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TRANSIENT HEAT-TRANSFER PHENOMENON OF
TWO-DIMENSIONAL HYPERBOLIC HEAT
CONDUCTION PROBLEM

Jhy·Ping Wu, Yen-Ping Shu, and Hsin-Sen Chu
Department ofMechanical Engineering, National Chiao Tung University,
Hsinchu, Taiwan 300, Republic ofChina

This article presents a numerical analysis ofthe two-dimensional hyperbolic heat conduction
problem in an anisotropic medium under a point heat source with different boundary
conditions. A simple model has been devetoped to soloe the anisotropic problem. In this
analysis, the second-order total variation diminishing (TVD) scheme is employed to solve
this problem. The effects of boundary conditions and anisotropy on the thermal wave
induced by different types ofheat sources in the medium are examined in detail. The results
show that the transient behavior of the propagation of the two-dimensional thermal wave is
much more complicated than thsu of the one-dimensional thermal wave due to a circular
wave formed to propagate uniformly in aU directions, reflections by boundaries, interaction
with each other, and serious discontinuity on the wavefront.

INTRODUCTION

The Fourier Jaw of heat conduction, which is the classical theory of diffusion,
postulates a heat flux to be directly proportional to a temperature gradient in the
form

q(r, t) = -kVT(r, t} (1)

where k is the thermal conductivity, r the position vector, and t the physical time.
According to this law, the traditional heat conduction equation implies an infinite
speed of propagation of the thermal wave, indicating that a local change in
temperature causes an instantaneous perturbation in the temperature at each
point in the medium, even if the intervening distances are large. In other words,
heat propagates at an infinite speed, which is incompatible with physical reality.
Despite such an unacceptable notion of energy transport in solids, the classical
diffusion theory has been widely applied in heat-transfer problems and gives
reliable results for most situations encountered in practice, mainly because in most
situations the thermal diffusivity is 10 orders of magnitude smaller than that
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636 l.-P. WU ET AL.

NOMENCLATURE

[Al.[Bl Jacobian matrices t; wall temperature
c speed of thermal wave [WI eigenmatrix, defined in Eq. (25)
Cp specific heat x,y Cartesian spatial variable
d length of plate (xo,Yo) position of heat source
e thermal energy released per [Zl eigenmatrix, defined in Eq. (27)

unit length a thermal diffusivity, k/Cp P
E,F flux vector, defined in Eq. (10) Ed nondimensional thermal energy
FOI nondimensionalrelaxation time in released

x direction, Txky/d'pCp
). eigenvalue

Fo, nondimensionalrelaxation time in p density
y direction, Tyky/d'pCp T relaxation time, a/c2

g volumetric energy source
k thermal conductivity Subscripts
K ratio of thermal conductivity, kx/ky
[Ml,[N] flux vector, defined in Eqs. (25) a,b components for Lf] and [B],

and (29), respectively respectively
q heat flux i.] control volume index
q heat flux vector i or j ± t value at control volume faces

Q unknown vector, defined in Eq. (10) r ratio
r position vector x,y components in x and y directions,
[R] right eigenmatrix, defined in respectively

Eq. (15)
S source vector, defined in Eq. (10) Superscripts
t time
T temperature n,n + 1 time levels nand n + 1

To initial temperature dimensionless variable

Tree reference temperature [ I-I inverse matrix

corresponding to the speed of a thermal wave. However, with the advent of science
and technology involving very low temperatures near absolute zero, an extremely
short transient duration, and an extremely high rate of change of temperature or
heat flux, some investigators found that the heat propagation velocity of such
situations becomes finite and dominant.

One of the earliest experiments detecting thermal waves was performed by
Peshkov [1] using superfluid liquid helium at a temperature of 1.4 K, and the
velocity of the thermal wave is 19 m/s. He referred to this phenomenon as "second
sound," because of the similarity between the observed thermal waves and ordinary
acoustic waves. Von Gutfeld [2] measured the velocity of thermal waves in different
dielectric crystals, such as sapphire, GeSi, and NaC!, and their values are all of
order 103 mls at low temperature. Maurer and Thompson [3] found that if the
surface heat fluxes are greater than on the order of 107 WIm2, the Fourier heat
flux model will break down. In recent years, because of the advancement of
short-pulse laser technologies and their applications to modem microfabrication
technologies, research on high-rate heating on thin film structures has rapidly
grown. Human [4] found that the thermal propagation velocity becomes dominant
in short-pulse laser heating.

To consider the finite speed of wave propagation, a damped wave model is
proposed in the literature by using a variety of reasonings and derivations. Its
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lWO·D1MENSIONAL HYPERBOLIC HEAT CONDUCTION 637

development is presented in detail in the review articles by Joseph and Preziosi
[5, 6]. Cattaneo [7] and Vernotte [8] independently suggested a modified heat flux
model in the form of

q(r,t + T) = -kVT(r,t) (2)

where T is relaxation time, an intrinsic thermal property of the medium. Equation
(2) depicts that the temperature gradient established at time t, due to insufficient
response time, results in a heat flux vector at a later time t + T. This means the
heat wave model allows a time lag between the heat flux and the temperature
gradient. In fact, the relaxation time T is associated with the communication
"time" between phonons (phonon-phonon collisions) necessary for commence
ment of heat flow and is a measure of thermal inertia of the medium. Based on the
ideas from the collision theory of molecules, T is approximated to alez where e is
the thermal wave velocity in the medium. Clearly, for T = 0, Eq. (2) reduces to the
classical Fourier law and leads to an infinite propagation velocity. Several investi
gators [9-12] made attempts to estimate the magnitude of T for engineering
materials. It appears that the magnitude of T ranges from 10- 10 s for gases at
standard conditions to 10- 14 s for metals, with values of T for liquids and
insulators falling within this range. Sieniutycz [13] quoted that the T values for
homogeneous substance are of the order 10-8 to 10- 10 s, while recent work by
Kaminski [14] on nonhomogeneous inner structure materials revealed values of T

of the order of fractions of a minute. However, for nonhomogeneous materials,
Luikov [15] found that the T values are of the order 10-3 to 103 s. Recently, Mitra
et al. [16] determined experimentally the T value to be approximately 16 s for
biological material and directly validated the hyperbolic nature of heat conduction
by comparing experimentally observed temperature with the non-Fourier predic
tions. Vedavarz et al. [17] have obtained a wide range of T values for various
materials by examining thermophysical property data and using the expressions for
relaxation time [10, 11J. The value of this characteristic time is of importance since
the conduction processes that occur for time periods of the order of the thermal
characteristic time may exhibit significant non-Fourier behavior.

For emphasizing engineering applications of the thermal wave theory, Ozisik
and Tzou [18J presented a thorough review on thermal wave propagation, which
included the sharp wavefront and rate effects, the thermal shock phenomenon, the
thermal resonance phenomenon, and reflections and refractions of thermal waves
across a material interface. They also employed the dual-phase-lag concept to
capture the microscopic mechanisms in some limiting cases. A general criterion for
the dominance of wave behavior over diffusion was proposed by Tzou [19J:

(3)

with To being the reference temperature. According to this criterion, the relative
importance of the wave behavior in heat conduction can be examined by consider
ing the interaction of three factors that include the thermal properties (a and c),
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638 J.·P. WU ET AL.

the thermal loading and response conditions (aT/at and To), and the transient
time (r). If the heat-transfer process occurs in an extremely short period of time or
with an extremely high rate of temperature increase, the wave behavior may
become pronounced regardless of the value of To' Bai and Lavine [20] have
considered the thermodynamic validity of the hyperbolic equations. They proposed
a modified hyperbolic-type heat conduction equation that is consistent with the
second law of thermodynamic and showed that the conventional hyperbolic heat
conduction equation can give physically wrong solutions (temperatures less than
absolute zero) under some conditions.

Various analytical and numerical methods [21-28] have been proposed to
solve hyperbolic heat conduction problems. However, most problems involving
complicated geometries and conditions or variable physical properties must seek
the numerical solution. Differing from Fourier heat conduction, where the equa
tions are parabolic, the primary difficulties encountered in hyperbolic heat conduc
tion are concerned mainly with the fictitious numerical oscillations, particularly
when sharp propagation fronts and reflective boundaries are involved. Most
methods are restricted to analyze one-dimensional frameworks. Recently, there
have been two high-resolution numerical schemes [29-30] proposed to solve
two-dimensional hyperbolic heat conduction problems. These schemes can effec
tively reduce the oscillatory magnitudes in the vicinity of the thermal wavefront
and successfully reveal the multidimensional reflection and interaction of oblique
thermal shocks in complicated geometries. To the best of the authors' knowledge,
nobody has focused attention on the thermal wave behavior caused by a single
temperature pulse for multidimensional geometry.

The present investigation is concerned with the propagation of a thermal
wave in a rectangular plane with the initial point heat source located in an
arbitrary position and with anisotropic thermal properties. Two types of heat
sources, which are a continuous constant temperature and an instantaneous finite
heat flux, are discussed. The boundary conditions on four sides are either adiabatic
or a constant wall temperature. We use the second-order total variation diminish
ing [29] to solve this problem. The results show the complicated reflection and
interaction of thermal waves due to heat source and boundary conditions.

PHYSICAL MODEL AND THEORETICAL ANALYSIS

. By applying the Taylor series expansion to q in Eq. (2) with respect to 'T, and
then neglecting the second and higher order terms of 'T, the Maxwell-Cattaneo
equation or non-Fourier law, the constitutive equation used in the linearized
thermal wave theory, can be obtained. Next, combining the non-Fourier law and
the constitutive equation and eliminate the heat flux vector leads to the following
hyperbolic heat conduction equation with energy sources for the temperature
distribution:

(4)
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lWO·DIMENSIONAL HYPERBOLIC HEAT CONDUCTION 639

where g(r, r) represents the volumetric energy source in the medium. For the case
where c -> 00, Eq. (4) reduces to the classical heat diffusion equation, which
corresponds to instantaneous energy diffusion.

In the present investigation, a two-dimensional heat conduction problem in a
rectangular plane with constant thermal properties is considered. The thermal
conductivity and the velocity of a thermal wave are assumed to be isotropy or
anisotropy in the medium. The region is initially in equilibrium at temperature To.
For times t > 0, the surface in the arbitrary situation of the plane is subjected to a
point heat source. The types of heat sources are a continuous constant tempera
ture and an instantaneous finite heat flux. Two kinds of boundary conditions, which
are the adiabatic and constant wall temperatures, are discussed. The geometry and
Cartesian coordinates are depicted in Figure 1. The point heat source is located at
an arbitrary location, (xo, Yo) and extends to infinity normal to the xy plane. Both
the width in x direction and the length in y direction of the plane are d.

For convenience in the subsequent analysis, the nondimensionalized variables
are defined in the transformed system as follows:

x = ~(~(2 Y . kyt
(5a)y =- t=--

d d 2pC
p

T=
T- To _ qx ( 1 ) 1/2

iiy =
qy

(5b)
T,ef - To qx = k/T,ef - To)/d K k/T,ef - To)/d

where K = kx/ky, which is the thermal conductivity ratio of x direction to y
direction. The energy equation and non-Fourier constitutive equations for the x
and y-direction heat flux components iix and iiy are expressed in terms of the
preceding dimensionless variables as

aT aiix aiiy-. +-+-=0at ax ay
(6)

Yl
-f---------,

d

Figure 1. A schematic drawing of a
physical model.

x

d

(0,0)1 ----:- _
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640
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J.·P. WU ET AL.

aqx 1 aT 1 _
-+--=--q
at FOl ax FOl .r

aqy 1 aT 1
-. +--= --qat F02 ay F02 y

(7a)

(7b)

(8)

Equation (6) along with Eq. (7) can be written in dimensionless vector form as

aQ aE aF
-. +-+-=s
at ax ay

(9)

Q = (:.) E = ( {X T) F = ( ~_)
q F01 -T

y 0 F02

Equation (9) can be written as

aQ aQ aQ
-. + [A]-_ + [B]-_ = S
at ax ay

and the Jacobian matrices are

s=

o
1

--qF
01

x

1
1

--q
F

02
Y

(10)

(11)

r

0
aE 1

[A] = - = -
aQ FOl

o

1

o

o
[

0
aF 0

[B] = - = 1aQ _
F02

o
o
o

(12)

Then [A] and [B] can be diagonalized through the eigenvectors

(13)

where [Aa ] and [Ab ] are the diagonal matrices consisting of three eigenvalues of
[A] and [B], respectively. The superscript -1 represents the inverse eigenmatrix.
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lWO·DlMENSIONAL HYPERBOLIC HEAT CONDUCTION 641

The diagonal matrices and the right eigenmatrices show that

[A.I" [:

0

-1/:F" ] [A.I" [:

0

1/:FJ
I/JF01 l/JF02

0 0

(14)

[R.I " [;
JFOl ~] [R.I - [;

JF02

~]1 -1 0 (IS)

0 0 1 -1

In this analysis, the medium is considered to be either isotropic or anti
sotropic. However, the thermal properties are assumed not to vary with tempera
ture.

Isotropic material: The isotropic thermal properties consist of thermal conductivity
and thermal wave velocity in the medium. In other words, these thermal
properties are homogeneous and independent of the directions of heat
propagation. Then k x = k y or K = 1 and FOI = F02 • Without loss the gener
ality, we assume FOI = F02 = 1.

Anisotropic material: Thermal waves in anisotropic material, such as ceramic
high-temperature superconductors, are much less understood. Various at
tempts have been made to investigate the heat transfer of anisotropic
material concerned with the thermal stability of anisotropic thin-film super
conductors. Unfortunately, all the previous research resorts to classical
Fourier law [31, 32]. In the present study, we formulate a wave-type heat
conduction problem in a rectangular plane with anisotropic thermal proper
ties.

The dimensionless initial conditions are given as

(=0 (16)

A three-dimensional analysis would allow the consideration of a release of energy
in the form of a finite-length line source, which might be more realistic due to a
sudden thermal disturbance, but since the main purpose of this study is to
theoretically examine the wave behavior caused by the activation of a pulsed
energy source of finite area in multidimensional geometry, a two-dimensional
analysis is sufficient. However, a thermal disturbance due to a sudden relaxation of
a line dislocation is approximated very well by a line source. Two different types of
heat source are discussed as follows:
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642 J.-P. WU ET AL.

Instantaneous Finite Heat Flux. At time t = 0+, a finite amount of
thermal energy Bd is released in a line source at the location (xo' Yo)' Immediately
after the release of the thermal disturbance, the temperature far away from
(xo' Yo) is not affected by heat diffusion, and the material transfers no heat to the
environment. This leads to an additional initial condition for temperature

(17)for i = 0+f/{IZ t'fdidY = Bd
o 0

and a line source is approximated by a deposition of thermal energy in an area
Ax Ay around the point (Xo' Yo) where

(18a)

otherwise

(18b)

Such an energy source could serve as a model for, for example, application of
film/tape superconductors, which is associated with thermal stability under ther
mal disturbances caused by a sudden relaxation of dislocations, crystal defects, or
other spontaneous processes in superconductors [31]. This situation assumes both
the film/tape and the disturbance source to be infinite lengths along the current
direction, and Figure 1 displays the profile of a cross section normal to the current
direction. Another important application concerns a strong or ultra-short-duration
laser beam irradiation of absorbing or thin-media surfaces. If the absorbent layer is
sufficiently comparable with the thickness of the medium, the energy pulse may be
assumed a volumetric source of finite area. Therefore, this physical model can be
considered to lump the system in the thickness variable, if the upper and lower
surfaces of the plane are also assumed to be adiabatic. In this example, Figure 1
shows the upper surface of plane.

Continuous Constant Temperature. For comparison of the influences of
different heat sources on wave behavior, we assume the temperature maintains a
constant for all times at the point (XO' Yo)'

t> 0 (19)

where the dimensionless wall temperature, T, = Tw/T,ef, represents the value of a
continuous constant temperature.

The foregoing governing equations, Eqs. (6) and (7), are now considered
subject to two kinds of boundary conditions:

Adiabatic:

lUx = O,y,i) = 0 ij/x = 1,y,t) = 0

ij/x,y = O,t) = 0 ij/x,y = 1,t) = 0

(20a)

(20b)
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lWO-DIMENSIONAL HYPERBOLIC HEAT CONDUCTION

Constant wall temperature:

T(i = O,y,t) = 0 T(i = 1,y,i) = 0

T(i,y = O,t) = 0 T(x,y = 1,t) = 0

NUMERICAL METHOD

643

(21a)

(21b)

To solve the system of Eq. (9) for a two-dimensional problem, we use the
numerical method developed by Yang [29], which resolves the multidimensional
thermal waves without introducing oscillation or dissipation. This method has been
validated on one-dimensional and two-dimensional problems before studying this
research. Excellent comparisons with analytical results were obtained. For this
numerical method, first, Eq. (9) is expanded by both the finite-difference and
explicit method. It is assumed that the grid in the computational domain is equally
spaced and that the size is unity, so that we have

Q?t = Q?'i - M(Ei+ 1/2.i - E i- 1/2.) - lli(Fi. i+ 1/ 2 - Fi. i- I/2) + MS?i (22)

Then by the fractional step (time-splitting) method, which the two-dimensional
operator has already split into the product of two one-dimensional operators, we
can write Eq. (22) in the form of

Q~+ 1/2 = Qn . - Ilt(E.+ 1/2 . - E._ I/ 2 .) + -2
1 lliS~ .

l,j I,} t ,J t,J I,)

Q n + l _ Qn+l/2 _ '-t(F _ F ) +! ,-sn+l/2
i,j - i,j LJ. ;,i+ 1/2 i,j-1/2 2 Qt ;,j

(23a)

(23b)

Now it is possible to apply a high-resolution, one-dimensional scheme in each of
the preceding steps, and by multiplying Eq. (23a) by [Ra]-I, one gets

W n + 1/2 = W n _ '-t(M - M ) + ! '-tS n (24)i.i i.i U i+ 1/2.i i-I/2.i 2 U i.i

where

[W] = [Ra]-I . [Q] [M] = [Au]' [W]

Once [W n + 1/ 2 ] is known, we multiply [W n + I / 2 j by [R a ] and obtain

(26)

The next step is to define

(27)
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644 J.·P. WU ET AL.

and to multiply Eq. (23b) by [Rb]-I. Therefore, Eq. (23b) can be transformed to

where

Z n+ l _ z n+ 1/ 2 _ A-(N -N )+!A-sn+1j2
i.i - i.i ut i.i+ 1/2 i.i-1/2 2 ut b•.1

(28)

(29)

After [Z]i,j' is found, we multiply Eq. (28) by [R b ] to transform [Q]i,j '. Then, the
new values at the time t + 1 can be fully evaluated.

RESULTS AND DISCUSSION

A two-dimensional computer code was written based on the preceding
calculation procedure. Grid refinement studies have also been carried out for the
assumed physical model to ensure that the essential physics are independent of
grid size. The plane is chosen to be square, with the heat source located at the
center of the plane, (xo, Yo) = (0.5,0.5), at t = 0+. As in the instantaneous finite
heat flux case, the finite amount of thermal energy in a dimensionless type, ed' is
set 1, which is located over the region di dy = 0.01 where di = dy = 0.1. On
the other hand, as in the continuous constant temperature case, the value of To is
assumed to be 1. The present research focuses on the initial transient and on the
reflective property of thermal waves for different boundary conditions and heat
sources.

Figure 2 shows the temperature profile with the heat source of the continu
ous constant temperature at different dimensionless time for isotropic material.
The distinct wave nature associated with hyperbolic heat conduction dominates.
The boundary conditions are adiabatic, which prevents, the heat from transferring
through the boundaries and makes, the energy reflect back completely. Again, the
initial dimensionless temperature is O. Clearly, when the temperature at the center
at t = 0+ is suddenly increased to 1, a circular thermal wave is generated and
uniformly propagates to all directions with a constant speed of 1. The results show
that for t < 0.5, in which the thermal wave does not arrive yet at boundaries, an
undisturbed region exists ahead of the wavefront due to no molecular communica
tion to occur in Figures 2a and 2b. The magnitude of the discontinuity at the
wavefront is attenuated exponentially with time as a result of the diffusion term in
the equation. These phenomena, as just mentioned, are similar to those demon
strated in the one-dimensional problems [24].

At t = 0.5, the wavefront impacts on and reflects from the four insulated
boundaries, and then starts to propagate back toward the origin as shown in Fig.
ure 2c. Because the boundaries are insulated, heat cannot be absorbed by the
environment and the temperature increases at the front after contact. Figure 2d
shows that at t = 0.7 the two reflected thermal waves cross each other on the four
corners. This effect induces the temperature to increase double by superposition
behind the intersection regions of the reflected waves. Figure 2e can display this
effect of positive superposition more clearly. In this figure, the strengthened waves
have traveled at a distance from the corners. As time increases, the reflections and
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TWO·DIMENSIONAL HYPERBOLIC HEAT CONDUCTION 645

~

(a)t9>.1

..

(b) t=o.3

..

(c) 1=0.5 (d)t9>.7

.. ..

(e)l=O.9 (f) t=1.25

..

(g) 1=1.5 (11)1=5.0

Figure 2. Temperature profiles in different dimensionless times with the heat source of a continuous
constant temperature located at (xo' Yo) for isotropic medium and constant wall temperature bound
aries.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

4:
48

 2
8 

A
pr

il 
20

14
 



646 J.·P. WU ET AL.

the wave interactions will make the temperature profile in the medium more
complex and larger. If the superposition times are different in different situations,
the temperature amplitudes can exhibit different values. Clearly, it can been seen
that the various temperature values are located at different regions in Figure 2[.
When i = 1.5 in Figure 2g, the temperatures in the whole domain are approaching
a uniform value. Until i = 5.0, the temperature profile display is completely flat
and smooth and its value is equal to 1, which is the same as the continuous
constant temperature at the center of the plane. In other words, this process of
reflections at the boundaries will persist until the diffusion phenomena dominates.

Figure 3 shows the temperature profile of the whole domain at various times
(i.e., i = 0.5, 0.7, 0.9, 1.25) for another case. In this case the physical assumptions
are the same as assumed in Figure 2 except the boundary conditions, which are
maintained at T = 0 so that heat can be absorbed by the environment. At any time
before the wave encounters the boundaries (i < 0.5), the behavior of the thermal
wave and the temperature profile coincide with the first case in Figure 2, a and b.
Equivalently, Figure 3a shows that once the front hits the boundaries, the wave
starts to reflect, but the wave moves toward the origin as a reverse-amplitude wave
to weaken the positive temperature behind the front. Therefore, a drop in the
temperature profile behind the reflected wavefront is generated due to superposi
tion as shown in Figure 3b. Figures 3, C and d, displays the complex temperature
profile in the plane due to the boundary reflections and the wave interaction. As
time increases, the effect of the wave will gradually decrease until the temperature
profile is linear from the origin to the boundaries and axisymmetric around the
origin.

..

..
(a) l=o.5

(c) 1=0.9

..

..
(b)t=O.7

(d)i"=1.25

Figure 3. Temperature profiles in different dimensionless times with the heat source of a continuous
constant temperature located at (x o. Yo) for isotropic medium and adiabatic boundaries.
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(0) T=0.125 (b) T=O.25

(c) T=0.5 (d)i=0.625

Figure 4. Temperature profiles in different dimensionless times with the heat source of a continuous
constant temperature located at (XO I Yo) for anisotropic medium and adiabatic boundaries.

The evolution of temperature profiles with time for anisotropic thermal
properties is shown in Figure 4. The boundary conditions are assumed to be
adiabatic, with the dimensionless parameters being K = kx/ky = 25, c, = cxicy =

2, FOi = 25/4, and F02 = 1. Note that the dimensionless widths are 0.2 and 1.0 in
the x and y directions, respectively. The wave velocity in the x direction is two
times higher than that in the y direction, so the wavefront reaches the boundaries
at i = 0 and 0.2, earlier than the front that reaches the other boundaries in
another direction. In this anisotropic case the time to approach a uniform tempera
ture is shorter than that for isotropic material in the previous case, as shown in
Figure 3.

In the instantaneous finite heat flux case, first, we calculate the temperature
with adiabatic boundary conditions around the plane. Plots of temperature versus
position at various times are presented in Figure 5, with a given pulse area
ai ay = 0.01. The results show that an energy pulse gives rise to a thermal wave,
which travels in the medium at a finite velocity as in Figure 2 and decays
exponentially while dissipating its energy along its path. Note that all energy is
concentrated in a wavefront of a finite width, which is preserved for all
reflection -transmission effects. The striking feature in Figure Sa, which is different
from the results of that of a one-dimension presented by Vick and OZisik [22], is
that the negative temperature is generated at the initial time in the vicinity of the
origin where the heat source is located. Since a sudden heat pulse induces the heat
to accumulate in a wavefront more easily, it thus creates a negative temperature
and lulls the strengthened wavefront in order to preserve the energy content of the

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

4:
48

 2
8 

A
pr

il 
20

14
 



648 J.·P. WU ET AL.

..

(a) 1=0.\ (b)t=o.4

(c) 1=0.5 (d) 1=0.7

Figure S. Temperature profiles in different dimensionless times with the heat source of an instanta
neous finite heat flux located at (x o' Yo) for isotropic medium and adiabatic boundaries.

system. This phenomenon cannot be found in previous research. The negative
temperature generated is below the initial temperature. Also, since the external
boundaries are insulated for all time i > 0, the total energy content is constant. As
the wave propagates forward, energy is deposited in the wake by diffusion and
induces a small but negative residual temperature. At i = 0.4, the wavefront
arrives at the exterior insulated surfaces, and at i = 0.5, the crest of the wave
reaches these surfaces and starts to reflect. When i = 0.7, the four wavefronts
generated by four adiabatic boundaries possess positive amplitude and therefore
are directed toward the origin in Figure 5d. Then these fronts begin to cross each
other and are strengthened due to the combination at the regions of intersection as
seen clearly on the corners. This transmission-reflection combination phenomenon
will persist until diffusion dominates. As time increases, the temperature distribu
tion will be smoother and more uniform until the residual temperature approxi
mates an ultimate constant.

The remaining figures help provide a fundamental understanding of the
effects of boundary (T = 0) and anisotropy on hyperbolic heat conduction for
instantaneous finite heat flux. Figure 6 shows the effect of the boundary main
tained at 't = 0 on temperature distribution. At i = 0.1, the temperature profile is
identical to the graph in Figure Sa since the wavefront is unaware of the boundary
effect at this time. The reflected portion, which initially encounters the boundaries
at i = 0.4 and starts to reflect at i = 0.5, shows a wave moving toward the origin
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(a)t=O.1 (b) 1=04

(c)t=O.5 (d) 1=07

Figure 6. Temperature profiles in different dimensionless times with the heat source of an instanta
neous finite heat flux located at (xo•Yo) for isotropic medium and constant wall temperature bound
aries.

but negative in magnitude at i = 0.7. This negative wavefront is due to the
enhanced ability of an environment to transmit energy and the basic criteria of
energy conservation. The phenomenon, in which the wavefront is reflected by
boundary in different conditions, is analogous with the research for one-dimen
sional analysis in composite media by Frankel et al. [33]. They reported that
internal reflections are produced at the interface of two dissimilar media for a
two-region slab exposed to a pulsed volumetric source. The reflected waves in
region 1 may be positive or negative in magnitude by judging the thermal conduc
tivity in region 2. The effects of region 2 are similar to that of the environment in
our cases. The positive reflected wave due to the adiabatic boundary in our cases
can be simulated by assuming the thermal conductivity of region 1 to be lower than
that of region 2 in their cases. In contrast, the negative reflected wave due to the
boundary at T = 0 can be simulated by assuming the thermal conductivity of
region 1 to be higher than that of region 2.

The effects of isotropy in the medium for adiabatic boundaries are displayed
in Figure 7. Since the wave speed ratio is c, = cx/cy = 2, we expect double speed
in the x direction, as shown clearly in Figure 7a. At i = 0.25, the wavefront
traveling in the x direction is being reflected from the boundaries and the front in
another direction arrives only at half of the distance from the origin to the
boundary. In Figure 7, c and d, the magnitude of the reflected wave is positive.
The transmission-reflection-combination phenomenon is similar to that in Figure 5
but is more complex than that for isotropic materials.
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... o~

0'1
....·1
".

(a) 1=0.125

(c) 1=0.5

J.·P. WU ET AL.

... 0..

0'1

.....,
".

(b)t=o.25

(d) 1=0.625

Figure 7. Temperature profiles in different dimensionless times with the heat source of an instanta
neous finite heat flux located at (x o, Yo) for anisotropic medium and adiabatic boundaries.

CONCLUSIONS

A simple model has been developed to solve the two-dimensional anisotropic
problem based on hyperbolic heat conduction. The numerical results are presented
to display the behavior of the thermal wave for isotropic or anisotropic material
with different heat sources, which are a continuous constant temperature and an
instantaneous finite heat flux, and the two types of boundary conditions, adiabatic
and constant wall temperatures. For a continuous constant temperature, in which
the temperature is suddenly increased to a value from the initial temperature and
maintains a constant all the time, a discontinuity wavefront is built up and will
propagate uniformly toward all directions. In the instantaneous finite heat flux
case, an energy pulse located at arbitrary positions induces a circular wavefront of
finite width laying on the .xy plane, and the wave is positive in magnitude. The
interesting feature in this case is that the negative temperature is generated at the
initial time around origin. The wavefronts in these cases travel in the medium at a
finite velocity and decrease exponentially with time while dissipating their energy
along their paths by diffusion. Furthermore, the different boundary conditions may
cause a contrary reflected wave. The adiabatic and constant wall temperature
boundary produces, respectively, a positive and a negative front. If the material is
anisotropic, the transmission-reflection combination phenomenon in a two-dimen
sional plane is more complex due to different velocity of heat transfer in different
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directions. For all cases based on non-Fourier law, as time increases the wave will
be reduced until diffusion dominates, and the temperature distribution will be
smoother.
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