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Abstract. Using the spherical harmonic representations
of the earth's disturbing potential and its functionals, we
derive the inverse Vening Meinesz formula, which
converts de¯ection of the vertical to gravity anomaly
using the gradient of the H function. The de¯ection-
geoid formula is also derived that converts de¯ection to
geoidal undulation using the gradient of the C function.
The two formulae are implemented by the 1D FFT and
the 2D FFT methods. The innermost zone e�ect is
derived. The inverse Vening Meinesz formula is em-
ployed to compute gravity anomalies and geoidal
undulations over the South China Sea using de¯ections
from Seasat, Geosat, ERS-1 and TOPEX//POSEIDON
satellite altimetry. The 1D FFT yields the best result of
9.9-mgal rms di�erence with the shipborne gravity
anomalies. Using the simulated de¯ections from
EGM96, the de¯ection-geoid formula yields a 4-cm
rms di�erence with the EGM96-generated geoid. The
predicted gravity anomalies and geoidal undulations can
be used to study the tectonic structure and the ocean
circulations of the South China Sea.
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1 Introduction

Since the publication of the Vening Meinesz formula
(VeningMeinesz 1928), little attention has been paid to its
inverse formula, which converts de¯ections of the vertical
to gravity anomalies. This ismainly becausemeasurements
of de¯ections are not widely available. With the advent of
satellite altimetry, however, de¯ections of the vertical
become available in the oceans and the inverse Vening
Meinesz formula can be useful if one wishes to compute

marine gravity from satellite altimetry. Marine de¯ections
of the vertical can be derived from altimeter-measured
geoidal undulations (if the sea-surface topography is
properly removed) and the use of de¯ection as data type
can reduce many systematic errors in satellite altimetry
(Hwang 1997). Indeed, a frequency-domain version of the
inverse Vening Meinesz formula exists in the literature,
e.g., Haxby et al. (1983), Hwang and Parsons (1996),
Sandwell and Smith (1997). A space-domain version has
also been derived in, e.g., Molodenskii et al. (1962, Eq. III.
2.11). This paper attempts to derive the inverse Vening
Meinesz formula for all cases using a spectral representa-
tion approach. The de¯ection-geoid formula, which con-
verts de¯ections of the vertical to geoidal undulations, will
bealsoderivedusing the sameapproach.Practicalmethods
for implementing the two formulaewill bepresented.As an
example, the two formulae will be employed to compute
the gravity anomalies and the geoidal undulations over the
South China Sea using the de¯ections of the vertical from
Seasat, Geosat, ERS-1 and TOPEX/POSEIDON satellite
altimetry.

2 Fundamentals

First we brie¯y review some of the basic equations in
physical geodesy necessary for the derivations of the
inverse Vening Meinesz formula and the de¯ection-
geoid formula. The earth's disturbing potential T can be
expanded into a series of spherical harmonics as

T �r;/; k� � GM
r
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where r;/; k are the spherical coordinates (geocentric
distance, geocentric latitudeand longitude),R is the earth's
mean radius,Ca

nm are the harmonic coe�cients and Y a
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the fully normalized spherical harmonics de®ned as
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with P nm�sin/� being the fully normalized associated
Legendre function (Heiskanen and Moritz 1967). On the
sphere of radius R, geoidal undulation can be expressed
as
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and gravity anomaly as
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where

c0 �
GM
R2

�5�

is the mean gravity. Spherical harmonic representations
of other functionals of the earth's disturbing potential
can be found in Rummel and van Gelderen (1995).
Geoidal undulation and gravity anomaly are two scalar
functions derived from the earth's disturbing potential.
De¯ection of the vertical, however, is a vector function
and can be expressed as
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where n and g are the north-south component and west-
east component of the de¯ection vector, respectively,
and r is the gradient operator on the sphere de®ned as:

r � o
o/

o
cos/ok

� �
�7�

Thus the basis functions of the de¯ection vector are
rY a

nm, rather than Y a
nm.

Finally we recall a variant of Green's formula (Meissl
1971, p. 12)ZZ

r
rf � rgdr � ÿ
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r

f D�gdr � ÿ
ZZ

r
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where f and g are two arbitrary functions de®ned on the
unit sphere, and D� is the Laplace surface operator
(Courant and Hilbert 1953) de®ned as
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For the surface spherical harmonics, we have

D�Y a
nm�/; k� � n�n� 1�Y a

nm�/; k� � 0 �10�
Using Eqs. (8) and (10) and the orthogonality relation-
ship of fully normalized spherical harmonics (Heiskanen
and Moritz 1967, p. 31), we obtain the result
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3 The inverse Vening Meinesz formula

The key to deriving the inverse Vening Meinesz formula
is to look for a suitable kernel function for converting
de¯ection of the vertical to gravity anomaly. Based on
Meissl's (1971) approach, we introduce the kernel
function H de®ned as

H�wpq� �
X1
n�2

�2n� 1��nÿ 1�
n�n� 1� Pn�coswpq� �12�

where p and q are two points on the unit sphere with a
spherical separation of wpq, so that (see Fig. 1)

coswpq�sin/p sin/q � cos/p cos/q cos�kq ÿ kp� �13�
The Legendre polynomial Pn �coswpq� in Eq. (12) can be
further decomposed into the series:
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which is termed decomposition formula by Heiskanen
and Moritz (1967), see also Hobson (1965). Integrating
the scalar products of rH and rN over the unit sphere
and using Eq. (11), we getZZ
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Fig. 1. Spherical distance wpq between points p and q, and components
of the de¯ection of the vertical at q
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Comparing Eqs. (4) and (15), we have

Dg�p� � c0
4pR
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As shown in the Appendix, the closed form of H is
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With Eq. (17) the derivative of H with respect to wpq is
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Di�erentiating Eq. (13) with respect to /q and kq, we
have (cf. Heiskanen and Moritz 1967, p. 113)

ÿ sinwpq
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Referring to the spherical triangle in Fig. 1, the
following relationships hold:

sinwpq cos aqp � cos/q sin/p ÿ sin/q cos/p cos�kq ÿ kp�
sinwpq sin aqp � ÿ cos/p sin�kq ÿ kp� �21�
Thus
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Inserting Eqs. (18) and (22) into Eq. (16) we ®nally get
the inverse Vening Meinesz formula
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where eqp is the de¯ection component at point q in the
direction of the azimuth aqp (Heiskanen and Moritz
1967, p. 187), or simply the longitudinal de¯ection
component. The meaning of the inverse Vening Meinesz
formula is: assuming that everywhere on the unit sphere
the north-south and west-east de¯ection components
are known, the gravity anomaly at any given point can

be obtained by integrating the products of H 0 and the
longitudinal de¯ection components over the unit
sphere.

Figure 2 shows the function H 0, which changes rap-
idly as w approaches zero. The ®rst zero crossing of H 0
occurs at w � 43�. When w is small, we have the as-
ymptotic representation:

H 0�w� � ÿ 2

w2
�24�

It is noted that the asymptotic representation of H 0 is
equal to that of dS=dw (the derivative of Stokes'
function) and agrees with the asymptotic representation
of the kernel function in Eq. (III.2.111) of Molodenskii
et al. (1962). Furthermore, H�w� � 2

w as w approaches
zero, so the asymptotic representations of the function
H and Stokes' function are identical.

4 The de¯ection-geoid formula

Next we derive a formula for converting de¯ection of
the vertical to geoidal undulation. The derivation is
almost the same as that for the inverse Vening
Meinesz formula. First, we introduce the kernel
function C
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Fig. 2. Function H 0�w� and function C0�w�
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Thus, the geoidal undulation at point p can be obtained
by integrating the scalar products of rH and rN over
the unit sphere:

N�p� � 1
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Using Eqs. (22) and (27) we obtain the de¯ection-geoid
formula
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According to the Appendix, the closed form of C is
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which agrees with the result of Molodenskii et al. (1962,
Eq. III.2.8) if the summation of the series in Eq. (25)
starts from n � 1. Figure 2 also shows the funciton C0.
The ®rst zero crossing of C0 occurs at w � 70:5�. The
asymptotic representation of C0 when w is small is:

C0�w� � ÿ 2

w
�31�

5 Computations by 1D FFT: rigorous implementations

We propose two computational schemes for the inverse
Vening Meinesz formula and the de¯ection-geoid for-
mula when the north-south and west-east components
of de¯ections are given on a regular grid. The ®rst
scheme is based on the one-dimensional fast Fourier
transform (1D FFT) method, which, given regularly
gridded data, can rigorously implement a surface
integral such as Eq. (23) or (28). In such a scheme,
gravity anomalies or geoidal undulations at the same
parallel are computed simultaneously by FFT as (cf.
Haagmans et al. 1993)
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where ncos � n cos/; gcos � g cos/;Dkqp � kq ÿ kp;D/
and Dk are grid intervals in the directions of latitude
and longitude, and F1 is the 1D FFT. Since all quantities
are real-valued, we can compute the Fourier transforms
of two real-valued arrays simultaneously to save
computer time (Hwang 1993). Speci®cally, let h�k� and
g�k�, k � 0; . . . ; nÿ 1, be the two real-valued arrays to
be Fourier transformed. We ®rst form the complex array
y�k� as
y�k� � h�k� � i g�k�; k � 0; . . . ; nÿ 1 �33�
where i � �������ÿ1p

. Let Y �k� be the Fourier transform of
y�k�, we have
H�0� � Re�Y �0��; andH�k� � 1

2 Re �Y �k�
� Y �nÿ k�� � 1

2 i Im �Y �k� � Y �nÿ k��
for k � 1; . . . ; nÿ 1

G�0� � Im �Y �0��; andG�k� � 1
2 Re �Y �k�

� Y �nÿ k�� ÿ 1
2 i Im �Y �k� � Y �nÿ k�� for

k � 1; . . . ; nÿ 1 �34�
where H�k� and G�k� are the Fourier transforms of h�k�
and g�k�; respectively, and Re(.) and Im(.) are the real
and the imaginary parts of a complex number. In
practice, the complex array holding ncos and gcos, and the
complex array holding H 0�Dkqp� cos aqp and
H 0�Dkqp� sin aqp (or C0�Dkqp� cos aqp and C0�Dkqp�
sin aqp� are Fourier transformed. Taking advantage of
the gridded data, azimuth and spherical distance can be
calculated as

tan aqp �
ÿ cos/p sinDkqp

ÿ sin�/q ÿ /p� � 2 sin/q cos/p sin
2 Dkqp

2

�35�

sin2
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� �
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2

� �
cos/q cos/p

�36�
where D/qp � /q ÿ /p.

6 Computations by 2D FFT: planar approximations

The second computational scheme is based on the
planar approximations of the two formulae, and hence
the two-dimensional fast Fourier transform (2D FFT).
In a local rectangular, xÿ y coordinate system, the
surface element and the spherical distance can be
approximated as R2drq � dxqdyq and wqp � qqp

R , with
qqp being the planar distance. With the asymptotic
representation in Eq. (24), the inverse Vening Meinesz
formula becomes
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where * is the convolution operator and D is the data
domain. Schwarz et al. (1990) show that

F
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v

� �
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where F is the 2D FT, and u and v are the spatial
frequencies. Thus the relationship between gravity
anomaly and de¯ection components in the frequency
domain is

DG�u; v� � ic0���������������
u2 � v2
p �vX�u; v� � uE�u; v�� �39�

where DG;X and E are the Fourier transforms of Dg, n,
g, respectively. Equation (39) can also be found in, for
example, Hwang and Parsons (1996), Sandwell and
Smith (1997), Haxby et al. (1983), who derived this
formula using di�erent approaches.

The planar approximation of the de¯ection-geoid
formula reads
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The Fourier transforms of x
x2�y2 and

y
x2�y2, which do not

exist in the literature, are now derived. We begin with
the de®nite integral found in Gradshteyn and Ryzhik
(1994, p. 782):Z 1
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By the di�erentiation theorem of Fourier transform (see,
e.g., Mesko 1984), we have

F
x
y

� �
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x2 � y2

� �
� ÿi u

v

� �
1
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With Eqs. (40) and (44), we obtain the relationship
between geoidal undulation and de¯ection components
in the frequency domain

N�u; v� � i

2p�u2 � v2� �vX�u; v� � uE�u; v�� �45�

which can also be found in Olgiati et al. (1995, Eq. 6).
Using Eq. (39) and the geoid-gravity spectral relation-
ship [see, e.g., Schwarz et al. (1990)], one can also derive
Eq. (45).

7 The innermost zone e�ects

At zero spherical distance the kernel function H 0 and C0
become singular and the azimuth is unde®ned. Thus we
must account for the innermost zone e�ect (Heiskanen
and Moritz 1967). First we consider such an e�ect in the
inverse Vening Meinesz formula. The de¯ection compo-
nents at the neighbourhood of point p can be expanded
into the Taylor series (see Fig. 3)

Fig. 3. Local rectangular coordinates for the innermost zone e�ect in
a cap of radius s0
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nq � np � xnx � yny � 1
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oy2 and nxy � o2n
oxoy.

Retaining only the linear terms in Eq. (46) and assuming
that the innermost zone is circular, with Eq. (24) we
have
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� s0c0
2
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Using a similar derivation, the innermost zone e�ect in
the case of the de¯ection-geoid formula is

Ni � s20
4
�ny � gx� �48�

Thus the innermost zone e�ects for gravity anomaly and
geoidal undulation depend on the gradients of the
de¯ection components. For discrete data ny and gx can
be obtained by numerically di�erentiating n and g along
the y and x directions, respectively. If the planar grid
intervals are Dx and Dy, the radius of the innermost zone
may be approximated by

s0 �
�����������
DxDy

p

r
�49�

8 Applications: gravity and geoid over the South China
Sea from satellite altimetry

As an application of the inverse Vening Meinesz
formula, we computed marine gravity anomalies over
the South China Sea (de®ned domain: 5� � latitude
� 25�, 105� � longitude � 125�� using the 1D FFT and
2D FFT methods and the remove-restore procedure.
The EGM96 geopotential model (Lemoine et al. 1997)
to degree 360 was used as the reference ®eld. The
altimeter data used are from Seasat, Geosat/ERM,
Geosat/GM, ERS-1/35-day, ERS-1/GM and TOPEX/
POSEIDON. The sea-surface topography of Levitus
(1982) is subtracted from the altimeter sea surface
heights before generating the de¯ections of the vertical.
At the centre of the South China Sea the average
altimeter data density is 1560 points in 1� � 1�, and at
the continental borders the densities drop sharply. We
used the method of least-squares collocation and the
covariance functions of de¯ections derived by Hwang

and Parsons (1995) to grid the de¯ections of di�erent
azimuths into the north-south and west-east compo-
nents at a 20 � 20 interval. We used a 1�-border to avoid
bad results at the edges. Further, 100% zero paddings
were applied to data arrays and kernel arrays to avoid
edge e�ects in convolutions by FFT. Table 1 shows the
comparisons between the shipborne gravity anomalies
and the gravity anomalies derived from the 1D FFT, the
2D FFT, and Sandwell and Smith's (1997) methods. The
shipborne gravity anomalies were provided by the
National Geophysical Data Center (NGDC). A total
of 180297 shipborne gravity anomalies were used for the
comparisons. The 1D FFT produces a slightly better
result than the 2D FFT. Table 1 also shows the CPU
time ratio between a given method and the 2D FFT
method on a Sun Sparc 20 machine. The 1D FFT
requires more than doubled computer time than the 2D
FFT. Employing the innermost zone e�ect improves the
result. We also did tests in other areas, and found that
the innermost zone e�ect always improves the result.
Furthermore, the result from the 1D FFT is about 30%
better than the recently published altimeter-derived
gravity anomalies from Sandwell and Smith (1997).
Figure 4 shows the predicted gravity anomalies over the
South China Sea (1D FFT plus innermost zone e�ect).
In Fig. 4, the outline of the basin of the South China Sea
is clearly visible. A median valley-like feature running
from the southwest to the northeast is probably the
spreading centre of the South China Sea, which has been
identi®ed by, e.g., Briais et al. (1993), using geomagnetic
data. The predicted gravity anomalies can be further
used to interpret the tectonic structure of the South
China Sea.

Because generally there are no measured geoidal
undulations at sea, we used the simulation approach of
Tziavos (1996) to evaluate the performances of the 1D
and 2D FFT methods that implement the de¯ection-
geoid formula. First, over the South China Sea we
generated gridded north-south and west-east compo-
nents of de¯ections, and geoidal undulations using
harmonic coe�cients from EGM96 (Lemoine et al.
1997) at a 7:50 � 7:50 interval. Only harmonic coe�-
cients between degrees 181 and 360 were used, so that
the remove-restore procedure need not be used. Be-
cause going from de¯ection to geoid is a smoothing
process, we used a 5� border to avoid edge e�ects. The
north-south and west-east de¯ection components were
then used to compute geoidal undulations. The statis-

Table 1. RMS di�erences between the shipborne and the predicted
gravity anomalies over the South China Sea and the CPU time
ratios (aIE: innermost zone e�ect)

Method RMS
di�erence
(mgal)

CPU time ratio

1D FFT/IEa 9.90 2.8
1D FFT/no IE 10.06 2.4
2D FFT 10.11 1.0
Sandwell and Smith (1997) 14.32 unavailable
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tics of the di�erences between the EGM96-generated
undulations, considered as the ``ground truth'', and the
computed undulations from various methods are given
in Table 2. From Table 2, the 1D FFT again gives a
better result than the 2D FFT. Also, the use of the
innermost zone e�ect signi®cantly reduces the di�er-
ence between the `true' and the predicted geoids.
Having done these tests, we then used the de¯ection
data as used in predicting the gravity anomalies to
compute the geoidal undulations over the South China
Sea. The result is shown in Fig. 5. The predicted geoid
can be used to study the ocean circulations over the
South China Sea, which recently have received con-
siderable attention from the oceanographers in South-
east Asia.

9 Conclusion

In this paper we showed the detailed derivations of the
inverse Vening Meinesz formula and the de¯ection-
geoid formula using the spherical harmonic representa-
tions of the functionals of the earth's disturbing
potential, and for each we presented the 1D FFT and
2D FFT methods for computations. In all cases the 1D
FFT yields better results than 2D FFT, but the former
needs nearly doubled computer times. Over the South
China Sea, by the inverse Vening Meinesz formula and
the 1D FFT we derived a set of gravity anomalies better
than that from Sandwell and Smith (1997) when
comparing with the shipborne gravity anomalies. Using
the simulated de¯ections from EGM96 over the South

Fig. 4. Grey-shaded relief map of the pre-
dicted gravity anomalies over the South
China Sea, with illumination from the
north-west

Table 2. Statistics of the EGM96 geoid and the di�erences between the predicted and the EGM96 geoids over the South China Sea (unit: m;
aIE: innermost zone e�ect)

Case mean min. max. std. dev. RMS

EGM96 deg 181 to 360 0.000 )2.998 3.812 0.542 0.542
EGM96 - 1D FFT/IEa 0.038 )0.010 0.100 0.014 0.041
EGM96 - 1D FFT/no IE 0.038 )0.055 0.169 0.021 0.043
EGM96 - 2D FFT 0.033 )0.060 0.169 0.019 0.038
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China Sea, the de¯ection-geoid formula yields a 4-cm
accuracy. The predicted gravity anomalies and geoidal
undulations over the South China Sea are freely
available to all scientists. Interested readers please send
e-mail to hwang@geodesy.cv.nctu.edu.tw.
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Appendix: derivations of closed forms of H and C
functions

Consider the generating function of Legendre poly-
nomials (Hobson 1965)

f�k� � 1�����������������������������������
1ÿ 2k cosw� k2

p �
X1
n�0

knPn�cosw� �A1�

The series in Eq. (A1) is absolutely and uniformly
convergent if k < 1 (Hotine 1969, p. 310). The case k � 1
will be of conditional convergence except at w � 0. In
the following derivations, we exclude the point w � 0 in
all results. Setting k � 1 in Eq. (A1), we have

X �w� �
X1
n�0

Pn�cosw� � 1�����������������������
2ÿ 2 cosw

p � 1

2 sin w
2

�A2�

Using Eq. (A1) and the fact that P0�cosw� � 1, we have

f �k� ÿ 1

k
�
X1
n�1

knÿ1Pn�cosw� �A3�

Integrating Eq. (A3) with respect to k between the limits
k, 0, and using the result in Gradshteyn and Ryzhik
(1994, p. 101), we have

X1
n�1

Z k

0

knÿ1dkPn�cosw� �
X1
n�1

1

n
knPn�cosw�

�
Z k

0

f �k� ÿ 1

k
dk

�A4�

� ÿ log�2
�����������������������������������
1ÿ 2k cosw� k2

p
� 2ÿ 2k cosw� � log 4

Setting K=1, we get

Y �w� �
X1
n�1

1

n
Pn�cosw� � ÿ log sin

w
2

1� sin
w
2

� �� �
�A5�

Furthermore, integrating Eq. (A1) with respect to k
between the limits k, 0 and using the result in
Gradshteyn and Ryzhik (1994, p. 99), we have

Fig. 5. The predicted geoid over the South
China Sea, contour interval is 0.5m
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X1
n�0

Z k

0

kndkPn�cosw� �
X1
n�0

1

n� 1
kn�1Pn�cosw�

�
Z k

0

f�k�dk

� log�2
�����������������������������������
1ÿ 2k cosw� k2

p
� 2k ÿ 2 cosw�
ÿ log�2ÿ 2 cosw� �A6�

Setting k � 1, we have

Z�w� �
X1
n�0

1

n� 1
Pn�cosw� � log

1� sin w
2

sin w
2

 !
�A7�

It is easy to see that H�w� and C�w� are linear
combinations of the three basic in®nite series,
X �w�; Y �w� and Z�w�, namely,

H�w� �
X1
n�2

�2n� 1��nÿ 1�
n�n� 1� Pn�cosw�

�
X1
n�2

2ÿ 1

n
ÿ 2

n� 1

� �
Pn�cosw�

� 2�X �w� ÿ P0 ÿ P1� ÿ �Y �w� ÿ P1�
ÿ 2�Z�w� ÿ P0 ÿ 1

2 P1�

� 1

sin w
2

� log
sin3 w

2

1� sin w
2

 !
�A8�

and

C�w� �
X1
n�2

2n� 1

n�n� 1� Pn�cosw�

�
X1
n�2

1

n
� 1

n� 1

� �
Pn�cosw�

� Y �w� ÿ P1 � Z�w� ÿ P0 ÿ 1
2 P1

� ÿ2 log sin w
2 ÿ 3

2 coswÿ 1

�A9�

where P0 � 1; P1 � cosw.
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