₂); LRMS *m/z* (rel int) 375 (M⁺, 25), 298 (100); HRMS (EI) calcd for C₂₃H₂₁O₄N 375.1471, found 375.1479.

1,9-Dimethyl-5-ethyl-4-aza-2,6,8,15-tetraoxapentacyclo[7.5.1.0^{3,13}.0^{7,11}.0^{10,14}]-5-pentadecene 9d: highly viscous oil; yield 82%; IR (CHCl₃) 2980, 1070 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.26 (d, J =8.1 Hz, 1H), 6.10 (d, J = 7.2 Hz, 1H), 3.29-3.26 (m, 2H), 3.14-3.10 (m, 2H), 3.01-2.94 (m, 2H), 1.91-1.85 (m, 1H), 1.78-1.74 (m, 1H), 1.57 (s, 3H), 1.55 (s, 3H), 1.35 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 214.71 (C), 117.91 (C), 117.80 (C), 89.70 (CH), 88.74 (CH), 59.23 (2CH), 45.53 (CH), 44.98 (CH), 37.44 (CH₂), 29.03 (CH₂), 25.33 (2CH₃), 14.07 (CH₃); LRMS m/z (rel int) 265 (M⁺, 100); HRMS (EI) calcd for C₁₄H₁₉O₄N 265.1314, found 265.1321.

1,9-Dimethyl-5-n-propyl-4-aza-2,6,8,15-tetraoxapentacyclo[7.5.1.0^{3,13}.0^{7,11}.0^{10,14}]-5-

pentadecene 9e: highly viscous oil; yield 80%; IR (CHCl₃) 2980, 1070 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.25 (d, J = 8.1 Hz, 1H), 6.08 (d, J = 7.5 Hz, 1H), 3.29-3.26 (m, 2H), 3.14-3.08 (m, 2H), 2.97 (t, J = 8.1 Hz, 2H), 1.90-1.84 (m, 2H), 1.77-1.71 (m, 2H), 1.57 (s, 3H), 1.55 (s, 3H), 1.02 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 213.25 (C), 117.89 (C), 117.77 (C), 89.63 (CH), 88.90 (CH), 59.17 (2CH), 46.53 (CH₂), 45.48 (CH), 44.92 (CH), 29.03 (CH₂), 25.27 (2CH₃), 23.25 (CH₂), 13.82 (CH₃); LRMS m/z (rel int) 279 (M⁺, 100); HRMS (EI) calcd for C₁₅H₂₁O₄N 279.1471, found 279.1467.

1,9-Dimethyl-5-benzyl-4-aza-2,6,8,15-tetraoxapentacyclo[7.5.1.0^{3,13}.0^{7,11}.0^{10,14}]-5-pentadecene

9f: highly viscous oil; yield 80%; IR (CHCl₃) 2980, 1600, 1060, 750, 700 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.21 (m, 6H), 5.93 (d, J = 7.5 Hz, 1H), 4.65, 4.36 (ABq, J = 15.3 Hz, 2H), 3.24-3.19 (m, 2H), 3.10-3.08 (m, 1H), 2.86-2.84 (m, 1H), 1.79-1.71 (m, 2H), 1.58 (s, 3H), 1.53 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 209.07 (C), 136.19 (C), 128.83 (2CH), 127.62 (2CH), 126.98 (CH), 118.07 (C), 117.93 (C), 89.89 (CH), 89.57 (CH), 59.23 (CH), 59.17 (CH), 51.73 (CH₂), 45.35 (CH), 45.08 (CH), 29.03 (CH₂), 25.36 (CH₃), 25.29 (CH₃); LRMS m/z (rel int) 327 (M⁺, 24), 250 (100); HRMS (EI) calcd for C₁₉H₂₁O₄N 327.1471, found 327.1477.

General Procedure for the Conversion of 9a-c to Aza-Cages 2a-c. The same reaction conditions and procedure for the conversion of tetraoxa-cages 1a-c to the aza-cages 2a-c were applied for the conversion of 9a-c to 2a-c.

General Procedure for the Reaction of 1a,b with MesSiCl and NaI in Nitriles. Formation of the Amido-Cages 12a-e. To a solution of 1a (0.21 g, 1.0 mmol) in acetonitrile (20 mL) were added NaI (0.45 g, 3.00 mmol) and MesSiCl (0.65 g, 6.00 mmol) at 25 °C. The reaction mixture was stirred at 25 °C for 48 h. To this mixture was added saturated Na2S2O3 solution (20 mL). After extraction with ether (3 x 30 mL), the organic layer was washed with brine, dried over MgSO4, and evaporated, and the residue was purified by column chromatography to give the amido-cage 12a (0.23 g, 90%).

1,7-Dimethyl-4-acetamido-2,6,13-trioxapentacyclo[5.5.1.0^{3,11}.0^{5,9}.0^{8,12}]tridecane 12a: white waxy solid; mp 99-100 °C; IR (CHCl₃) 2970, 1670, 1070 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.33 (d, J = 7.2 Hz, 1H), 5.75 (d, J = 7.2 Hz, 1H), 3.22 (dd, J = 5.1 Hz, J = 3.0 Hz, 2H), 3.10-3.00 (m, 2H), 2.26 (s, 3H), 1.89-1.80 (m, 1H), 1.73-1.69 (m, 1H), 1.53 (s, 6H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 172.89 (CO), 117.21 (C), 117.09 (C), 88.95 (CH), 84.72 (CH), 59.17 (2CH), 45.33 (CH), 44.51 (CH), 29.54 (CH₂), 25.43 (2CH₃), 22.25 (CH₃); LRMS m/z (rel int) 251 (M⁺, 12), 209 (100); HRMS (EI) calcd for C₁₃H₁₇O₄N 251.1158, found 251.1155.

1,7-Dimethyl-4-propioamido-2,6,13-trioxapentacyclo[5.5.1.0^{3,11}.0^{5,9}.0^{8,12}]tridecane 12b: highly viscous oil; yield 81%; IR (CHCl₃) 2970, 1670, 1070 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ d 6.37 (d, J = 7.2 Hz, 1H), 5.81 (d, J = 7.2 Hz, 1H), 3.22 (dd, J = 5.1 Hz, J = 2.4 Hz, 2H), 3.08-3.00 (m, 2H), 2.60-2.50 (m, 2H), 1.85-1.78 (m, 1H), 1.71-1.67 (m, 1H), 1.53 (s, 6H), 1.16 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 175.98 (CO), 117.09 (C), 117.03 (C), 87.93 (CH), 84.93 (CH), 59.14 (2CH), 45.24 (CH), 44.54 (CH), 29.57 (CH₂), 27.06 (CH₂), 25.43 (2CH₃), 8.85 (CH₃); LRMS *m/z* (rel int) 265 (M⁺, 24), 209 (100); HRMS (EI) calcd for C₁₄H₁₉O4N 265.1314, found 265.1318.

1,4-Dimethyl-4-homobenzoylamido-2,6,13-trioxapentacyclo[5.5.1.0^{8,11}.0^{5,9}.0^{8,12}]tridecane 12c: highly viscous oil; yield 80%; IR (CHCl₃) 2970, 1670, 1600, 1070, 750, 700 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.33-7.21 (m, 5H), 6.37 (d, J = 7.2 Hz, 1H), 5.77 (d, J = 7.2 Hz, 1H), 3.96, 3.84 (ABq, J = 15.3 Hz, 2H), 3.20-3.18 (m, 2H), 3.01 (brs, 1H), 2.93 (brs, 1H), 1.77-1.70 (m, 1H), 1.53 (s, 6H), 1.53-1.49 (m, 1H); ¹⁸C NMR (75 MHz, CDCl₃, DEPT) δ 173.07 (CO), 134.44 (C), 128.58 (2CH), 128.50 (2CH), 126.72 (CH), 117.18 (C), 117.13 (C), 88.23 (CH), 84.98 (CH), 59.00 (2CH), 45.11 (CH), 44.56 (CH), 41.27 (CH₂), 29.44 (CH₂), 25.34 (2CH₃); LRMS m/z (rel int) 327 (M⁺, 8), 209 (100); HRMS (EI) calcd for C₁₉H₂₁O₄N 327.1471, found 327.1463.

4-Acetamido-2,6,13-trioxapentacyclo[5.5.1.0^{3,11}.0^{6,9}.0^{8,12}]tridecane 12d: white waxy solid; mp 68-69 °C; yield 80%; IR (CHCl₃) 2970, 1670, 1060 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.28 (d, J = 7.2 Hz, 1H), 5.81 (d, J = 5.1 Hz, 2H), 5.74 (d, J = 7.2 Hz, 1H), 3.50 (brs, 2H), 3.04-2.96 (m, 2H), 2.28 (s, 3H), 1.99-1.93 (m, 1H), 1.81-1.77 (m, 1H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 173.01 (CO), 109.49 (CH), 109.40 (CH), 88.71 (CH), 84.55 (CH), 54.54 (2CH), 44.57 (CH), 43.81 (CH), 29.51 (CH₂), 22.19 (CH₃); LRMS m/z (rel int) 223 (M⁺, 17), 181 (100); HRMS (EI) calcd for C₁₁H₁₃O₄N 223.0845, found 223.0840. 4-Propioamido-2,6,13-trioxapentacyclo[5.5.1.0^{8,11}.0^{6,9}.0^{8,12}]tridecane 12e: white waxy solid; mp 54-55 °C; yield 83%; IR (CHCl₃) 2970, 1670, 1070 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.32 (d, J = 7.2 Hz, 1H), 5.81 (d, J = 5.1 Hz, 2H), 5.76 (d, J = 7.2 Hz, 1H), 3.50 (brs, 2H), 3.02-2.97 (m, 2H), 2.61-2.51 (m, 2H), 1.99-1.92 (m, 1H), 1.79-1.75 (m, 1H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 176.04 (CO), 109.40 (2CH), 87.72 (CH), 84.78 (CH), 54.54 (2CH), 44.54 (CH), 43.84 (CH), 29.54 (CH₂), 26.94 (CH₂), 8.70 (CH₃); LRMS m/z (rel int) 278 (M⁺, 26), 181 (100); HRMS (EI) calcd for C₁₂H₁₅O₄N 237.1001, found 237.1007.

General Procedure for the Hydrolysis of 12a,d to Give 2a,b. To a solution of 12a (0.25 g, 1.0 mmol) in THF (10 mL) and H₂O (10 mL) was added 1 M HCl (5 mL) at 25 °C. The reaction mixture was refluxed for 4 h. After cooling, saturated NaHCO₃ solution (20 mL) was added to the solution. After extraction with ether (4 x 30 mL), the organic layer was washed with brine, dried over MgSO₄, and evaporated, and the residue was purified by column chromatography to give the aza-cage 2a (0.16 g, 75%).

General Procedure for the Reduction of 12a,d with Diisobutylaluminum Hydride (DIBAL-

H). To a solution of 12a (0.25 g, 1.00 mmol) in dry THF (30 mL) was added DIBAL-H (0.85 g, 1.2 mmol, 20% in *n*-hexane) at 0 °C. The reaction mixture was stirred at 0 °C for 2 h. To this solution was dropwise added H₂O at 0 °C to destroy the excess DIBAL-H. After extraction with ether (4 x 30 mL), the organic layer was washed with brine, dried over MgSO₄, and evaporated, and the residue was purified by column chromatography to give the aza-cage 2a (0.15 g, 70%) and compound 13a (0.040 g, 15%).

1,7-Dimethyl-4-ethyl-4-aza-2,6,13-trioxapentacyclo[5.5.1.0^{3,11}.0^{5,9}.0^{8,12}]tridecane 13a: highly viscous oil; IR (CHCl₃) 2880, 1070 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) & d 5.04 (d, J = 7.8 Hz, 2H), 3.12

(dd, J = 5.1 Hz, J = 3.0 Hz, 2H), 2.97 (q, J = 7.2 Hz, 2H), 2.88-2.84 (m, 2H), 1.87-1.83 (m, 1H), 1.71-1.65 (m, 1H), 1.50 (s, 6H), 1.12 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 115.07 (2C), 92.66 (2CH), 59.90 (2CH), 45.04 (2CH), 42.24 (CH₂), 30.33 (CH₃), 25.90 (2CH₃), 12.80 (CH₃); LRMS m/z (rel int) 237 (M⁺, 34), 222 (100); HRMS (EI) calcd for C₁₈H₁₉O₈N 237.1365, found 237.1372. 4-Ethyl-4-aza-2,6,18-trioxapentacyclo[5.5.1.0^{3,11}.0^{5,9}.0^{8,12}]tridecane 13b: highly viscous oil; yield 17%; IR (CHCl₃) 2880, 1070 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.71 (d, J = 5.1 Hz, 2H), 5.01 (d, J = 8.1Hz, 2H), 3.39-3.36 (m, 2H), 2.97 (q, J = 6.6 Hz, 2H), 2.80-2.76 (m, 2H), 1.89-1.85 (m, 1H), 1.81-1.76 (m, 1H), 1.13 (t, J = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 108.10 (2CH), 92.56 (2CH), 55.43 (2CH), 44.59 (2CH), 42.48 (CH₂), 30.59 (CH₂), 12.89 (CH₃); LRMS m/z (rel int) 209 (M⁺, 15), 194 (100); HRMS (EI) calcd for C₁₁H₁₅O₃N 209.1052, found 209.1058.

Reaction of 12a with Triethylsilane in the Presence of TiCl4. To a solution of 12a (0.25 g, 1.0 mmol) in dichloromethane (30 mL) were added triethylsilane (0.35 g, 3.00 mmol) and TiCl4 (0.020 g, 0.10 mmol) at -25 °C. The reaction mixture was stirred at -25 °C for 6 h. To this solution, H₂O (10 mL) was added. After extraction with CH₂Cl₂ (3 x 30 mL), the organic layer was washed with brine, dried over MgSO₄, and evaporated, and the residue was purified by column chromatography to give compound 14 (0.20 g, 85%), which ¹H and ¹³C NMR spectra revealed one pair of conformational isomers: pale yellow oil; IR (CHCl₃) 2880, 1670, 1070 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.13-6.11 (m, 1H), 5.63-5.61 (m, 1H), 4.83-4.78 (m, 1H), 4.30-4.26 (m, 1H), 2.97-2.91 (m, 1H), 2.86-2.80 (m, 1H), 2.39-2.36 (m, 2H), 2.24 (s, 3H), 1.75-1.68 (m, 1H), 1.57-1.53 (m, 1H), 1.49-1.46 (m, 3H), 1.29-1.26 (m, 3H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 173.41 (CO), 173.01 (CO), 89.75 (CH), 87.45 (CH), 86.09 (CH), 83.19 (CH), 77.31 (CH), 77.19 (CH), 75.85 (CH), 75.65 (CH), 48.48 (CH), 48.17 (CH), 47.88 (CH), 47.81 (CH), 46.93 (CH), 46.10 (CH), 45.86 (CH), 45.14 (CH), 24.14 (CH₂), 24.11 (CH₂), 22.50 (CH₃), 22.17 (2CH₃), 21.86 (CH₃), 15.42 (CH₃), 15.38 (CH₃); LRMS m/z (rel int) 237 (M⁺, 14), 195 (100); HRMS (EI) calcd for C₁₃H₁₉O₃N 237.1365, found 237.1359.

Hydrolysis of 14. The same reaction conditions and procedure for the hydrolysis of 12a,d were applied for the hydrolysis of 14 to give compound 15 in 65% yield: pale yellow oil; IR (CHCl₃) 3350, 2880, 1060 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.09 (d, J = 6.6 Hz, 1H), 5.07 (d, J = 7.5 Hz, 1H), 4.80-4.77 (m, 1H), 4.20-4.16 (m, 1H), 2.81-2.74 (m, 1H), 2.68-2.64 (m, 1H), 2.36-2.28 (m, 2H), 1.59-1.52 (m, 3H), 1.48 (d, J = 7.5 Hz, 3H), 1.20 (d, J = 6.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 89.63 (CH), 88.32 (CH), 75.62 (CH), 74.13 (CH), 49.51 (CH), 48.20 (CH), 47.18 (CH), 45.94 (CH), 25.81 (CH₂), 23.58 (CH₃), 15.98 (CH₃); LRMS m/z (rel int) 195 (M⁺, 18), 83 (100); HRMS (EI) calcd for C₁₁H₁₇O₂N 195.1259, found 195.1263.

Reaction of 12a with Cyanotrimethylsilane in the Presence of TiCl. To a solution of 12a

(0.25 g, 1.0 mmol) in dichloromethane (30 mL) were added cyanotrimethylsilane (0.30 g, 3.0 mmol) and TiCl₄ (0.020 g, 0.1 mmol) at 0 °C. The reaction mixture was stirred at 25 °C for 8 h. To this solution, H₂O (10 mL) was added. After extraction with CH₂Cl₂ (3 x 30 mL), the organic layer was washed with brine, dried over MgSO₄, and evaporated, and the residue was purified by column chromatography to give compound 16 (0.19 g, 70%): white waxy solid; mp 86-87 °C; IR (CHCl₃) 3500-3300, 2880, 2250, 1675, 1070 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.74 (d, J = 7.8 Hz, 1H), 5.59 (s, 1H), 5.13 (d, J = 2.7 Hz, 1H), 3.35 (dd, J = 8.4 Hz, J = 8.4 Hz, 1H), 3.17-3.15 (m, 1H), 2.95 (dd, J = 8.7 Hz, J = 6.9 Hz, 1H), 2.57-2.53 (m, 1H), 2.25 (s, 3H), 2.20-2.16 (m, 1H), 1.88 (s, 3H), 1.72 (s, 3H), 1.65-1.59 (m, 1H); ¹³C NMR (75 MHz, CDCl₃, DEPT) δ 176.35 (CO), 121.40 (CN), 117.83 (C), 88.99 (CH), 78.33 (CH), 76.17 (C), 58.06 (CH), 54.28 (CH), 44.75 (CH), 41.25 (CH), 28.48 (CH₂), 24.50 (CH₃), 22.81 (CH₃), 20.74 (CH₃); LRMS m/z (rel int) 278 (M⁺, 26), 236 (100); HRMS (EI) calcd for C₁₄H₁₈O₄N₂ 278.1267, found 278.1261.

Acknowledgment. We thank the National Science Council of the Republic of China for financial Support (Grant No. NSC86-2113-M009-001) and Dr. Sue-Lein Wang and Miss Fen-Ling Liao at the Department of Chemistry, National Tsing Hua University, for their help in carrying out the X-ray crystallographic analysis.

References and Notes

- Reviews: (a) Mukaiyama, T.; Murakami, M. Synthesis 1987, 1043. (b) Hosomi, A.; Endo, M.; Sakurai, H. Chem. Lett. 1976, 941. (c) Hosomi, A. Acc. Chem. Res. 1988, 21, 200.
- (2) (a) Denmark, S. E.; Almstead, N. G. J. Am. Chem. Soc. 1991, 113, 8089. (b) Sammakia, T.; Smith, R. S. J. Org. Chem. 1992, 57, 2997. (c) Denmark, S. E.; Wilson, T.; Willson, T. M. J. Am. Chem. Soc. 1988, 110, 984. (d) Denmark, S. E.; Willson, T. M.; Almstead, N. G. J. Am. Chem. Soc. 1989, 111, 9258. (e) Yamamoto, Y.; Nishii, S.; Yamada, J. J. Am. Chem. Soc. 1986, 108, 7116. (f) Mori, I.; Ishihara, K.; Flippin, L. A.; Nozaki, K.; Yamamoto, H.; Bartlett, P. A.; Heathcock, C. H. J. Org. Chem. 1990, 55, 6107. (g) Denmark, S. E.; Willson, T. M. J. Am. Chem. Soc. 1989, 111, 3475. (h) Denmark, S. E.; Almstead, N. G. J. Org. Chem. 1991, 56, 6485. (i) Ishihara, K.; Mori, A.; Yamamoto, H. Tetrahedron 1990, 46, 4595.
- (3) (a) Johnson, W. S.; Harbert, C. A.; Stipanovic, R. D. J. Am. Chem. Soc. 1968, 90, 5279. (b) Johnson, W. S.; Harbert, C. A.; Ratcliffe, B. E.; Stipanovic, R. D. J. Am. Chem. Soc. 1976, 98, 6188.
 (c) Bartlett, P. A.; Johnson, W. S.; Elliott, J. D. J. Am. Chem. Soc. 1983, 105, 2088. (d) Johnson, W. S.; Crackett, P. H.; Elliott, J. D.; Jagodzinski, J. J.; Lindell, S. D.; Natarajan, S. Tetrahedron Lett. 1984, 25, 3951. (e) Elliott, J. D.; Choi, V. M. F.; Johnson, W. S. J. Org. Chem. 1983, 48, 2294.
 (f) Johnson, W. S.; Edington, C.; Elliott, J. D.; Silverman, I. R. J. Am. Chem. Soc. 1984, 106, 7588.

(g) Lindell, S. D.; Elliott, J. D.; Johnson, W. S. Tetrahedron Lett. 1984, 25, 3947. (h) Choi, V. M.
F.; Elliott, J. D.; Johnson, W. S. Tetrahedron Lett. 1984, 25, 591. (i) Elliott, J. D.; Steele, J.; Johnson, W. S. Tetrahedron Lett. 1985, 26, 2535. (j) Silverman, R. I.; Edington, C.; Elliott, J. D.; Johnson, W. S. J. Org. Chem. 1987, 52, 180. (k) McNamara, J. M.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 7371. (l) For copper nucleophiles: Ghribi, A.; Alexakis, A.; Normant, J. F. Tetrahedron Lett. 1984, 25, 3075. (m) Ghribi, A.; Alexakis, A.; Normant, J. F. Tetrahedron Lett. 1984, 25, 3083. (n) Richter, W. J. J. Org. Chem. 1981, 46, 5119. (o) Alexakis, A.; Mangeney, P. Tetrahedron Asymmetry 1990, 1, 477.

- (4) (a) Wu, H. J.; Lin, C. C. J. Org. Chem. 1995, 60, 7558. (b) Wu, H. J.; Lin, C. C. J. Org. Chem. 1996, 61, 3820. (c) Lin, C. C.; Wu, H. J. Tetrahedron Lett. 1995, 36, 9353. (d) Wu, H. J.; Huang, F. J.; Lin, C. C. J. Chem. Soc., Chem. Commun. 1991, 770. (e) Wu, H. J.; Chern, J. H.; Wu, C. Y. Tetrahedron 1997 53, 2401. (f) Lin, C. C.; Wu, H. J. J. Chinese Chem. Soc. 1995, 42, 815. (g) Lin, C. C.; Huang, F. J.; Lin, J. C.; Wu, H. J. J. Chinese Chem. Soc. 1996, 43, 177. (h) Lin, R. L.; Wu, C. Y.; Chern, J. H.; Wu, H. J. J. Chinese Chem. Soc. 1996, 43, 289.
- (5) Lin, C. C.; Wu, H. J. Synthesis 1996, 715.
- (6) Wu, C. Y.; Lin, C. C.; Lai, M. C.; Wu, H. J. J. Chinese. Chem. Soc. 1996, 43, 187.
- (7) (a) Wu, H. J.; Tsai, S. H.; Chern, J. H.; Lin, H. C. J. Org. Chem. 1997, 62, 6367. (b) Wu, H. J.; Tsai, S. H.; Chung, W. S. Tetrahedron Lett. 1996, 37, 8209. (c) Wu, H. J.; Tsai, S. H.; Chung, W. S. J. Chem. Soc., Chem. Commun. 1996, 375. (d) Tsai, S. H.; Wu, H. J.; Chung, W. S. J. Chinese. Chem. Soc. 1996, 43, 445.
- (8) (a) Wu, H. J.; Wu, C. Y. Tetrahedron Lett. 1997, 38, 2493. (b) Mehta, G.; Vidya, R. Tetrahedron Lett. 1997, 38, 4173.
- (9) (a) Wu, H. J.; Chern, J. H. J. Org. Chem. 1997, 62, 3208. (b) Wu, H. J.; Chern, J. H. J. Chem. Soc., Chem. Commun. 1997, 547.
- (10) Wu, H. J.; Chern, J. H. Tetrahedron Lett. 1997, 38, 2887.
- (11) (a) Senanayake, C. H.; Roberts, F. E.; DiMichele, L. M.; Ryan, K. M.; Liu, J.; Fredenburgh, L. E.; Foster, B. S.; Douglas, A. W.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J.; Tetrahedron Lett. 1995, 36, 3993. (b) Ritter, J. J.; Minieri, P. P. J. Am. Chem. Soc. 1948, 70, 4045. (c) Bishop, R. Comprehensive Org. Syn. 1991, 6, 261.
- (12) (a) Olah, G. A.; Narang, S. C. Tetrahedron 1982, 38, 2225. (b) Olah, G. A.; Narang, S. C.;
 Balaram Gupta, B. G.; Malhotra, R. J. Org. Chem. 1979, 44, 1247.