
AP~EE~ 
MATHEMATIC~ 

AND 

C C ~ J T A T ~  
ELSEVIER Applied Mathematics and Computation 91 (1998) 243-258 

Application of center manifold reduction 
to nonlinear system stabilization 

Der-Cherng Liaw 
Department of Control Engineering, National Chiao Tung University, Hsinchu. Taiwan, ROC 

Abstract 

The Center Manifold Theorem is applied to the local feedback stabilization of non- 
linear systems in critical cases. The paper addresses two particular critical cases of which 
the system linearization at the equilibrium point of interest is assumed to possess either a 
simple zero eigenvalue or a complex conjugate pair of simple and pure imaginary eigen- 
values. In either case, the noncritical eigenvalues are taken to be stable. The results on 
stabilizability and stabilization are given explicitly in terms of the nonlinear model of 
interest in its original form, i.e., before reduction to the center manifold. Moreover, 
the formulation given in this paper uncovers connections between results obtained using 
the center manifold reduction and those of an alternative approach. © 1998 Elsevier 
Science Inc. All rights reserved. 

Keywords: Nonlinear systems; Stabilization; Center manifold reduction 

I. Introduction 

Recently, center manifold reduction (see, e.g. Refs. [2,4,11,12]) has been em- 
ployed in nonlinear stabilization, resulting in stabilizing control law designs for 
various classes of  nonlinear systems in the so-called "critical cases". Critical 
cases occur when the linearized system at an equilibrium point has at least 
one eigenvalue on the imaginary axis, with the remaining eigenvalues in the 
open left half of  the complex plane. Aeyels [1], who initiated application of 
the center manifold reduction in nonlinear stabilization, investigated the exis- 
tence of  smooth stabilizing feedback control laws for a class of  third-order non- 
linear systems for which the linearized model possesses an uncontrollable pair of  
pure imaginary eigenvalues. Behtash and Sastry [10] used the same approach to 
study stabilization for nonlinear systems whose linearized model has two 
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distinct pairs of complex conjugate pure imaginary eigenvalues, or a double pole 
at the origin, or a pole at the origin and a complex conjugate pair of pure imag- 
inary eigenvalues. In Ref. [10], the design was undertaken for the reduced sys- 
tem on the center manifold using normal form calculations, and for 
simplicity, a scalar stable mode was assumed. 

In the recent years, several practical examples (e.g., Refs. [13-17]) of which 
system may possess one simple zero and/or a pair of pure imaginary eigenval- 
ues have demonstrated potential applications. Those applications also moti- 
vate the need of the design of stabilizing controller for the critical system 
with any finite number of stable modes as well as the expression of the control 
laws directly in terms of the original model rather than in terms of transformed 
versions. It is known that the stability of local simple bifurcations implies the 
stability of the system at criticality and vice versa. Local bifurcation control 
laws for simple stationary bifurcation and Hopf bifurcation are obtained, re- 
spectively, by using series expansion of the vector field of original system dy- 
namics without normal form reduction [6,7]. The proposed control laws can 
hence be applied to the critical system. However, those designs are expressed 
in terms of the mathematical operation of both the left and right eigenvectors 
corresponding to the critical eigenvalue on the imaginary axis. No direct rela- 
tionships between the stability coefficient and system states are explicitly given, 
which makes the application difficult and involving complicated calculation. 

In this paper, we seek an alternative approach by employing center manifold 
reduction to design control laws explicitly in terms of the system states. A main 
goal of this paper is to derive stabilizing control algorithms for general nonlin- 
ear systems in critical cases. The development focuses on general nonlinear sys- 
tems in two specific critical cases. In the first critical case of interest here, a 
simple zero eigenvalue occurs, while in the second case a pair of pure imaginary 
eigenvalues occurs. In either case, the critical eigenvalues of the linearized mod- 
el need not be controllable. The feedback laws obtained include purely linear 
state feedbacks, purely nonlinear state feedbacks and feedback control laws 
containing both linear and nonlinear terms in the state. Results of this paper 
are also compared with those of Refs. [6,7]. 

2. Preliminaries 

Consider a class of nonlinear autonomous systems given by 

---- A l l t / + A l 2 ~  + F(q, ~), (la) 

= A2,~/+A22~ + G(q, ~), (lb) 

where r/E ~", ~ E ~". In Eqs. (la) and (lb), Aij for i,j = 1,2 are constant ma- 
trices, and the functions F,G are sufficiently smooth, with their values and first 
derivatives vanishing at the origin. If A12 and A21 vanish, the matrix All has all 
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its eigenvalues on the imaginary axis, and A22 is Hurwitz, then the Center Man- 
ifold Theorem asserts the existence of  a locally invariant manifold for Eqs. (1 a) 
and ( lb)  near the origin. This manifold is given by the graph of a function 

= h ( ~ ) .  

In applying the Center Manifold Theorem to feedback stabilization prob- 
lems, it is convenient to give a restatement of  the theorem in a way that does 
not require vanishing of the "linear coupling" matrices A J2 and A2~. This is es- 
pecially true when the feedback is allowed to possess linear terms. For  the pur- 
poses of  this paper, a restatement allowing nonzero A21 but with A12 = 0 
suffices. A linear transformation of variables is now employed to achieve this. 
Consider the equation 

A M  + MB = C, (2) 

where A C C m×m, B E C "×" and M, C E C m×". For  n = m and B = A T, Eq. (2) is 
a Liapunov matrix equation [5]. Let ~ denote the linear operator 

,~ : M ~ AM + MB (3) 

for M 6 C "×'.  
The following result is a direct generalization of  Ref. [5], Theorem F-I and 

Corollary F- 1 a. 

Theorem 1. Let n, m be positive integers. I f  the sum o f  any eigenvalue of  A and 
any eigenvalue o f  B is nonzero, then the linear matrix equation (2) has a unique 
solution ,['or matrix M. 

We now apply the Center Manifold Theorem to the stability analysis of  
Eqs. ( la)  and ( lb)  for the case of  which Al2 = 0, with A21 not necessarily zero. 
Let A22 be Hurwitz and A jl have all its eigenvalues on the imaginary axis. By 
Theorem 1, the equation 

A22E - EAll +A21 = 0 (4) 

has a unique solution for the m x n matrix E. Letting v := ~ - Eq, we can re- 
write system (1) as 

il = Al,q + F(q, v + Eq) (5a) 

¢' = A22v + G(q, v + Eq) - E .  F(q, v + Eq). (5b) 

The Center Manifold Theorem for Eqs. (la) and (lb) can now be restated as 
follows: 

Lemma 1. Assume Al2 = 0, A22 is Hurwitz, and all eigenvalues o f  All have zero 
real parts. Then the origin o f  Eqs. ( la )  and ( lb)  is asymptotically stable 
(unstable) i f  the origin is asymptotically stable (unstable) for  the reduced 
model 
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il = A, ,q  + F(q, h(q) + Eq), 

where h satisfies the partial differential equation 

Dh(q){Al lq  + F(q, h(q) + Eq)} = Az2h(r/) + G(q, h(r/) + Eq) 

- E .  F( , ,  h(n) + E, )  

with E the solution o f  Eq. 

(6) 

(7) 

(4) and boundary conditions: h(O) = 0 and Dh(0) = 0. 

We employ Taylor series expansions in the development below, using mul- 
tilinear function notation for the terms in these expansions. The definition of  
multilinear function is recalled as follows. 

Definition 1 (e.g., Ref. [9]). Let V1, Vz,... ,  Vk and W be vector spaces over the 
same field. A map ~k : V1 x /~ × . . .  x Vk ---, W is multilinear (or k-linear) if it is 
linear in each of  its arguments. That is, for any vi, ~i E g/i, i = 1 , . . .  ,k, and for 
any scalars a, ~, we have 

~/(/31,""", a P i  A r  a u i ,  . . . , 1 ) k )  = a~(vl ,  . . . , I ) i ,  . . . , U k )  ~ -  ( l ~ l ( I ) i ,  . . . , 1) i ,  " " ; ,  I ) k ) "  

(8) 
The integer k is the degree of the multilinear function ~O. 

The next definition deals with the special case of  which 
Vl=V2 . . . . .  z k = v .  

Definition 2 ([9]). A k-linear function ~: V x V x -.- x V ---* W is symmetric if 
the vector O(vl,v2, . . . ,vk) is invariant under arbitrary permutations of the 
argument vectors vi. A function ~b : Nn _~ Nm is homogeneous of  degree k (k an 
integer), if for each scalar e, 4~(et/) = ek~b(q) for all t /E Nn. 

Note that, in the sequel prime denotes the transpose of  both vector and ma- 
trix and I denotes the identity matrix. 

3. General framework 

Consider a nonlinear control system 

0 = Allt/-k- blu + F(q, ~), (9a) 

= A22~ + b2u + G(rl, ~), (9b) 

where t/, ~ are real vectors, and a preliminary block diagonalization has been 
applied to remove any linear coupling term in the dynamics between ~/ and 
4. For  simplicity, u is supposed to be a scalar control. It is not difficult to ex- 
tend the study to the case of  which the input is a vector control. In the follow- 
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ing, we apply the center manifold result in Lemma 1 to design stabilizing con- 
trol laws for Eqs. (9a) and (9b) for which all eigenvalues of A11 lie on the imag- 
inary axis. 

Let us first consider the case of which bl is nonzero. For the simple critical 
cases of which A 11 is the scalar 0 or is a 2 × 2 matrix with a pair of pure imag- 
inary eigenvalues, linear theory will imply the existence of a linear stabilizing 
feedback control for Eqs. (9a) and (9b). In this paper, we consider next the ex- 
istence of a purely nonlinear smooth feedback (i.e., one with vanishing linear 
part). 

Since now we focus on purely nonlinear stabilizing controllers, system (9a) 
and (9b) retains the linear decoupling property upon control. Thus, if A22 is sta- 
ble, then according to Center Manifold Theorem (e.g., Refs. [3,8]) there is a lo- 
cally invariant manifold ~ = h(t/) for Eqs. (9a) and (9b). Furthermore, h 
satisfies 

Dh(q){Allq + blu(q, h(tl) ) + F(tl, h(q))} 

= A22h(t/) + b2u(tl, h(tl)) + G(tl, h(tl)) (10) 

with boundary conditions h(0) = 0 and D h ( 0 ) =  0. Then, we seek a purely 
nonlinear stabilizing feedback control law by using stability conditions for 
the reduced model 

il = AHtl + b,u(q,h(q) ) + F(tl, h(q) ). (11) 

Note that, for the case of which A22 is not stable, a linear state feedback K2~ is 
needed to first stabilize A22 + bzK2. 

Next, consider the case of b~ = 0 and assume the feedback control to be of 
the form 

u(,, ~) = K , ,  + K2~ + U(,,  ~), (12) 

where U(., .) is a smooth, purely nonlinear function whose first derivatives van- 
ish at the origin. Rewrite the system dynamics (9a) and (9b) as 

t~ = A,l~/+ F(r/, ~), (13) 

= b2Kl, + (A2: + b2K2)~ + b:U( , ,  3) + G(tl, ~). (14) 

From Eq. (14), the feedback has given rise to a linear coupling term between 
q and ~ in the dynamics. As discussed in Section 2, there is a constant matrix E 
such that, with v :-- ~ - E~/, the transformed version of the control system (13) 
and (14) is in block diagonal form. Here, E is the (unique) solution of the 
Liapunov-like equation 

bzK, + (A22 + bzKz)E - EA,, = 0. (15) 

We assume that A22 + b2Kz is stable. Moreover, since all the eigenvalues of 
All lie on the imaginary axis, then Theorem 1 guarantees existence of a solution 
E to Eq. (15). The transformed dynamics in the states t /and ~ is then 
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il = A,lq + F(q, v + Er/), (16a) 

~, = (A~ + b~X.),, + b2V(~, ,' + E.)  + G(~, v + E~) 

- E .  X ( , ,  v + Eq).  (16b) 

Eqs. (16a) and (16b) have a center manifold given by the graph of the func- 
tion v = h(q), where h satisfies 

Dh(q){A,,q +F(q ,  h(q) + Eq)} 

= (Az2 + b2X2)h(,) + bzU(q, h(q) + E,)  + G(,, h(,)  + Eq) 

- E .  Y ( q , v  + E , )  

with boundary conditions h(0) = 0 and Dh(0) = 0. 

(17) 

Lemma l implies asymptotic stability of the origin for Eqs. (16a) and (16b) 
if the control gains K~, K2 and the nonlinear function U are chosen such that (i) 
A22 + b2K2 is Hurwitz, and (ii) the origin of reduced model (16a) with v = h(q) 
is asymptotically stable. 

We now proceed to consider two special cases in which the system has only 
simple critical modes (i.e., one zero eigenvalue or a pair of pure imaginary ei- 
genvalues) and the rest of the eigenvalues are stabilizable. 

4. One zero eigenvalue 

In this section, we first consider stability conditions for scalar systems with a 
zero eigenvalue. These conditions are then employed in the design of stabilizing 
control laws for higher order systems with a simple zero eigenvalue. 

Consider a scalar real nonlinear system as given by 

k = dx 2 + ex 3 + . . .  (18) 

Stability conditions for system (18) are given next. 

Lemma 2. The origin of system (18) is asymptotically stable i f  d = 0 and e < O. 
The origin is unstable for Eq. (18) i f  d ~ O. 

Now consider Eqs. (9a) and (9b), with the scalar x replacing the critical state 
r/, and with 

f (x ,  4) := F(x, 4) = fxxx 2 + x f ~  + ~'f¢¢~ + f~xxx 3 + x 2 f ~  + x~'fx~¢~ 

+f~¢~(~ ~, 4) + o(U(x, 4]]4), (19) 

G(x, ~) = x2G~x + xCx¢~ + c¢~(~, ~) + x3Cx~ + x2a~x¢¢ + x 6 ~ ( ~ ,  4) 

+ G¢¢¢(~, 4, ~) + O(l[(x, ~)U4)- (20) 

The coefficients in the Taylor series expansions (19) and (20) are either con- 
stants or symmetric multilinear functions of their arguments. For instance, 
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Y~¢~(4, ~, ~) and G~¢(4, 4) denote a symmetric trilinear scalar function and a bi- 
linear vector function of 4, respectively. 

In the remainder of this section, stabilizing control laws will be obtained for 
system (9a) and (9b) under either of the following two hypotheses, 

Hypothesis 1A. The matrix A l l  = 0 is a scalar and bl ~ 0. 

Hypothesis lB. The matrix All = 0 is a scalar and bl = O. 

4.1. The case of  bl ¢ 0 

In this section, we consider the case where Hypothesis 1A holds. The control 
law is taken to be purely nonlinear. Existence of linear stabilizing feedback for 
this case is evident. Nonlinear feedback controllers are none the less desirable 
in certain applications. Suppose A22 is stable and the scalar control input is of 
the form 

u(x, 4) = U(x, 4) :=  Ux~X 2 + XUxd + 4'u~d + ux~xx 3 + X2Ux~4 

+x4'Ux:¢4 + u¢¢¢(4, ¢, 4)- (21) 

According to Center Manifold Theorem, the stability of the origin for 
Eqs. (9a) and (9b) coincides with the stability of the origin for the reduced 
model 

k = b~u(x, h(x)) + f ( x ,  h(x)). (22) 

Here, h solves Eq. (10) with r/ replaced by x and with boundary conditions 
h(0) = 0 and Dh(0) = 0. Indeed, solving Eq. (10) we have 

h(x) = x2hxx + O(Ix13), (23) 

where 

h~ =- -d2d (b2uxx + Gxx). (24) 

From Lemma 2, we now have the following lemma. 

Lemma 3. Let A22 be stable. Then under Hypothesis 1A, the origin is 
asymptotically stable for Eqs. (9a) and (9b) if f x x+b luxx=O and 
f~xx + bluxxx - (fx~ + blu~¢)A22 ~ (G~ + b2uxx) < 0. 

It is obvious from Lemma 3 that a purely quadratic stabilizing control law 
exists. 

Corollary 1. Assume that A22 is stable. Under Hypothesis 1A, the origin of  
Eqs. (9a) and (9b) is asymptotieally stabilizable by a purely quadratic feedback 
of  the form u = UxxX 2 + XUx~4 if the vector A2~Gxx ~ O. 
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Furthermore, below we have a purely cubic stabilizing controller for system 
(9a) and (9b) while f~x = 0. 

Corollary 2. Assume that A22 is stable and f~x = O. Under Hypothes& 1A, the 
origin of  Eqs. (9a) and (9b) is asymptotically stabilizable by a purely cubic 
feedback of  the form u = u~:~xX 3. 

For the case of which A22 is not stable, a linear feedback K2~ is first needed 
to guarantee the existence of a locally invariant manifold. Then the design of 
stabilizing control laws proposed in Lemma 3 and Corollaries 1 and 2 can 
be applied directly. 

4.2. The case of  bj = 0 

Next, we consider the case of which Hypothesis 1B holds and feedback con- 
trol has the form of 

u(x, ~) = klx + K2~ + U(x, ~), (25) 

where kl denotes a scalar control gain and the nonlinear control function U is 
defined as in Eq. (21). 

Suppose A22 + b2K2 is stable. As discussed in Section 3, the stability of con- 
trol system (9a) and (9b) in this critical case coincides with the stability of the 
reduced model 

k = f (x ,  h(x) + Ex), (26) 

where E and h( ) solve Eqs. (15) and (17), respectively. 
Solving Eqs. (15) and (17), we have 

E = -(A22 + b2K2) 'b2k,, (27) 

hx~ = -(A22 + b2K2) ' {-~'~x + f~¢E + E'f¢¢E]E 

+ [beuxx + Gxx q- (b2ux¢ q- Gx4)E + b2E'u¢¢E -4- G¢¢ (E, E)}. (28) 

The reduced model (26) is then given by 

Jc = {fxx + Z~E + E'f¢¢E}x 2 + {~hxx + 2Erf¢~hxx + fxxx + fxxcE 

+ E'fx~¢E + f¢¢¢ (f ,  E, E)}x 3 + O(]x[4). (29) 

Employing Lemma 2, we then have the next result. 

Lemma 4. Let the control input u be of  the form as in Eq. (25). Then under 
Hypothesis 1B, the origin of the closed-loop system (9a) and (9b) is 
asymptotically stable i f  A22 + b2K2 is stable and the following two conditions 
hold." 

f~x + fxcE + Erf¢¢E = 0, (30) 
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fxch~x + 2E'f¢¢hx~ + f=x + f~x¢E + E%¢~E + f¢~¢(E,E,E) < 0, (31) 

where E and hx~ are given in Eqs. (27) and (28). 

The stability criterion for the uncontrolled version of system (9a) and (9b) 
follows readily from Lemma 4. 

Corollary 3. Suppose Hypothesis 1B holds. Then the origin is asymptotically 
stable for Eqs. (9a) and (9b) (with u = O) if  A22 is stable, fxx = 0 and 
fxxx - fx~A221Gxx < O. 

In the rest of  this section, we assume that the stability conditions given in 
Corollary 3 do not hold, and seek stabilizing control laws for system (9a) 
and (9b). 

Linear stabilizing control laws follow readily from Lemma 4, and are as giv- 
en next. 

Proposition 1. Suppose hypothesis 1B holds and let M :=  (A22 + b2K2) -1 . Then 
there is a purely linear feedback which asymptotically stabilizes the origin of  
Eqs. (9a) and (9b) i f  there exist feedback gains kl and Kz for  which (A22 + bzK2) 
is stable, 

fxx - k,fx¢Mb2 + k~b'zM'f¢¢Mb2 = 0, (32) 

fx~x - f~MGx~ + kl {fx~MGx~ + 2G'~M'f~¢ - f~¢ - fx~f~M}Mb2 
2 t t + k I { b2m f~¢¢Mb2 - fx~MG¢¢ (mb2, mb2) - 2bzM'f¢~mGx¢mb2 

+ (fx¢Mb2) 2 + 2f~x (b'2M')f~M2b2 } - k~ (f¢¢¢ (Mb2, Mb2, Mb2) 

- (Mb2,  tb2) + 3fx Mb2 } 

+ 2k4(b'2Mf¢~Mb2) 2 < 0. (33) 

The linear stabilizing control rule proposed in Proposition 1 is a composite- 
type controller design. First, the feedback gain K2 is chosen to stabilize state 4. 
Then the remaining feedback gain kl is selected to satisfy the conditions (32) 
and (33) based on the chosen gain K2. 

According to the stability conditions given in Lemma 4, the cubic terms of 
both the function G and the control input u do not contribute to the stability 
criteria of  system (9a) and (9b). A general linear-plus-quadratic feedback con- 
trol law can then be abstracted as 

u(x, 4) = klx + K2~ + UxxX 2 + XUx¢~ + ~ ' u ~ ,  (34) 

while the control gains satisfying the conditions of Lemma 4. 
From Lemmas 1 and 2 and the discussions above, we then have the next re- 

sult. 
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Lemma 5. Suppose A22 is stable and Hypothesis 1B holds. Then there exists no 
purely quadratic feedback stabilizer for the origin o f  system (9a) and (9b) i f  
fxx ~ O. However, the origin of  (9) is' asymptotically stabilizable by a purely 
quadratic feedback o f  the form u = UzxX 2 if  fxx = 0 and fxcA21b2 ~ O. 

Note that the stabilization results given in Corollaries 1 and 2 and Lemma 5 
agree with those obtained in Ref. [7]. 

5. Pair of pure imaginary eigenvalues 

In this section, we consider system (9a) and (9b), specifically, of which All 
has a pair of pure imaginary eigenvalues and is in the form of Eq. (36) below. 

First, however, consider the stability of a planar system 

[l = Allrl + Q(q, rl) + C(q, ~/, t/) + . . . ,  

where r/= (x,y)', and 

(35) 

0 O,)  (36) 
All : _ 0  2 0 

with g2j02 > 0 and Q(r/,q) and C(q,q,q) represent the quadratic and cubic 
terms, respectively. Without loss of generality, we may express Q(r/, q) and 
C(q, q, rl) in the form of 

f q,,x 2 + ql2xy + q,3y 2 
0(~, q) (37) \ q21x 2 + q22xy + q23y e J '  

C(/'], q, q )=  ( CIIx3 + C I 2 x 2 y - r c I 3 x y 2  + c14y3) (38) 
\ c2~x 3 + C22x2y + C23xy 2 + c24Y 3 ' 

respectively. Note the linearization of Eq. (35) at the origin has the pair of pure 
imaginary eigenvalues ± i ~ ,  where i = v/Z] -. 

Applying a general stability criterion for planar systems undergoing Hopf 
bifurcation (see, e.g., Ref. [8]), we find that a sufficient condition for the stabil- 
ity of the origin for Eq. (35) is: 

1{(, (1 °2) 
q22 ~-~2q21 +~-71q23 --qle -~lq, l +~-712q13 

2 202 02 1 + ~c24 < O. (39) 
+~~2qllq21 - ~-qlsq23 + 3 Cll +3--~1C~3 +5C22 
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In the following, we apply the stability criterion (39) to the design of stabi- 
lizing control laws for the more general (nonplanar) system (9a) and (9b) in 
which both r /=  (x,y)' and b~ := (b11, b12)' are two-dimensional vectors, and 
F(q, ~) = OC(x,y, ~),g(x,y, ~))'. 

Results obtained in this section will apply under either of the following two 
hypotheses. 

Hypothesis 2A. The matrix All (appearing in Eqs. (9a) and (9b)) is a 2 × 2 
matrix of the form (36) above, and the vector bl ~ 0. 

Hypothesis  2B. The matrix At1 (appearing in Eqs. (9a) and (9b)) is a 2 × 2 
matrix of the form (36) above, and the vector bl = 0. 

5.1. The case o f  bl ¢ 0 

First, we consider the case of which at least one of bH and b12 is nonzero. 
Although this assumption guarantees the controllability of the subsystem 
(9a) and (9b), here we focus on the design of purely nonlinear control laws 
only. Suppose A22 is stable and the control input u = U(x,y, 4) is a smooth 
and purely nonlinear function. According to the discussions in Section 3, the 
stability of the origin of Eqs. (9a) and (9b) coincides with the stability of the 
origin of the reduced model: 

5c = f2,y + bl, U(x,y, h(x,y)) + f ( x , y ,  h(x,y)), (40) 

= -f22x + bazU(x,y, h(x,y)) + g(x,y, h(x,y)), (41) 

where h solves Eq. (10) with ~/replaced by (x,y)' and with boundary conditions 
h(0) = 0 and Dh(0) = 0. Indeed, h takes the form 

h (x, y) = x2hxx 4- xyhxy + y2h~. + O([[ (x, y) 113), (42) 

where hxx, hxs, hyy are constant vectors. 
In the following, we restrict the nonlinear control function U to be a func- 

tion of x and y only, as follows: 

U(x,y, 3) = UxxX 2 + UxyXy + Uyyy 2 4- UxxxX 3 + UxxyX2y 4- UxyyXy 2 4- Uyyyy 3 . (43) 

A stability criterion for the control system (9a) and (9b) in this case is given 
next. 

L e m m a  6. Suppose A22 is stable and Hypothesis 2A holds. Then the origin is 
asymptotically stable for Eqs. (9a) and (9b) i f  
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1 1 
(blzUxy + gxy) (  ~22 (bl2Uxx -{- g~)+  ~1 (bl2Uyy q- gyy)} 

{l 02 ) 
-- (b12uxy + fxy) -~l (bl,u~r + fx~) +~--2(bllUyy +fyy) 

2 2Q2 ,. 
+ ~ (b,lUx~ +fxx)(b,2uxx + g~) - ~ to,,Uy~ +f~)(b,2u~ + g~y) 

{ + 3 bllUxxx +fxxx +fx~hx~ +~l(bl lUxyy +fxyy +fxchyy +fy~hxy) 

1 02 ) 
+'~(bl2Uxxy + gx~y + gxchxy + gychxx)+-~l (b,2uy ~ + g ~  + gychyy) < 0, 

(44) 

hxy = {A~z + 4f21122I}-' {2f22(uyyb2 + Gyy) - 2121 (u,~b2 + Gx~) 

-- Azz(uxyb2 + Gxy) }, (45) 
hx~ = -A2~ (uxxb2 + G,~ + f22hxy), (46) 
hyy = - A ~  (uyyb2 + Gyy - f2,hxy). (47) 

It is observed from Lemma 6, generically there exists a quadratic-plus- cubic 
feedback stabilizer for system (9a) and (9b). In addition, a purely quadratic 
state feedback stabilizing control law and a purely cubic state feedback stabi- 
lizing control law follow readily from Lemma 6 as given in the next two corol- 
laries. 

Corollary 4. Let A22 be stable and Hypothesis 2A hold. Then the origin o f  system 
(9a) and (gb) is stabilizable by a purely quadratic state feedback o f  the form 
u = UxyXy i f  

1 1 ~2 } 
b , z -~  ( g yy - f x~ ) + -~z gxx - -~  f yy 

1 {(22(2gy ¢ _ 8fx~)A2~ +/22 "1 2 ~fy¢  +gx¢ ?(A22 + 4Qlf22I)-lA22b2 • O. 

(48) 
Corollary 5. Let A22 be stable and Hypothesis 2A hold. Then the origin o f  system 
(9a) and (9b) is stabilizable by a purely cubic state feedback o f  the form 
U : UxxxX 3 + UxxyX2y + UxyyXy 2 + Uy~y 3 . 

The results of Corollary 5 agrees with the one in Theorem 1 of Ref. [5]. 
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5.2. The case o f  bt = 0 

Next, we consider the case of which Hypothesis 2B holds, i.e., b~ is a zero 
vector and A~l is as in Eq. (36). Let the control input be of the form 

u = kllx + kl2y + K2~ -t- U(x,y ,  ~), (49) 

where U is defined in Eq. (43). 
Suppose A22 + b2K2 is stable. Then from Section 3, the stability of the origin 

of Eqs. (9a) and (9b) agrees with the stability of the origin of  the reduced 
model: 

2 = f21y + f ( x , y , E , x  + E2y + h(x,y)) ,  (50) 

.9 = -f22x + g(x,y,  Elx + E2y + h(x,y)) .  (51) 

Here, E = (El,E2) and h(x,y)  are the solutions of Eqs. (15) and (17), respec- 
tively, with Kl ---- (kll, kt2). 

Let 

H(x,  y) := b2 U(x, y, Elx + E2y) + G(x, y, ElX + E2y) 

- f ( x , y ,  E,x  + E2y)Ei - g(x,y,  Elx + E2y)E2 

= xZH~x + xyH,,. + y2H.. + O(ll(x,y)ll3). (52) 

Similarly, we take h to be of the form (42). Solving Eqs. (15) and (17), we have 

E, = -{(A22 + b2K2) 2 + ~r~l~"~2I} -1 {k,~(A22 + b2K2) - a2k12I}b2 (53) 

E2 = -{(A2z + bzK2) 2 + t2,g22I} -1 {k,2(A22 + bzK2) + f2,kl,I}b2 (54) 

and 

hx, = {(A22 + b2K2) 2 + 4~lf2zI}-' {2t22(H~y - 2f2,Hxx - (A22 + b2Kz)Hxy}, 

(55) 
hxx = -(A22 + b2K2)-l (Hxx + f22hxy), (56) 

h,~. = -(A22 + b2K2) -1 (//~ - (21hxv). (57) 

Note that, matrices (A22 + b2K2) 2 + t21~221 and (A22 + b2K2) 2 + 4(21~2I are 
both invertible since the matrix (A22 + b2K2) is stable. 

The reduced model (50) and (51) is hence obtained as 

2 = f21y + fxdC 2 + fxvxy + f~yy2 + fx~xX 3 + fx~vX2y +/xyyXy2 

q_/yyyy3 + o(ll(x,y)[14) (5g) 

.9 = - f22x + )xxX 2 + )~yxy + ~.y2 + )xxxX3 + ~xxyX2y + ~oxyyXy2 
+ ~,~,y3 + O(l[(x,y)[14). (59) 
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Here f~, oa~j, fjk and g~,, i, j ,  k E {x, y, z}, denote the controlled version of the 
quadratic terms and cubic terms, respectively. The values of which are given 
in Appendix A. 

Referring to the stability criterion (39) and the preceding discussions, we 
summarize the stabilizability conditions for system (9a) and (9b) as below. 

Lemma 7. Suppose Hypothesis" 2B holds" and that the control input is in the form 
of Eq. (49). Then the origin qf Eqs. (9a) and (9b) is' asymptotically stable i f  
A22 + b2K2 is stable and 

2 
gv), \ ~ gxx + ~l g>y / f ~. + - - -  + ~ & - g ~ x .  . 

2"2 ^ (/xxx /22 ^ l ^ /22^ ) 
~2j2 f wk~, + 3 +f~lfv,y+sg.~.,. , .+~lg~,, <0 .  (60) 

Note that, it is observed from Eq. (60) and Appendix A that only quadratic 
terms of the function G, and the linear and quadratic terms of the control input 
u contribute to the stability conditions. A linear and/or quadratic feedback sta- 
bilizing control law readily follows from Lemma 7. Moreover, a stability crite- 
rion for the uncontrolled version of system (9a) and (9b) is also implied by 
Lemma 7 by letting u = 0. 

Although Lemma 7 addresses the design of a linear feedback stabilizing con- 
trol law, such a linear stabilizing control law may not exist. In the next result, 
we consider a special case of which the noncritical state { of system (9a) and 
(9b) is a scalar. Since { is a scalar, as observed from Eqs. (53) and (54), we al- 
ways have solutions for the control gains kll and k12 for arbitrary given values 
of Ej, E2 and K2. According to the formulations as in Appendix A, we can se- 
lect El = 0 and E2 large enough (E2 = 0 and El large enough) such that the 
condition (60) in Lemma 7 holds while g~¢~ < 0 ( f ~  < 0). We have the next re- 
sult. 

Corollary 6. Suppose the noncritical state ~ Ls' a scalar and Hypothesis' 2B holds'. 
Then there is a purely linear feedback which asymptotically stabilizes the origin 
of Eqs. (9a) and (9b) if  either f ~  < 0 or g ~  < O. 

Referring to Eqs. (52)-(54), for the general case of which the state ~ of sys- 
tem (9a) and (9b) may not be a scalar, we have H ( x , y ) =  b2U(x,y,O)+ 
G(x,y, 0) while kll = k12 = 0. A purely quadratic stabilizing control law is then 
obtained as follows. 

Corollary 7. Suppose A22 is stable and Hypothesis 2B holds. Then a purely 
quadratic stabilizing feedback in the form of  u = UxxX 2 + u~yxy + u.wy 2 exists 
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.for the origin of Eqs. (9a) and (9b) if one of the following three conditions 
holds: 

1. MoA22b2 ¢ O, or 
1 1 2~21M0}b2 2. {(3L~ + ~gy~)~22 + ¢ o, or 

3. {2O,M0 Q-, r! - - e, ,3 + L~ + gv¢)A;21 }b2 # O, where 

l {~22(2gy¢-8fx~)A221+-~lfv¢ +gx~}(A~2 +4Ql~22I)-l. (61) M0=~ 

For the case of  which A22 is not stable, an additional linear feedback K2~ is 
needed to ensure the existence of a locally invariant manifold and the stability 
of the Jacobian matrix of (9b). Then Corollary 7 can be applied. We note that 
Aeyel's stabilization conditions for a third-order system [1] are special cases of  
those given in Corollary 7. Moreover, similar results for quadratic feedback 
stabilization of Eqs. (9a) and (9b) were obtained by Abed and Fu [6], where 
an asymptotic expansion method based on bifurcation analysis is used for con- 
troller design. 

6. Conclusions 

In this paper, the center manifold reduction technique has been proposed for 
the design of  smooth feedback stabilization of nonlinear systems in critical 
cases. The stabilizing control laws involving a two step composite-type design 
were also obtained for two critical cases. Linear stability of the noncritical state 

is first ensured, then the remaining control gains are chosen to stabilize the 
origin of the reduced model whose eigenvalues all lie on the imaginary axis. 
Stabilizing control laws have been designed in linear and/or nonlinear feedback 
forms. The stabilization conditions of the overall system are explicitly expres- 
sed in terms of system states, which will make the applications easy. 
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Appendix A 

The coefficients in the Taylor expansions off, g are given below in terms of 
those of f ,  g. Here, p denotes either f or g, and i # j for i, j E {x,y} with 
E[x] = El, and ELy ] = E2. 
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! 
[)ii = Pii q-" picE[i] -4- Eli ] p¢¢E[i], 

Pi j  = P t j  -~- PicE[i] + pjcE[i] + 2Eii]p¢¢Eb. ] , 

fiiii = Piii + PiicE[i] + Eli ] Pi¢¢EIil + P¢¢4 (EIi], E[i] E[i]) + pichig + 2Eii]p¢¢h~i , 

fiiij : Ao/¢hii -F pich~y + 2E'~lp¢¢hii + 2Eii]p¢¢h~ j + Piij -]- PiycEIi] 

+ piicEti] + Eii]pj¢¢E[i I + 2EI~]pi~¢Eti ] + 3p~¢¢(E[i], E[i], Etjj). 
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