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An RNN-Based Prosodic Information
Synthesizer for Mandarin Text-to-Speech
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Abstract—A new RNN-based prosodic information synthesizer Prosodic Model
for Mandarin Chinese text-to-speech (TTS) is proposed in this e Word-level
paper. Its four-layer recurrent neural network (RNN) generates . . . ;
prosodic information such as syllable pitch contours, syllable Linguistic Features
energy levels, syllable initial and final durations, as well as inter- Prosodic Parameter Generator ¢
syllable pause durations. The input layer and first hidden layer :
operate with a word-synchronized clock to represent current- ~ Syllable-level )
word phonologic states within the prosodic structure of text Linguistic Features - Hidden Layer |
to be synthesized. The second hidden layer and output layer : ] /
operate on a syllable-synchronized clock and use outputs from the
preceding layers, along with additional syllable-level inputs fed ¢ ¢
directly to the second hidden layer, to generate desired prosodic

parameters. The RNN was trained on a large set of actual ut- Hidden Layer Il

terances accompanied by associated texts, and can automatically

learn many human-prosody phonologic rules, including the well- _ ¢
known Sandhi Tone 3 FO-change rule. Experimental results show ‘ ¢
Output Layer

that all synthesized prosodic parameter sequences matched quite
well with their original counterparts, and a pitch-synchronous-
overlap-add-based (PSOLA-based) Mandarin TTS system was ¢

also used for testing of our approach. While subjective tests are
difficult to perform and remain to be done in the future, we

. ; - A Proscedic Information
have carried out informal listening tests by a significant number °

of native Chinese speakers and the results confirmed that all (Pitch Contour,Energy Level,
synthesized speech sounded quite natural. Initial/Final/Pause Durations)
Index Terms—Mandarin, pitch contour, prosodic information B )
synthesizer, recurrent neural network, text-to-speech. Fig. 1. Block diagram of the proposed RNN prosodic information synthe-
sizer.
I. INTRODUCTION

i generator. It processes syllable-level linguistic features with
N THIS paper, a new data-driven method of prosodige help of the outputs of the first part to generate all

information synthesis for Mandarin text-to-speech (TTS}qg0dic parameters needed by our Mandarin TTS system.

is presented. The basic idea is to use a model 10 expl§ffage two parts are tightly coupled and integratedly trained
the relationship between the prosodic phrase structure

: o . ing a large database to learn automatically to induce human’s
Mandarin speech and the linguistic features of the input text f g g y

imulating h . q i hani Tl[?f:osody phonologic rules. After well training, the RNN acts
simuiating ‘human's prosody: pronunciation mechanism. 1iyg synthesizer to generate proper prosodic parameters for
model is realized by a four-layer recurrent neural networ

(RNN). Fig. 1 depicts the block diagram of the RNN. As Fig. fy?:]eesgé?r? igz:sra(')f'\"ui?:ar;ﬂi Ss‘iee;hc')f NN 1o realize the
shows, the RNN can be functionally divided into two parts. : 9 yp )
The first part is taken as a prosodic model to explore ﬂ\%osody generation _m_odel of human are dlscus_sed as follows.
prosodic phrase structure of the spoken Mandarin language. I‘?I\Ttarthfr%m explamw;}gd;he rleason§ erly the first part of thke
processes word-level linguistic features to track the phonologﬁé\l ’bW Ic dls a one-ni 3” aye; sllmp € relcurrer;]t netword,.
state of the prosodic phrase structure of the utterance to e used as a prosodic model to explore the prosodic
synthesized. The second part is the real prosodic informatigfrase structure of the input text by using only inputs of word-
level linguistic features. First, because words are the smallest
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synthesized once we know the model. Third, the architectureThere are several advantages of the proposed RNN-based
of the first part of the RNN is similar to the simple RNNprosody generation method as compared to rule-based [7]—-[10]
used in the studies of [1]-[5] in which the grammaticahand previous neural network-based [11]-[14] methods. First,
structure of a word sequence was explored via a simple proposed method provides a total solution to the problem
task of word class prediction. So it is a dynamic systewf prosodic information synthesis, with all prosodic parameters
suitable for use to model the relations of words in Mandarsimultaneously generated by the compact RNN; in contrast to
utterances. Based on above discussion, we believe that mhast previous neural network-based methods that dealt with
first part of the proposed RNN with inputs of word-levethe FO synthesis [12]-[14] or the segmental duration synthesis
linguistic features can function as a prosodic model. It {41] only. Second, only very simple inputs of word-level
worth noting that, due to the following two reasons, we didnd syllable-level linguistic features are used. No complicated
not use high-level syntactical features as input features ®fntactic analyses are needed to extract high-level linguistic
the prosodic model in this study. First, it is generally ndeatures such as major and minor phrases [12] and accent
easy to do automatic syntactic analyses for unlimited textalues of syllables [13]. Third, the prosodic phrase structure
of natural Chinese language. Second, the syntactic structafehe spoken Mandarin language are properly modeled and
of a Chinese text is generally not isomorphic to the prosodéitomatically trained from the real speech. There is no need to
phrase structure of the corresponding Mandarin speech. explicitly define what is a prosodic event or state in advance. It
The function of the second part of the RNN prosodis also not necessary to manually detect either major prosodic
synthesizer is explained here in more detail. It is composedeaks or minor prosodic breaks of the training utterances in
of two layers of neurons: the second hidden layer and th&e preprocessing stage of the training process. Fourth, all the
output layer of the RNN. Both layers have the same simpfgosody synthesis rules are embedded in the weights of the
recurrent structure as the first part of the RNN to feed ba@{¥\N and can be learned automatically without the help of
all their outputs as contextual inputs to themselves. Whisny linguistic experts.
the second part operates in the same way as the first, itdhe paper is organized as follows. A general background
functions are different owing to different driving inputs. Theof the prosody generation in TTS is given in Section Il. It is
second hidden layer accepts two sets of inputs. One is théended to show the features shared by all languages and also
outputs of the first part to account for all the affectionthose unique to Mandarin, from TTS viewpoint. The proposed
from high-level linguistic features. The other is some syllablenethod of prosodic information synthesis for Mandarin TTS
level linguistic features fed in directly to consider the locab discussed in Section Ill. The effectiveness of the method is
lexical influence. With these inputs, the second hidden layexamined by simulations in Section IV. Some conclusions are
functions as a finite state machine to model the fine (locajven in the last section.
structure of the prosodic phrase of the input text at the
current syllable. The output layer accepts the outputs of
the second hidden layer to function as a predictor for the Il. BACKGROUND
generation of all desired prosodic parameter sequences. Sinc€ontinuous speech contains the actual words spoken as
all outputs are fed back as contextual inputs, the predictor isvell as suprasegmental information, such as stress, timing
dynamic system capable of dealing well with the temporatructure, and fundamental frequency (F0) contour patterns.
correlation of the output prosodic parameters, such as fthkis information is generally referred to as the prosody of
declination effect on both the pitch and energy contours tife speech, which is affected in turn by the sentence type,
declarative utterances. Besides, mutual dependencies amibregsyntactical structure, the semantics, the emotional state of
different types of prosodic information can be properly takethe speaker, etc. Without prosody, speech would be flat and
into consideration. toneless and would sound tedious, unpleasant, or even barely
Lastly, the idea to derive a proper training procedure fantelligible. So generating proper prosodic information is the
the proposed RNN prosody synthesizer is discussed. Usuaffypst important issue in synthesizing natural speech in TTS
the training procedure of a neural network-based system playstems.
a key role to make it succeed. In the past, the training of aGeneric TTS systems need to generate FO contours, energy
prosodic model for Mandarin language was practically difficuttontours, and word durations as well as interword pause dura-
because no well-labeled training databases were available. Ttloss. This prosodic information is usually generated according
is mainly owing to the lack of clear and explicit definitionto linguistic cues extracted from the input text. Different levels
of prosodic categories or states which construct the prosodiclinguistic cuing, ranging from low-level lexical features,
phrases. Thus, it is improper to train the two parts of the RN&lich as word phonetic structures, to high-level features, such
separately. Instead, a straight forward training procedureas syntactical boundaries, can be used. Many methods for
adopted in this study. The two parts of the RNN are tightlgrosodic information synthesis have previously been proposed.
coupled and trained together. By directly feeding in linguistithey can be divided into two general approaches: rule-based
features to the input layer and setting the prosodic parametarsl data-driven. In rule-based methods [7], [8], [15]-[26],
extracted from the training utterances as the desired outyput text is first analyzed to extract relevant linguistic cues.
targets, these two parts can then be trained in an integraldwey may include lexical information such as the phonetic
fashion by the extended backpropagation (EBP) algorithm fstructures and accented word syllables, syntactical structure,
recurrent neural network [6]. intonation patterns, and declination effects of sentential utter-
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ances, semantic features, etc. Phonologic rules are then used
to generate the required prosodic information. Usually, the
phonologic rules for synthesis are inductively inferred from
observation of a large set of utterances with the help of
linguists. These methods have two disadvantages. First, the
rule-inference process is labor-intensive. Second, manually
exploring the effect of mutual interactions among linguistic
features on different levels is highly complex. As a result,
it is very difficult to collect enough rules without long-term
devotion to the task [7]. On the other hand, data-driven
methods [11]-[14], [27]-[37] generate prosodic information
from models designed to describe the relationships between
linguistic features of input texts and prosodic information Time
about the utterances to be synthesized, usually with the aid
of statistical models [32]-[34] or neural networks [11]-[14],
[35]-[37]. The models are trained on large sets of real utter-
ances accompanying by associated texts. The training gdgf@rmation for training TTS prosody synthesizers [19], [48],
are automatic deduction of phonologic rules from the lardé3]. The other model is designed to predict the prosodic
database and implicit memorization of them in the model@hrase structure embedded in text by using linguistic features
parameters or the neural network’s weights. During synthesgtracted from the text [42]-[44], [54], [55]. Obviously, its
the best combinations of prosodic information are estimat&#Rin use in TTS is to help generate prosodic information.
from among the models according to analysis of the linguistic In the past few years, many studies have been published on
features in the given input text. The primary advantage of tHigriving prosodic models of spoken language for TTS [19],
approach is that the phonologic rules can be automaticalBP], [31], [44], [47], [53]. Ostendorf and Veilleux [44] used a
established from the training data set in/during the trainirtjerarchical stochastic model to automatically predict prosodic
process without the help of any linguistic expert. phrasal boundaries in text, achieving promising results in
Although many methods for TTS prosody generation ha@gtermining where major and minor prosodic breaks occur in
previously been proposed for various languages [7]-[9], [18nput text. Sanders and Taylor [47] identified phrasal breaks
[25], [27], [38]-[41], it is still generally difficult to elegantly in text using a statistical model that described the relationship
invoke high-level linguistic features in exploring the prosodibetween phrase breaks and part-of-speech (POS) trigrams.
phrase structure of a spoken language for prosodic informatiélihough these two methods are potentially suitable for use
generation. The resulting synthesized prosodic paramet#rd TS synthesis, further studies on assigning proper prosodic
are therefore inadequate for generating natural, fluent ap@rameter patterns to the detected prosodic phrases are still
unrestricted synthetic speeches. This is especially true of F@eded. Mixdorff and Fujisaki [19], [53] studied an approach
synthesis because it is the most important prosodic eleméased on FO generation. Their method first locates prosodic
in determining the naturalness of synthetic speech. Recenfjirases in input texts using a syntactical analysis and then
researchers have become aware that the fundamental prob#@mlies rules for assigning accent and phrase commands to
in TTS system prosodic information synthesis is the lack of gggnerate the FO contour. In [30], an automatic data-driven
appropriate prosodic model that describes the prosodic phraggroach to prosodic modeling was proposed. It automatically
structure of spoken language [42]-[45]. Although previowgxplores the relationship between syllabic prosodic patterns
studies [44] have shown that the generally accepted prosoditd syllable-independent coefficients from a large speech
phrase structure of a language is known to consist of tve@rpus in order to generate proper syllabic prosodic patterns.
levels, including the intonational phrase and the intermedidte[31], a method for modeling the contextual effect of dialog
phrase, its relationship to the linguistic features of the assoprosody was proposed. It uses linear regression to derive
ated text is still not clearly known and needs to be explorgdles for modifying the sentential FO contours generated by
further. Information about the prosodic phrase structure of @anventional methods for individual sentences.
utterance is explicitly carried on the contours of all prosodic This general problem of lack of an appropriate prosodic
parameters. But, it must also be implicitly embedded in the textodel was encountered in Mandarin TTS prosodic infor-
because it can be generated from the input text (by humarspgtion synthesis. Mandarin Chinese is a tonal language.
So, a prosodic model can be generally defined as a mechanksach character is pronounced as a syllable. Only about 1300
for describing the relationship between the acoustic featungisonetically distinguishable syllables comprise the set of all
extracted from the prosodic parameter contours of speech d&ghl combinations of 411 base-syllables and five tones. Each
the linguistic features extracted from the associated text. Twase-syllable is composed of an optional consoiratial and
basic types of prosodic model can be found. One is desigred/owel final. The word, which is the smallest syntactically
to detect the prosodic phrase structure of an utterance mganingful unit, consists of one to several syllables. Be-
using some features extracted from the prosodic parametanse syllables are the basic pronunciation units in Mandarin
contours [19], [45]-[53]. Its purpose is to provide either aapeech, they are also commonly chosen as the basic synthesis
additional score to help speech recognition [45], [50] or targehits in Mandarin TTS systems. Accordingly, the prosodic
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Fig. 2. Standard patterns of the FO contours of the first four tones.



CHEN et al. RNN-BASED PROSODIC INFORMATION SYNTHESIZER 229

Prosodic Model

- POS(W5), POS(W 1), Len(W i),
o Len(W i), PM(Wi, Wir1)

Prosodic Parameter Generator iy ¥ ¥ - v v
....................................................................... ﬁ23 102' |123 35|
: I(SJ), I(S_l’ ]), F(SJ), 'l~u ..... )
T(S5), T(Sji1), L(SiiWi) :: &i/ [
==
! VLo | TN

B~ e

[olp:00] Old 01 Ofe o1 > 2 F—
YYVYY YVYYVY ¥

pause, energy

initial, level

and final

durations

pitch
contour

Fig. 3. Detailed architecture of the proposed RNN shown in Fig. 1.

information that must be synthesized includes syllable pitthe prosodic phrase structure of Mandarin speech to assist
(or FO) contour, syllable energy contour, syllalimtial and in prosodic information generation. This motivate us to con-
final durations, as well as intersyllable pause duration. Amorstruct a more sophisticated prosodic model in this study for
them, syllable pitch contour has the most important effect aleveloping a high performance Mandarin TTS system.
naturalness of synthetic speech. So pitch contour synthesis is

of primary concern in Mandarin TTS. Due to its importance,

we now briefly discuss the properties of syllable pitch contours lll. THE PROPOSEDRNN-BASED

in continuous Mandarin speech. PROSODIC INFORMATION SYNTHESIZER

It is known that the tone of a syllable is mainly determined A multilayer RNN was used to implement the model

by its pitch contour. Previous studies [56] have concludg} he human prosody pronunciation mechanism. The block
that the FO contour of each of the first four tones can Bfagram of the RNN has been depicted in Fig. 1. Its detailed
simply represented by the standard pattern shown in Fig.gchitecture is shown in Fig. 3. As Fig. 3 shows, the RNN is
As for the fifth tone, pronunciation is usually highly contexts four-layer network with one input layer, two hidden layers,
dependent, so that its FO contour shape is relatively arbitragfd one output layer. It can be functionally divided into two
Nevertheless, it is always pronounced short and light. It woulghrts. The first part consists of a portion of the input layer
therefore seem that syllable pitch contours in continuodsd the first hidden layer with all outputs being fed back as
speech are pronounced more consistently so as to make thifdits to itself. It may be considered a prosodic model for
syntheses in Mandarin TTS systems much simpler. Howevekploring the prosodic phrase structure of spoken Mandarin
in practice, syllable pitch contours are subject to varioushinese using only word-level linguistic features of input texts.
modifications in continuous speech. So, pitch contour SyntheﬁiSOperates with word-synchronized clock to generate out-
is not a trivial task. In the past, several methods [9], [10puts representing current-word phonologic states of prosodic
[57]-[64] have been proposed to synthesize some or all gfirase structures. Input features include POS’s @0 $and
these prosodic parameters. They include rule-based methpdsg W, ), and lengthsLen(W;) and Len(W;, 1), of both

[9], [10], [57]-[59], [63], [64], statistical model-based methodshe current wordiW; and the following wordW; 1, and an
[60], and MLP-based methods [61], [62]. Although thesgndicator, PMW;, W;,1), showing the type of punctuation
methods have made advances, they are still far away fronark (PM) located after the current word. In this work, 42
reaching the goal of generating proper prosodic informatid®OS types [65], [66] and four PM types are used. They are
for synthesizing natural-sounding speech reproduction of indigted in Tables | and Il, respectively. As Table | shows, the
Chinese text. Their main drawback still lies in their inability td?OS set consists of 15 types of verb, eight types of noun, ten
elegantly invoke higher-level linguistic features in exploringypes of adverb, two types of conjunction, and seven other
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TABLE |
42 POS TPES USED IN THIS STuDY

Active Intransitive Verb(VA)

Active Pseudo-Transitive Verb(VB)

Active Transitive Verb(VC)

Ditransitive Verb(VD)

Active Verb with a Sentential Object(VE)

Active Verb with a Verbal Object(VF)

. Classificatory Verb(VG)

Stative Intransitive(VH)

Sative Pseudo-Transitive Verb(VI)

Stative Transitive Verb(VJ)

Stative Verb with a Sentential Object(VK)

Stative Verb with a Verbal Object(VL)

Nonpredicative Adjective{A)

General Noun(NA)

Special Noun(NB)

S G ix| eof vot =] Sf 0] 00| =} | | ] cof no| —

Place Noun(NC)

—
-1

Time Noun(ND)

18. Determiner(NE)

19. Measure(NF)

20. Localizer(NG)

21. Pronoun(NH)

22. Adverb of Quantity(DA)
23. Adverb of Evaluation(DB)
24. Negation(DC)

25. Adverb of Time(DD)

26. Adverb of Degree(DE)
27. Adverb of Place(DF)

28. Adverb of Manner(DG)
29. Aspectual Adverb(DI)
30. Interrogative Adverb(DJ)
31. Sentential Adverb(DK)
32. Preposition(P)

33. Coordinate Conjunction(CA)
34. Correlative Conjunction(CB)
35. Particle(T)

36. Interjection(I})

37. Bound(B)

38. Verb-Complement Compound(VR)
39. Sentence

40. Special Verbl(is,are,am)(V1)
41. Special Verb2(has,have)(V2)
42. Determiner-Measure Compound(DM)

TABLE 1
FOuR GENERAL TYPES OF PUNCTUATION MARK
L2 [[8]:1l4]"
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TABLE 1l
Six GENERAL TYPES OF CONSONANT INITIAL
1| m,n L, "null” || 4 Ji, ], tz
2 h, shi, sh 5 p,tk
3 b, d, g 6 | chi, ch, ts, f, s
TABLE IV

SEVENTEEN GENERAL TYPES OF VOWEL FINAL

1 a, ia, ua 10 ang, lang, uang

2 0, uo 11 { eng, ing, ueng, iong
3 e, ie, iue 12 1

4 ai, iai, uai 13 u

5 el, uei 14 it

6 au, iau 15 el

7 ou, iou 16 (ngl)

8 | an, ian, uan, iuan | 17 (ng2)

9 en, in, uen, iun

are needed by our Mandarin TTS system, using syllable-level
linguistic features fed directly into the second hidden layer
as additional inputs, along with outputs from the first part.
All outputs of the second hidden layer are fed back as inputs
to itself. The output prosodic parameters are also fed back
as the inputs to the output layer. This arrangement makes
the prosodic parameter generator a dynamic system able to
predict time-varying prosodic parameters of real speech. Note
also that to reduce the system complexity, nodes in both the
output layer and the second hidden layer are partitioned into
three groups according to the properties of the eight output
prosodic parameters. Output nodes in these three groups cor-
respond to the four parameters of pitch contour, one parameter
representing energy level, and three durational parameters,
respectively. Input syllable-level linguistic features used in
this study include the tond’(S;), the initial type I(S;),

and thefinal type F(S;) of the current syllableS;; the
tone I'(S;41) and theinitial type I(S;41) of the following
syllable S;1, and an indicatorL(S;|W;), showing whether

the current syllable forms a monosyllabic word or is the
first, an intermediate, or the last syllable of a polysyllabic
word. In this study, six broad types ofitial dependent upon
the manner of consonant articulation and 17 typedirml
classified according to the constituent vowel nucleus and nasal
ending were used. Tables Il and IV list thegdial andfinal
types.

The RNN generated a total of eigt output prosodic param-
eters. They include for the current syllable: four parameters
representing the pitch contour, one parameter representing the
energy level (i.e., maximum log-energy), and two parameters
representing, respectively, thatial andfinal durations; pre-
ceding the current syllable: one parameter representing the
pause duration. Using four parameters to represent the pitch
contour of a syllable is based on results obtained in other
studies [60], [62], [67], [68]. We now briefly discuss the pitch-

POS types. It is noted that the POS set used in this study igentour parameterization method. As mentioned previously,

subset of the complete POS set described in [66].

there are only five basic tones in Mandarin Chinese. The

The second part of the RNN consists of the other part of thenality of a syllable is characterized mainly by its pitch
input layer, the second hidden layer, and the output layer. Itgentour. Although syllable pitch contours in continuous speech
the real prosodic parameter generator. It operates on a syllaklee subject to various modifications, they are all smooth curves
synchronized clock to generate all prosodic parameters thédth shapes for the first four tones roughly matching corre-
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sponding standard tone patterns. We can therefore considethe RNN were empirically decided. All hidden nodes use
the pitch contour of each syllable as a pattern representeddigmoid activation functions. The output layer consists of eight
certain parameters. Specifically, the pitch contour of a syllabdeitput nodes, all with linear activation functions, to generate
is represented by a smooth curve formed through orthonornifa¢ eight prosodic parameters. Because the three types of
polynomial expansion using coefficients up to the third ordgprosodic information have different dynamic ranges, a distor-
The zeroth-order coefficient represents the mean of the pitdtn measure taken as the objective function for minimization
contour and the other three coefficients represent its shaisedefined as

The basis functions of the orthonormal polynomial expansion

are expressed as [67] Z{T[pl )] = Olp; (k N2

]
Pl =} =1 1
(%) . +{T[< )| - Ole(k)y
i 12 - N Y2 i\ 1 )
o(v) =iy (%)) @ Summl-oumy: @
i 180 - N3 12
%(N) = [(N— 1)(N+2)(N+3)} where O[p;(k)], 0 < j < 3, Ole(k)], Oldo(k)], Old1(k)],
s ‘ and O[dy(k)] are the outputs of the prosodic information
. <L) _ <L) LN-1 (3) Synthesizer (see Fig. 3); arip;(k)], 0 < j < 3, T[e(k),
N N 6-N T[do(k)], T[d1(k)], and T[d2(k)] are the corresponding de-
p 2800 172 sired target values which are the normalized parameters of
o5~ ) = pi(k), 0 <5 <3, e(k), do(k), di(k), andda (k) representing,
S\ N N —1)(N —2)(N +2 ’
(V=D =2)(N +2) respectively, the pitch contour, energy leviglitial duration,
N?® 1/2 final duration, and preceding pause duration of#tiesyllable.
) (N +3)(N +4) Normalizations of these parameters are defined by
. l(i)g _ §<i)2 L 6N =3N 42 <L> Tlp; (k)] = [pi(k) = m!P) /o™ 0<j<3, (8)
. N2 ;
MR AT AN Tle(k)] = [o(h) — m{®)/{® ©)
S =2 2)] @ T =) - miP) [V (10)
j=0and2

for 0 < ¢ < N, where N + 1 is the length of the pitch and
contour andN > 3. These basis functions are, in fact _ F(k) F(k)

Z , v Tk =[du(k) —m V3 11
discrete Legendre polynomials. The pitch conta®@#tchy (i), (k)] = [ (k) 4 ]/[ T } 11

0 << N, of thekth syllable can thus be approximated byWherei(k), f(k), andt(k) are theinitial type, final type, and
: tone type of theith syllable, respectively. Here;!, and(s?)?
PLtChk Z p;i(k < N) (5) are the mean and variance of the parameteand they are

given by
for 0 < ¢ < N, where

K,
N . Z (12)

1 (
pi(k) = Nril ; D, <N) - Pitchy(4) (6) :)i
= and
is the jth-order coefficient. 3.1 X
Note that all eight output prosodic parameters are further (ol)? = Z e Z p;(k) - mf,,j 2 (13)
normalized in order to reduce the system complexity resulting j=0 k=1

.. . . . t(k)=l
from variations in these prosodic parameters caused by lexical (

phonetiC featureS. Th|S may make training eaSier. In th|S SthMr the p|tch contour for Sy”ables belonging to tm tone
both the energy level and thfénal duration are normalized type;
for the current syllablefinal type. Theinitial duration and

the intersyllable pause duration are normalized for the current . 1
syllable initial type. The pitch contour is normalized for the me=To > elk) (14)
current syllable tone type. févk=1=l

The RNN prosody synthesizer can be trained using E
algorithm [6] on a large set of real-speech utterances. Due to K
the fact that it is generally difficult to determine analytically (O'i)Q — 1 Z [e(k) — mg? (15)
the number of hidden nodes of a neural network, the numbers ' Ky = '

of hidden nodes in both the first and second hidden layers flk)=t
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for the energy level for syllables belonging to thiefinal type;

K,

1
[ .
m, = ; d; (k) (16)
i(k):l
and
1 K; L
(afij>2=fl ; [d; (k) —m} ] (17)
i(k)=l

TABLE V
RMSE's oF THE FIVE TYPES OF SYNTHESIZED PROSODIC INFORMATION
Close Test Open Test
Pitch Contour | 0.84ms/Frame | 1.06ms/Frame
Energy Level 3.39dB 4.17dB
Initial Duration 17.2ms 18.5ms
Final Duration 33.3ms 36.7ms
Pause Duration 23.7ms 54.5ms

movies (6.5%), family life (6.5%), tours (6%), politics (2.5%),

j =0 and 2, for theinitial duration and the preceding pausdraffic and transportation (2.5%), etc. All utterances were

duration for syllables belonging to théh initial type; and

K,

1
mh, =— Y di(k) (18)
l k=1
FlR)=t
and
1 K,
(afh)?:fl > (k) —mb ] (19)
o

for the final duration for syllables belonging to thi¢h final

generated by a single male speaker. They were all spoken
naturally at a speed of 3.5 to 4.5 syllables/s. The data base
was divided into two parts: a training set and an open test
set. These two sets consisted of 28191 and 7051 syllables,
respectively.

All speech signals were digitally recorded using a 20-kHz
sampling rate. They were then divided into 10-ms frames
and manually segmented into silence, unvoiced, and voiced
parts according to observation of acoustic features including
waveforms, energy, zero crossing rates, LPC coefficients,
cepstra and delta-cepstra. The eight prosodic parameters to

type. Itis noted that the scaling factor bf+/3 in (10) and (11) be synthesized for each syllable were then extracted from the
is used to make certain the three output prosodic paramei@wnsampled 10-kHz speech signals. They included the four
groups have approximately equal contributions to the objectiggthogonally transformed coefficients of pitch contour, maxi-

function of the EBP training algorithm.

mal log-energyijnitial duration,final duration, and preceding

With normalization, the variations in these prosodic parampause duration. Here, pitch period was detected using the SIFT
ters caused by local phonetic structures of individual Mandar@gorithm [69] with manual error-correction. The frame length
syllables can be greatly reduced. This makes training eas#r. pitch detection was 40-ms with a 10-ms frame shift. The
By feeding-in the linguistic features extracted from the inpdtame length for log-energy analysis was 20-ms with a 10-ms
text as inputs, and setting the normalized prosodic parametéggne shift. Both cases used rectangular windows.
extracted from the corresponding training utterances as théAn automatic tagging algorithm based on the criterion
desired output targets, the RNN can be trained to automaticaly long-word-first was then used to segment all the texts
learn and retain the relationships between the prosodic para@gsociated with the training utterances in the speech data base
eter sequences of the training utterances and the linguig@icobtain the word sequences. A Chinese lexicon containing
feature sequences of associated texts. A well-trained RNRProximately 80 000 wordsvas used in the tagging. Words
can therefore be used as a prosody synthesizer for generatinghe lexicon consist of one to five syllables. All tagging
proper prosodic parameters for given input texts. Of courgyyors were manually corrected. The POS’s of all words were
denormalizations of the outputs of the prosodic informatidiien manually determined. As mentioned before, the set of 42

synthesizer must be performed in the synthesis process.

IV. SIMULATIONS

POS types listed in Table | was used in this study. Finally, all
linguistic features were extracted for use in the system.
The RNN prosody synthesizer was trained using the EBP

_algorithm. The numbers of nodes in the first and second hidden

Performance of the new method of prosodic informatiopyers were determined empirically and set to be 35 and 30,
synthesis for Mandarin TTS systems was examined througdspectively. The learning rates for training the two types of
simulations. A continuous-speech Mandarin database providggights connecting to hidden nodes and to output nodes were
by the Telecommunication Laboratories, MOT®.0.C. was jnitially set to be 0.01 and 0.001, respectively. They were all
used. The data base consists of four sets of utterances. WH@arIy decayed to zero at 200 training epochs. The training
first one contains 112 phonetically balanced short sententﬂﬁbcess converged approximately after 50 training epochs. It
utterances with lengths less than 13 syllables. The secqgdk about 10 h run on a DEC 3000 workstation.
set comprises 315 specially designed short utterances withrgple V lists the root mean square errors (RMSE’s) of the
lengths less than 40 syllables. The third and fourth s&{$nthesized prosodic parameters. It shows that RMSE's of 0.84
comprises, respectively, 28 short and 200 long paragraphigy 1.06 ms/frame were achieved in pitch contour synthesis for
utterances whose texts are all news selected from a laggg closed and the open tests, respectively. A typical example
news corpus to cover a variety of subjects including busine§§pitch mean synthesis for the open test is shown in Fig. 4(a).

(12.5%), medicine (12%), social events (12%), sports (10.5%),can be seen from the figure that the trajectories of the
literature (9%), computers (8%), food and nutrition (8%),

1The Ministry of Transportation and Communications

2The lexicon was supplied by the Institute of Information Science,
Academia Sinica.
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(a)pitch mean

(b)energy level

(c)initial duration

(d)final duration

(e)pause duration

473 575 1
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Fig. 4. Typical example of the original (solid lines) and the synthesized (dotted lines) prosodic parameter sequences of: (a) the pitch megy, (b) ener
level, (c) initial duration, (d)final duration of syllable; and (e) intersyllable pause duration. The text is: “More and more women are concentrating on
career development and delaying fulfillment of their natural childbearing and child-rearing functions. After they have achieved their cateaveosls

they then find their ovaries have deteriorated. This is creating an urgent demand for viable ova, but ovum donation, unlike sperm donation, cé&n be painf
and dangerous since ova are taken through the abdominal wall, or via ultrasound techniques, and there is always a risk of adverse reactioa.to anesthesi
Note that thex-axis represents the syllable sequence, and the broken line and the numbers on the top of the text show, respectively, the segmentation
of the syllable sequence into a word sequence and the associated state sequence.

synthesized pitch means match quite well with their originatere obtained for the closed and the open tests, respectively.
counterparts for most syllables. Through further error analysksg. 4(c) shows the synthesized syllalhdtial durations for

we found that only few large errors had occurred in the pitcthe same input text used previously. In the figure we see
mean synthesis. Most of them take place at last syllablestbét the trajectories of synthesizadtial durations also match
sentences of Tone 3, and result mainly from extraordinary Tomery well with their original counterparts for most syllables.

3 pronunciations which generate extremely large pitch meais. final-duration synthesis, RMSE’s of 33.3 and 36.7 ms
Some other large errors occur at syllables with Tone 5. Becawgere obtained for the closed and the open tests, respectively.
most of them are caused by alternative but legal ToneFig. 4(d) shows the synthesized syllafileal durations for the
pronunciations, they are not serious. In energy level synthesiame input text used previously. Again we find in the figure
RMSE's of 3.39 and 4.17 dB were obtained for the closed atight the trajectories of the synthesizfidal durations match

the open tests, respectively. Fig. 4(b) shows the energy-levetry well with their original counterparts for most syllables.
synthesis results for the input text used in Fig. 4(a). Clearlin intersyllable pause duration synthesis, both the training and
the trajectories of the synthesized energy levels also mattie test processes were slightly modified for cases in which a
quite well with their original counterparts for most syllablesPM existed. During training, the terd®’[dy (k)] — O[d2(k)] }?

In initial-duration synthesis, RMSE’s of 17.2 and 18.5 mim (7) was simply set to zero for this special case in order
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Fig. 4. Continueq.

to eliminate its dominant effect on the weight adjustmentontour shapes of syllables 4 to 7, whose lexical tonalities
During testing, a constant pause duratienj0 ms) was used are all Tone 3, look like the standard patterns of Tone 2,
whenever a PM occurred. Experimental results are also shoWane 3, Tone 2, and Tone 3, respectively. Actually, these four
in Table V. RMSE’s of 23.7 and 54.5 ms were obtained fayllables form two bisyllabic words. Similarly, in Fig. 5(b),
the closed and the open tests, respectively. Fig. 4(e) showstthe synthesized pitch contour shapes of the last two syllables,
synthesized intersyllable pause durations for the same inpitiose lexical tonalities are all Tone 3, look like the standard
text used previously. In the figure we see that the trajectoripatterns of Tone 2 and Tone 3, respectively. But here these two
of the synthesized pause durations match reasonably well watfilables belong to different words. These results show that the
their original counterparts for most syllables. Many majdiamous Sandhi rule of changing a Tone 3 to a Tone 2 when
breaks were correctly set at proper locations without atilyis followed by a Tone 3 has been correctly implemented
PM. Although a few large mismatch errors occurred, sonteere. By careful listening of both the original and synthesized
of the mismatching long breaks synthesized may still propenbjtch contours of all syllable sequences with 3-3 tone pair
represent alternative breathing breaks. An informal listeniragnd 3-3-3 tone sequence in the data base, we were able to
test (discussed below) confirmed that only very few longelabel the tonalities of all Tone 3 syllables with the actual
breaks were unnaturally set. tones being pronounced, and to calculate the number of tone
Two typical examples of the pitch contour synthesis in thehanges. Table VI lists the experimental results. As shown
open test are shown in Fig. 5(a) and (b), respectively. We saethe table, the rate of correct synthesis was 86% for 3-
in these figures that most synthesized syllable pitch conto®sone pairs and 77.4% for 3-3-3 tone sequences. Through
resemble their original counterparts in both shape and levklirther error analysis, we found that most errors occurred at
It is worth noting that in Fig. 5(a), the synthesized pitclsyllables that can be pronounced as either Tone 2 or Tone



CHEN et al. RNN-BASED PROSODIC INFORMATION SYNTHESIZER 235

=

<

o

B

=

2

‘B

©)

2

2

>

ey

Q

=]

2

&

=

-8

g

S

o

=

g

O

=]

2

E

=

o

<

=

=

Z

=

2

[

E]

o

2

3

o

=3

@_20 I . I L
070 75 80 85 90 95 100 105
5 7 75 2 45 6 7670 73 7372 4 5 372

= 7.2 iz Xry b {
B e B R O e S K0 AR ML L9l
AN N B @ E @ O @ O DL e S 00 E 00 WD NS® O
SNEDS S0 B S ORS00 D=l 03 Q@ e D OS
R 33D e 8= S e =8 R SCR =T ]
— RKR > —R S o ST G B =eiR
o [a 0’3‘ o
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3. So, only very few annoying mispronunciations of Tone frmed by directly concatenating the average pitch contours
were perceived. This confirms that the Sandhi rule for Toraé the corresponding two tones. Specifically, the three tone
3 change was automatically learned and implicitly retainembncatenation rules of’ — 4, 4 — 3’, and4 — 1’ should be

by the RNN prosody synthesizer. We then examined somkanged tal’ —4’, 4 — 3/, and4’ — 1’, respectively. Last, the
other pitch contour modification phonologic rules. The fowsynthesis rules for Tone 5 were examined. The most significant
tone concatenation rules df — 4,4 — 3, 3 — 1/, and4 — 1’ property of Tone 5 pronunciation is the relatively low energy
proposed in [9] were examined. Here, the superscript “level and short duration. By examining the average values
denotes that pitch contour mean or shape should be adjustedfithe synthesized energy levels and syllafital durations
order to connect the two pitch contours more smoothly. Fig.fér all tones, we found that Tone 5 has the lowest energy
shows the average synthesized pitch-contour-pair patternsléarel and the shortesinal duration. These results match our
these four tone-pairs. We note here that the average pittihguistic knowledge. Based on above discussion, we can
contour-pair pattern of each tone-pair was produced throutiterefore conclude that many human FO phonologic rules were
two orthogonal polynomial expansions using the two sets lefarned by the proposed RNN prosody synthesizer.

four average pitch contour parameters of the tone-pair. It canTo examine the characteristics of the prosodic model in
be seen in the figure that all average patterns for these fameater detail, we vector-quantized the outputs of the first part
synthesized pitch-contour pairs match reasonably well witif the RNN prosody synthesizer into eight classes and assigned
those of the actual speech. However, as Fig. 6 shows, theseh class a state, forming an eight-state finite state automaton
four rules are not completely correct and must be modifie(ESA). This FSA operates according to a clock synchronized
This judgement is based on comparing the average pattarth input text words. Table VII lists some FSA statistics,
of each pitch-contour pair in the actual speech with thaicluding the state transition probabilities, the distributions
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Fig. 6. The average patterns of the original (solid lines) and the synthesized
Fig. 5. Two typical synthesized syllable pitch contour sequences.

(b)

J3

0
EES

(dotted lines) pitch-contours of 4 tone-pairs: ()44 (b) 4-3, (c) 3-7, and
(d) 4-7. The patterns shown by the broken lines are formed by directly
concatenating the two average pitch contours of the corresponding tones.

TABLE VII
(a) SraTisTICS FROM THE FSA DeRIVED BY THE FIRST PART oF THE RNN:
STATE TRANSITION PROBABILITIES. (b) STATISTICS FROM THE FSA DERIVED BY
THE FIRST PART OF THE RNN: BEGINNING AND ENDING WORDS OF SENTENTIAL
AND PARAGRAPHIC TEXTS. (C) StaTISTICS FROM THE FSA DERIVED BY
THE FIRST PART OF THERNN: DiSTRIBUTIONS OF WORDS BEFORE AND
AFTERPM. (d) SrATISTICS FROM THE FSA DERIVED BY THE FIRST PART
oF THE RNN: DISTRIBUTIONS OF WORDS WITH DIFFERENT LENGTHS

TABLE VI
(a) TONE-3—CHANGE STATISTICS IN THE SYNTHESIZED PITCH
CONTOURS OF SYLLABLE SEQUENCES WITH3—3 TONE PAIRS.
(b) TONE-3—CHANGE STATISTICS IN THE SYNTHESIZED PITCH
CONTOURS OF SYLLABLE SEQUENCES WITH3-3-3 TONE SEQUENCES

Tone 2-3

Pronour.lced Tone Pa-lr StateQ | Statel | State2 | State3 | Stated | Stated | Statef | State7
Synthesized Tone Pair Tone 2-3 Tone 3-3 State0 | 0.13 | 0.05 | 0.02 | 005 | 014 | 016 | 010 | 036
Condition of the Pause | Intra | Inter { Intra | Inter Statel | 0.06 0.03 0.00 0.03 0.76 0.05 0.02 0.05
. State2 0.07 0.04 0.00 0.01 0.75 0.03 0.06 0.04
Y v
Between the Two Tones \‘\ord Word | Word Vord Srates T 004 000 .04 008 002 507 019 046
Number 330 | 199 | 24 48 Stated | 0.10 | 0.02 [ 003 | 005 | 002 | 047 | 005 | 036
Probability 0.49 | 0.29 | 0.04 | 0.07 State5 | 0.09 | 0.06 | 012 | 0.6 | 0.00 | 021 | 0.4 | 0.21
- T 3 Stateb 0.05 0.14 0.20 0.15 0.00 0.06 0.26 0.15
Pronounced Tone Pair one 3-3 State7 | 0.07 | 0.09 | 009 | 0.8 | 000 [ 013 | 021 | 0.13
Synthesized Tone Pair Tone 2-3 Tone 3-3
Condition of the Pause Intra | Inter Intra | Inter (a)
Between the Two Tones | Word | Word | Word | Word
Numb 5 20 1 53 State0 | Statel | State2 | State3 | State4 | Stateb | State6 | State7
sumber Begin | 007 | 004 | 000 | 000 | 085 | 00f | 0.01 | 0.02
Probability 0.01 { 0.03 | 0.00 | 0.08 End | 003 | 075 | 021 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00
(@ (b)

— State0 | Statel | State2 | Stated | State4 | Stated | State6 | State7
Pronounced Tone Sequence Tone 2-2-3 After PML | 0.09 | 0.06 | 0.03 | 0.63 [ 074 | 002 | 0.01 | 0.02
Synthesized Tone Sequence Tone 2-2-3 Tone 3-2-3 Before PM | 0.14 0.36 0.49 0.01 0.01 0.00 0.00 0.00

Condition of the Pause Intra | Inter Intra | Inter (C)
Between the First two Tones | Word | Word | Word | Word
Number 36 6 4 16 Word Length | StateD | Statel | State2 | State3 | State4 | Stated | Statef | State7
Probability 0.39 | 0.07 | 0.04 | 0.17 1 004 | 009 | 000 | 008 | 0.5 | 0.12 | 0.08 | 044
3 2 - 2 0.05 0.06 0.17 0.14 0.15 0.22 0.17 0.05
Pronounced Tone Sequence Tone 3-2-3 3 031 004 009 007 012 001 033 0.04
Synthesized Tone Sequence Tone 2-2-3 Tone 3-2-3 4 0.70 0.10 0.12 0.03 0.01 0.01 0.02 0.01
Condition of the Pause Intra { Inter Intra | Inter 5 0.83 0.00 0.13 0.03 0.00 0.00 0.00 0.00
Between the First two Tones | Word | Word | Word | Word (d)
Number 1 1 1 28
Probability 0.01 [ 0.01 | 0.0f | 0.30
©) or paragraphs. State 4 is the beginning state of sentences.

From Table VII(d), we find that State 7 is associated with
monosyllabic words. State 0 is associated with polysyllabic

of beginning and ending words in the sentential and thveords with lengths greater than or equal to 3. State 0 is also
paragraphic texts, the distributions of words before and aftessociated with most proper nouns. Some trisyllabic words
PM’s, and the distributions of words of different lengths. Fig. @re associated with State 6. From Fig. 7 [or Table VIli(a)],
depicts the topology of the FSA as only some most significaititcan be found that State 5 and State 7 both have a high
state transitions are drawn. Tables VII(b) and VII(c) showrobability of following State 4, so they appear very often
that State 1 and State 2 are the ending states of sentenmuesr the beginnings of sentences. State 4 follows State 1 and
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TABLE VIII
(a) SraTisTICAL MEANS OF THE THREE PROSODIC PARAMETERS OF
PiTcH MEAN, ENERGY LEVEL, AND FINAL DURATION FOR THE FIRST
SyLLABLES OF WORDS IN EACH STATE . (b) STATISTICAL MEANS OF THE
THREE PrOSODIC PARAMETERS OF PITCH MEAN, ENERGY LEVEL, AND
FINAL DURATION FOR THE LAST SYLLABLES OF WORDS IN EACH STATE

State0 | Statel | State2 | State3 | State4 | Stated | Statef | State7
Pitch Mean(ms) 7.706 9.525 8.716 8.062 6.651 7.421 7.855 8.242
Energy Level(db) 6321 | 60.29 | 59.80 | 6246 | 6648 | 64.43 | 62.55 | 62.64

Final Duration{ms) | 152.0 192.5 156.2 151.5 122.6 141.6 141.0 133.8

@

Stated | Statel | State? | Stated | Stated | Stated [ Statef | State7
Pitch Mean(ms) | B.716 | 9.072 | 9.930 | 8488 | 6.866 | 7.860 | 8.318 | 8316
Energy Level(db) | 61.83 | 59.53 | 58.43 | 61.80 | 67.10 | 63.78 | 61.07 | 62.58
Fig. 7. Topology of the FSA derived from the first part of the proposedFinal Duration(ms) | 206.7 | 230.0 | 2251 | 175.7 | 150.9 | 160.7 | 160.5 | 137.7
RNN prosody synthesizer. (b)

State 2, usually with a PM located between them. Stateafion must have been properly considered by the proposed
sometimes follows State 3 forming an adjectival phrase. Mofgosodic model using only word-level linguistic feature inputs.
interpretations of the FSA may be inducted by observing Lastly, a pitch-synchronous-overlap-add (PSOLA) based
other texts and their corresponding encoded state sequengggdarin TTS system was used for subjective testing of the
as generated by the prosodic model. proposed RNN prosody synthesizer. It was realized in real-
We then examined the relationship between the FSfine on a PC/AT 486 with a 16-b Sound Blaster add-on card.
states and the prosodic phrase structure of Mandarin speaghsed a set of 411 base-syllable waveforms extracted from the
Fig. 4(a) shows the syllable pitch mean trajectory of part oftgaining data set as the basic synthesis units. Statistical model-
paragraphic utterance. By manually marking the intonationgsed text analysis was used to automatically tag the input text
phrase boundaries with “#” and the intermediate phrasg generate all linguistic features needed by the system. We
boundaries with “$,” we find from the figure that manyhote that the POS's of all words were automatically generated
prosodic phrases are present in the speech segment. ggthis system. Three groups of prosodic information including
observing the states of the constituent words of these prosogigh contour, energy level, and three durational parameters
phrases, we find that an intonational phrase always stafisre generated by the proposed RNN prosodic information
with a State 4 word and ends with a State 1 or State sgnthesizer. Informal listening tests using many long input
word. Many intermediate phrases start with State 3 wordgxts not included in the database, conducted with many
State 5 and State 7 words often follow State 4 words at thative Chinese-speakers living in Taiwan confirmed that all
beginnings of intonational phrases. Table Vlli(a) and VIlI(byynthesized speech sounded very natural. Based on those tests,
list, respectively, the statistical means of the three prosodi@ can therefore conclude that the proposed RNN prosody
parameters of pitch mean, energy level, dhl duration synthesizer performed very well and is practically useful for
for the first and last syllables of words of each state. IMandarin TTS systems.
Table Vlli(a) we see that the first syllable of a State 4 word
has, on average, the lowest pitch mean, the highest energy
level, and the shortedinal duration. And the first syllable
of a State 5 word has, on average, a lower pitch mean,A new neural network-based prosodic information synthe-
higher energy level, and shorténal duration. By contrast, sizer for Mandarin TTS has been discussed in this paper.
Table VIlI(b) shows that the last syllables of State 1 and Stateemploys a compact four-layer RNN that simultaneously
2 words have, on average, the highest pitch means, the lowgstherates prosodic information including syllable pitch con-
energy levels, and the longe$ihal durations. Obviously, tour, energy level,initial and final durations, as well as
these properties conform to the acoustic characteristics iofersyllable pause duration. Trained on a large set of sentential
the beginning and ending syllables of intonational phrasemd paragraphic utterances, the RNN prosody synthesizer
Lastly, by comparing Table Vlli(a) and VIli(b), we find learned many human phonologic rules including the well-
that for each state the last syllable of a word always hdsjown Sandhi Tone 3 change rule. Detailed analysis of its
on average, a higher pitch mean, lower energy level, ahitlden layer activities revealed that the well-trained RNN has
longerfinal duration than first syllables of words of the saméhe ability to track phonologic states of the prosodic phrase
state. So, the stress on a word is usually placed on the festucture of the speech being synthesized from input texts.
syllable. So, the effects of high-level linguistic features on prosodic
The above discussion confirms that the FSA is linguisticalipformation generation are well handled by the RNN. Ex-
meaningful. The following two conclusions can therefore bgerimental results showed that most synthesized parameter
drawn. First, the first part of the RNN, which generates ttmequences match very well with their original counterparts.
FSA, is an effective prosodic model for exploring the prosodis PSOLA-based Mandarin TTS system was also developed
phrase structure of Mandarin Chinese. Second, the effectsfaf further evaluating RNN performance. Informal listening
high-level linguistic features on prosodic information genetests involving many native Chinese-speakers confirmed that

V. CONCLUSIONS
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all synthesized speech sounded very natural. So, the propogei B. Horvei, G. Ottesen, and S. Stensby, “Analyzing prosody by means
RNN is a promising prosodic information synthesizer for

Mandarin TTS systems.
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