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An RNN-Based Prosodic Information
Synthesizer for Mandarin Text-to-Speech
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Abstract—A new RNN-based prosodic information synthesizer
for Mandarin Chinese text-to-speech (TTS) is proposed in this
paper. Its four-layer recurrent neural network (RNN) generates
prosodic information such as syllable pitch contours, syllable
energy levels, syllable initial and final durations, as well as inter-
syllable pause durations. The input layer and first hidden layer
operate with a word-synchronized clock to represent current-
word phonologic states within the prosodic structure of text
to be synthesized. The second hidden layer and output layer
operate on a syllable-synchronized clock and use outputs from the
preceding layers, along with additional syllable-level inputs fed
directly to the second hidden layer, to generate desired prosodic
parameters. The RNN was trained on a large set of actual ut-
terances accompanied by associated texts, and can automatically
learn many human-prosody phonologic rules, including the well-
known Sandhi Tone 3 F0-change rule. Experimental results show
that all synthesized prosodic parameter sequences matched quite
well with their original counterparts, and a pitch-synchronous-
overlap-add-based (PSOLA-based) Mandarin TTS system was
also used for testing of our approach. While subjective tests are
difficult to perform and remain to be done in the future, we
have carried out informal listening tests by a significant number
of native Chinese speakers and the results confirmed that all
synthesized speech sounded quite natural.

Index Terms—Mandarin, pitch contour, prosodic information
synthesizer, recurrent neural network, text-to-speech.

I. INTRODUCTION

I N THIS paper, a new data-driven method of prosodic
information synthesis for Mandarin text-to-speech (TTS)

is presented. The basic idea is to use a model to explore
the relationship between the prosodic phrase structure of
Mandarin speech and the linguistic features of the input text for
simulating human’s prosody pronunciation mechanism. The
model is realized by a four-layer recurrent neural network
(RNN). Fig. 1 depicts the block diagram of the RNN. As Fig. 1
shows, the RNN can be functionally divided into two parts.
The first part is taken as a prosodic model to explore the
prosodic phrase structure of the spoken Mandarin language. It
processes word-level linguistic features to track the phonologic
state of the prosodic phrase structure of the utterance to be
synthesized. The second part is the real prosodic information
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Fig. 1. Block diagram of the proposed RNN prosodic information synthe-
sizer.

generator. It processes syllable-level linguistic features with
the help of the outputs of the first part to generate all
prosodic parameters needed by our Mandarin TTS system.
These two parts are tightly coupled and integratedly trained
using a large database to learn automatically to induce human’s
prosody phonologic rules. After well training, the RNN acts
as a synthesizer to generate proper prosodic parameters for
synthesizing natural Mandarin speech.

The main ideas of using this type of RNN to realize the
prosody generation model of human are discussed as follows.
We start from explaining the reasons why the first part of the
RNN, which is a one-hidden-layer simple recurrent network,
can be used as a prosodic model to explore the prosodic
phrase structure of the input text by using only inputs of word-
level linguistic features. First, because words are the smallest
meaningful units of pronunciation, they should also be the
basic building elements of the prosodic phrases of the spoken
Mandarin language. Second, the prosodic model describing
the prosodic phrase structure of a Mandarin utterance can be
regarded as a model to define the relation of its constituent
words; therefore, we can explore from a word sequence the
prosodic phrase structure of the corresponding utterance to be
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synthesized once we know the model. Third, the architecture
of the first part of the RNN is similar to the simple RNN
used in the studies of [1]–[5] in which the grammatical
structure of a word sequence was explored via a simple
task of word class prediction. So it is a dynamic system
suitable for use to model the relations of words in Mandarin
utterances. Based on above discussion, we believe that the
first part of the proposed RNN with inputs of word-level
linguistic features can function as a prosodic model. It is
worth noting that, due to the following two reasons, we did
not use high-level syntactical features as input features of
the prosodic model in this study. First, it is generally not
easy to do automatic syntactic analyses for unlimited texts
of natural Chinese language. Second, the syntactic structure
of a Chinese text is generally not isomorphic to the prosodic
phrase structure of the corresponding Mandarin speech.

The function of the second part of the RNN prosody
synthesizer is explained here in more detail. It is composed
of two layers of neurons: the second hidden layer and the
output layer of the RNN. Both layers have the same simple
recurrent structure as the first part of the RNN to feed back
all their outputs as contextual inputs to themselves. While
the second part operates in the same way as the first, its
functions are different owing to different driving inputs. The
second hidden layer accepts two sets of inputs. One is the
outputs of the first part to account for all the affections
from high-level linguistic features. The other is some syllable-
level linguistic features fed in directly to consider the local
lexical influence. With these inputs, the second hidden layer
functions as a finite state machine to model the fine (local)
structure of the prosodic phrase of the input text at the
current syllable. The output layer accepts the outputs of
the second hidden layer to function as a predictor for the
generation of all desired prosodic parameter sequences. Since
all outputs are fed back as contextual inputs, the predictor is a
dynamic system capable of dealing well with the temporal
correlation of the output prosodic parameters, such as the
declination effect on both the pitch and energy contours of
declarative utterances. Besides, mutual dependencies among
different types of prosodic information can be properly taken
into consideration.

Lastly, the idea to derive a proper training procedure for
the proposed RNN prosody synthesizer is discussed. Usually,
the training procedure of a neural network-based system plays
a key role to make it succeed. In the past, the training of a
prosodic model for Mandarin language was practically difficult
because no well-labeled training databases were available. This
is mainly owing to the lack of clear and explicit definition
of prosodic categories or states which construct the prosodic
phrases. Thus, it is improper to train the two parts of the RNN
separately. Instead, a straight forward training procedure is
adopted in this study. The two parts of the RNN are tightly
coupled and trained together. By directly feeding in linguistic
features to the input layer and setting the prosodic parameters
extracted from the training utterances as the desired output
targets, these two parts can then be trained in an integrated
fashion by the extended backpropagation (EBP) algorithm for
recurrent neural network [6].

There are several advantages of the proposed RNN-based
prosody generation method as compared to rule-based [7]–[10]
and previous neural network-based [11]–[14] methods. First,
the proposed method provides a total solution to the problem
of prosodic information synthesis, with all prosodic parameters
simultaneously generated by the compact RNN; in contrast to
most previous neural network-based methods that dealt with
the F0 synthesis [12]–[14] or the segmental duration synthesis
[11] only. Second, only very simple inputs of word-level
and syllable-level linguistic features are used. No complicated
syntactic analyses are needed to extract high-level linguistic
features such as major and minor phrases [12] and accent
values of syllables [13]. Third, the prosodic phrase structure
of the spoken Mandarin language are properly modeled and
automatically trained from the real speech. There is no need to
explicitly define what is a prosodic event or state in advance. It
is also not necessary to manually detect either major prosodic
breaks or minor prosodic breaks of the training utterances in
the preprocessing stage of the training process. Fourth, all the
prosody synthesis rules are embedded in the weights of the
RNN and can be learned automatically without the help of
any linguistic experts.

The paper is organized as follows. A general background
of the prosody generation in TTS is given in Section II. It is
intended to show the features shared by all languages and also
those unique to Mandarin, from TTS viewpoint. The proposed
method of prosodic information synthesis for Mandarin TTS
is discussed in Section III. The effectiveness of the method is
examined by simulations in Section IV. Some conclusions are
given in the last section.

II. BACKGROUND

Continuous speech contains the actual words spoken as
well as suprasegmental information, such as stress, timing
structure, and fundamental frequency (F0) contour patterns.
This information is generally referred to as the prosody of
the speech, which is affected in turn by the sentence type,
the syntactical structure, the semantics, the emotional state of
the speaker, etc. Without prosody, speech would be flat and
toneless and would sound tedious, unpleasant, or even barely
intelligible. So generating proper prosodic information is the
most important issue in synthesizing natural speech in TTS
systems.

Generic TTS systems need to generate F0 contours, energy
contours, and word durations as well as interword pause dura-
tions. This prosodic information is usually generated according
to linguistic cues extracted from the input text. Different levels
of linguistic cuing, ranging from low-level lexical features,
such as word phonetic structures, to high-level features, such
as syntactical boundaries, can be used. Many methods for
prosodic information synthesis have previously been proposed.
They can be divided into two general approaches: rule-based
and data-driven. In rule-based methods [7], [8], [15]–[26],
input text is first analyzed to extract relevant linguistic cues.
They may include lexical information such as the phonetic
structures and accented word syllables, syntactical structure,
intonation patterns, and declination effects of sentential utter-
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ances, semantic features, etc. Phonologic rules are then used
to generate the required prosodic information. Usually, the
phonologic rules for synthesis are inductively inferred from
observation of a large set of utterances with the help of
linguists. These methods have two disadvantages. First, the
rule-inference process is labor-intensive. Second, manually
exploring the effect of mutual interactions among linguistic
features on different levels is highly complex. As a result,
it is very difficult to collect enough rules without long-term
devotion to the task [7]. On the other hand, data-driven
methods [11]–[14], [27]–[37] generate prosodic information
from models designed to describe the relationships between
linguistic features of input texts and prosodic information
about the utterances to be synthesized, usually with the aid
of statistical models [32]–[34] or neural networks [11]–[14],
[35]–[37]. The models are trained on large sets of real utter-
ances accompanying by associated texts. The training goals
are automatic deduction of phonologic rules from the large
database and implicit memorization of them in the model’s
parameters or the neural network’s weights. During synthesis,
the best combinations of prosodic information are estimated
from among the models according to analysis of the linguistic
features in the given input text. The primary advantage of this
approach is that the phonologic rules can be automatically
established from the training data set in/during the training
process without the help of any linguistic expert.

Although many methods for TTS prosody generation have
previously been proposed for various languages [7]–[9], [18],
[25], [27], [38]–[41], it is still generally difficult to elegantly
invoke high-level linguistic features in exploring the prosodic
phrase structure of a spoken language for prosodic information
generation. The resulting synthesized prosodic parameters
are therefore inadequate for generating natural, fluent and
unrestricted synthetic speeches. This is especially true of F0
synthesis because it is the most important prosodic element
in determining the naturalness of synthetic speech. Recently,
researchers have become aware that the fundamental problem
in TTS system prosodic information synthesis is the lack of an
appropriate prosodic model that describes the prosodic phrase
structure of spoken language [42]–[45]. Although previous
studies [44] have shown that the generally accepted prosodic
phrase structure of a language is known to consist of two
levels, including the intonational phrase and the intermediate
phrase, its relationship to the linguistic features of the associ-
ated text is still not clearly known and needs to be explored
further. Information about the prosodic phrase structure of an
utterance is explicitly carried on the contours of all prosodic
parameters. But, it must also be implicitly embedded in the text
because it can be generated from the input text (by humans).
So, a prosodic model can be generally defined as a mechanism
for describing the relationship between the acoustic features
extracted from the prosodic parameter contours of speech and
the linguistic features extracted from the associated text. Two
basic types of prosodic model can be found. One is designed
to detect the prosodic phrase structure of an utterance by
using some features extracted from the prosodic parameter
contours [19], [45]–[53]. Its purpose is to provide either an
additional score to help speech recognition [45], [50] or target

Fig. 2. Standard patterns of the F0 contours of the first four tones.

information for training TTS prosody synthesizers [19], [48],
[53]. The other model is designed to predict the prosodic
phrase structure embedded in text by using linguistic features
extracted from the text [42]–[44], [54], [55]. Obviously, its
main use in TTS is to help generate prosodic information.

In the past few years, many studies have been published on
deriving prosodic models of spoken language for TTS [19],
[30], [31], [44], [47], [53]. Ostendorf and Veilleux [44] used a
hierarchical stochastic model to automatically predict prosodic
phrasal boundaries in text, achieving promising results in
determining where major and minor prosodic breaks occur in
input text. Sanders and Taylor [47] identified phrasal breaks
in text using a statistical model that described the relationship
between phrase breaks and part-of-speech (POS) trigrams.
Although these two methods are potentially suitable for use
in TTS synthesis, further studies on assigning proper prosodic
parameter patterns to the detected prosodic phrases are still
needed. Mixdorff and Fujisaki [19], [53] studied an approach
based on F0 generation. Their method first locates prosodic
phrases in input texts using a syntactical analysis and then
applies rules for assigning accent and phrase commands to
generate the F0 contour. In [30], an automatic data-driven
approach to prosodic modeling was proposed. It automatically
explores the relationship between syllabic prosodic patterns
and syllable-independent coefficients from a large speech
corpus in order to generate proper syllabic prosodic patterns.
In [31], a method for modeling the contextual effect of dialog
prosody was proposed. It uses linear regression to derive
rules for modifying the sentential F0 contours generated by
conventional methods for individual sentences.

This general problem of lack of an appropriate prosodic
model was encountered in Mandarin TTS prosodic infor-
mation synthesis. Mandarin Chinese is a tonal language.
Each character is pronounced as a syllable. Only about 1300
phonetically distinguishable syllables comprise the set of all
legal combinations of 411 base-syllables and five tones. Each
base-syllable is composed of an optional consonantinitial and
a vowel final. The word, which is the smallest syntactically
meaningful unit, consists of one to several syllables. Be-
cause syllables are the basic pronunciation units in Mandarin
speech, they are also commonly chosen as the basic synthesis
units in Mandarin TTS systems. Accordingly, the prosodic
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Fig. 3. Detailed architecture of the proposed RNN shown in Fig. 1.

information that must be synthesized includes syllable pitch
(or F0) contour, syllable energy contour, syllableinitial and
final durations, as well as intersyllable pause duration. Among
them, syllable pitch contour has the most important effect on
naturalness of synthetic speech. So pitch contour synthesis is
of primary concern in Mandarin TTS. Due to its importance,
we now briefly discuss the properties of syllable pitch contours
in continuous Mandarin speech.

It is known that the tone of a syllable is mainly determined
by its pitch contour. Previous studies [56] have concluded
that the F0 contour of each of the first four tones can be
simply represented by the standard pattern shown in Fig. 2.
As for the fifth tone, pronunciation is usually highly context-
dependent, so that its F0 contour shape is relatively arbitrary.
Nevertheless, it is always pronounced short and light. It would
therefore seem that syllable pitch contours in continuous
speech are pronounced more consistently so as to make their
syntheses in Mandarin TTS systems much simpler. However,
in practice, syllable pitch contours are subject to various
modifications in continuous speech. So, pitch contour synthesis
is not a trivial task. In the past, several methods [9], [10],
[57]–[64] have been proposed to synthesize some or all of
these prosodic parameters. They include rule-based methods
[9], [10], [57]–[59], [63], [64], statistical model-based methods
[60], and MLP-based methods [61], [62]. Although these
methods have made advances, they are still far away from
reaching the goal of generating proper prosodic information
for synthesizing natural-sounding speech reproduction of input
Chinese text. Their main drawback still lies in their inability to
elegantly invoke higher-level linguistic features in exploring

the prosodic phrase structure of Mandarin speech to assist
in prosodic information generation. This motivate us to con-
struct a more sophisticated prosodic model in this study for
developing a high performance Mandarin TTS system.

III. T HE PROPOSEDRNN-BASED

PROSODIC INFORMATION SYNTHESIZER

A multilayer RNN was used to implement the model
of the human prosody pronunciation mechanism. The block
diagram of the RNN has been depicted in Fig. 1. Its detailed
architecture is shown in Fig. 3. As Fig. 3 shows, the RNN is
a four-layer network with one input layer, two hidden layers,
and one output layer. It can be functionally divided into two
parts. The first part consists of a portion of the input layer
and the first hidden layer with all outputs being fed back as
inputs to itself. It may be considered a prosodic model for
exploring the prosodic phrase structure of spoken Mandarin
Chinese using only word-level linguistic features of input texts.
It operates with word-synchronized clock to generate out-
puts representing current-word phonologic states of prosodic
phrase structures. Input features include POS’s POSand
POS , and lengths and , of both
the current word and the following word , and an
indicator, PM , showing the type of punctuation
mark (PM) located after the current word. In this work, 42
POS types [65], [66] and four PM types are used. They are
listed in Tables I and II, respectively. As Table I shows, the
POS set consists of 15 types of verb, eight types of noun, ten
types of adverb, two types of conjunction, and seven other
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TABLE I
42 POS TYPES USED IN THIS STUDY

TABLE II
FOUR GENERAL TYPES OF PUNCTUATION MARK

POS types. It is noted that the POS set used in this study is a
subset of the complete POS set described in [66].

The second part of the RNN consists of the other part of the
input layer, the second hidden layer, and the output layer. It is
the real prosodic parameter generator. It operates on a syllable-
synchronized clock to generate all prosodic parameters that

TABLE III
SIX GENERAL TYPES OF CONSONANT INITIAL

TABLE IV
SEVENTEEN GENERAL TYPES OF VOWEL FINAL

are needed by our Mandarin TTS system, using syllable-level
linguistic features fed directly into the second hidden layer
as additional inputs, along with outputs from the first part.
All outputs of the second hidden layer are fed back as inputs
to itself. The output prosodic parameters are also fed back
as the inputs to the output layer. This arrangement makes
the prosodic parameter generator a dynamic system able to
predict time-varying prosodic parameters of real speech. Note
also that to reduce the system complexity, nodes in both the
output layer and the second hidden layer are partitioned into
three groups according to the properties of the eight output
prosodic parameters. Output nodes in these three groups cor-
respond to the four parameters of pitch contour, one parameter
representing energy level, and three durational parameters,
respectively. Input syllable-level linguistic features used in
this study include the tone , the initial type ,
and the final type of the current syllable ; the
tone and theinitial type of the following
syllable , and an indicator, , showing whether
the current syllable forms a monosyllabic word or is the
first, an intermediate, or the last syllable of a polysyllabic
word. In this study, six broad types ofinitial dependent upon
the manner of consonant articulation and 17 types offinal
classified according to the constituent vowel nucleus and nasal
ending were used. Tables III and IV list theseinitial andfinal
types.

The RNN generated a total of eigt output prosodic param-
eters. They include for the current syllable: four parameters
representing the pitch contour, one parameter representing the
energy level (i.e., maximum log-energy), and two parameters
representing, respectively, theinitial andfinal durations; pre-
ceding the current syllable: one parameter representing the
pause duration. Using four parameters to represent the pitch
contour of a syllable is based on results obtained in other
studies [60], [62], [67], [68]. We now briefly discuss the pitch-
contour parameterization method. As mentioned previously,
there are only five basic tones in Mandarin Chinese. The
tonality of a syllable is characterized mainly by its pitch
contour. Although syllable pitch contours in continuous speech
are subject to various modifications, they are all smooth curves
with shapes for the first four tones roughly matching corre-
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sponding standard tone patterns. We can therefore consider
the pitch contour of each syllable as a pattern represented by
certain parameters. Specifically, the pitch contour of a syllable
is represented by a smooth curve formed through orthonormal
polynomial expansion using coefficients up to the third order.
The zeroth-order coefficient represents the mean of the pitch
contour and the other three coefficients represent its shape.
The basis functions of the orthonormal polynomial expansion
are expressed as [67]

(1)

(2)

(3)

(4)

for , where is the length of the pitch
contour and . These basis functions are, in fact,
discrete Legendre polynomials. The pitch contour, ,

, of the th syllable can thus be approximated by

(5)

for , where

(6)

is the th-order coefficient.
Note that all eight output prosodic parameters are further

normalized in order to reduce the system complexity resulting
from variations in these prosodic parameters caused by lexical
phonetic features. This may make training easier. In this study,
both the energy level and thefinal duration are normalized
for the current syllablefinal type. The initial duration and
the intersyllable pause duration are normalized for the current
syllable initial type. The pitch contour is normalized for the
current syllable tone type.

The RNN prosody synthesizer can be trained using EBP
algorithm [6] on a large set of real-speech utterances. Due to
the fact that it is generally difficult to determine analytically
the number of hidden nodes of a neural network, the numbers
of hidden nodes in both the first and second hidden layers

of the RNN were empirically decided. All hidden nodes use
sigmoid activation functions. The output layer consists of eight
output nodes, all with linear activation functions, to generate
the eight prosodic parameters. Because the three types of
prosodic information have different dynamic ranges, a distor-
tion measure taken as the objective function for minimization
is defined as

(7)

where , , , , ,
and are the outputs of the prosodic information
synthesizer (see Fig. 3); and , , ,

, , and are the corresponding de-
sired target values which are the normalized parameters of

, , , , , and representing,
respectively, the pitch contour, energy level,initial duration,
final duration, and preceding pause duration of theth syllable.
Normalizations of these parameters are defined by

(8)

(9)

(10)

and

and

(11)

where , , and are theinitial type,final type, and
tone type of the th syllable, respectively. Here, and
are the mean and variance of the parameter, and they are
given by

(12)

and

(13)

for the pitch contour for syllables belonging to theth tone
type;

(14)

and

(15)
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for the energy level for syllables belonging to theth final type;

(16)

and

(17)

and 2, for theinitial duration and the preceding pause
duration for syllables belonging to theth initial type; and

(18)

and

(19)

for the final duration for syllables belonging to theth final
type. It is noted that the scaling factor of in (10) and (11)
is used to make certain the three output prosodic parameter
groups have approximately equal contributions to the objective
function of the EBP training algorithm.

With normalization, the variations in these prosodic parame-
ters caused by local phonetic structures of individual Mandarin
syllables can be greatly reduced. This makes training easier.
By feeding-in the linguistic features extracted from the input
text as inputs, and setting the normalized prosodic parameters
extracted from the corresponding training utterances as the
desired output targets, the RNN can be trained to automatically
learn and retain the relationships between the prosodic param-
eter sequences of the training utterances and the linguistic
feature sequences of associated texts. A well-trained RNN
can therefore be used as a prosody synthesizer for generating
proper prosodic parameters for given input texts. Of course,
denormalizations of the outputs of the prosodic information
synthesizer must be performed in the synthesis process.

IV. SIMULATIONS

Performance of the new method of prosodic information
synthesis for Mandarin TTS systems was examined through
simulations. A continuous-speech Mandarin database provided
by the Telecommunication Laboratories, MOTC,1 R.O.C. was
used. The data base consists of four sets of utterances. The
first one contains 112 phonetically balanced short sentential
utterances with lengths less than 13 syllables. The second
set comprises 315 specially designed short utterances with
lengths less than 40 syllables. The third and fourth sets
comprises, respectively, 28 short and 200 long paragraphic
utterances whose texts are all news selected from a large
news corpus to cover a variety of subjects including business
(12.5%), medicine (12%), social events (12%), sports (10.5%),
literature (9%), computers (8%), food and nutrition (8%),

1The Ministry of Transportation and Communications

TABLE V
RMSE’S OF THE FIVE TYPES OFSYNTHESIZED PROSODIC INFORMATION

movies (6.5%), family life (6.5%), tours (6%), politics (2.5%),
traffic and transportation (2.5%), etc. All utterances were
generated by a single male speaker. They were all spoken
naturally at a speed of 3.5 to 4.5 syllables/s. The data base
was divided into two parts: a training set and an open test
set. These two sets consisted of 28 191 and 7051 syllables,
respectively.

All speech signals were digitally recorded using a 20-kHz
sampling rate. They were then divided into 10-ms frames
and manually segmented into silence, unvoiced, and voiced
parts according to observation of acoustic features including
waveforms, energy, zero crossing rates, LPC coefficients,
cepstra and delta-cepstra. The eight prosodic parameters to
be synthesized for each syllable were then extracted from the
downsampled 10-kHz speech signals. They included the four
orthogonally transformed coefficients of pitch contour, maxi-
mal log-energy,initial duration,final duration, and preceding
pause duration. Here, pitch period was detected using the SIFT
algorithm [69] with manual error-correction. The frame length
for pitch detection was 40-ms with a 10-ms frame shift. The
frame length for log-energy analysis was 20-ms with a 10-ms
frame shift. Both cases used rectangular windows.

An automatic tagging algorithm based on the criterion
of long-word-first was then used to segment all the texts
associated with the training utterances in the speech data base
to obtain the word sequences. A Chinese lexicon containing
approximately 80 000 words2 was used in the tagging. Words
in the lexicon consist of one to five syllables. All tagging
errors were manually corrected. The POS’s of all words were
then manually determined. As mentioned before, the set of 42
POS types listed in Table I was used in this study. Finally, all
linguistic features were extracted for use in the system.

The RNN prosody synthesizer was trained using the EBP
algorithm. The numbers of nodes in the first and second hidden
layers were determined empirically and set to be 35 and 30,
respectively. The learning rates for training the two types of
weights connecting to hidden nodes and to output nodes were
initially set to be 0.01 and 0.001, respectively. They were all
linearly decayed to zero at 200 training epochs. The training
process converged approximately after 50 training epochs. It
took about 10 h run on a DEC 3000 workstation.

Table V lists the root mean square errors (RMSE’s) of the
synthesized prosodic parameters. It shows that RMSE’s of 0.84
and 1.06 ms/frame were achieved in pitch contour synthesis for
the closed and the open tests, respectively. A typical example
of pitch mean synthesis for the open test is shown in Fig. 4(a).
It can be seen from the figure that the trajectories of the

2The lexicon was supplied by the Institute of Information Science,
Academia Sinica.
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Fig. 4. Typical example of the original (solid lines) and the synthesized (dotted lines) prosodic parameter sequences of: (a) the pitch mean, (b) energy
level, (c) initial duration, (d)final duration of syllable; and (e) intersyllable pause duration. The text is: “More and more women are concentrating on
career development and delaying fulfillment of their natural childbearing and child-rearing functions. After they have achieved their career goalshowever,
they then find their ovaries have deteriorated. This is creating an urgent demand for viable ova, but ovum donation, unlike sperm donation, can be painful
and dangerous since ova are taken through the abdominal wall, or via ultrasound techniques, and there is always a risk of adverse reaction to anesthesia.”
Note that thex-axis represents the syllable sequence, and the broken line and the numbers on the top of the text show, respectively, the segmentation
of the syllable sequence into a word sequence and the associated state sequence.

synthesized pitch means match quite well with their original
counterparts for most syllables. Through further error analysis,
we found that only few large errors had occurred in the pitch
mean synthesis. Most of them take place at last syllables of
sentences of Tone 3, and result mainly from extraordinary Tone
3 pronunciations which generate extremely large pitch means.
Some other large errors occur at syllables with Tone 5. Because
most of them are caused by alternative but legal Tone 5
pronunciations, they are not serious. In energy level synthesis,
RMSE’s of 3.39 and 4.17 dB were obtained for the closed and
the open tests, respectively. Fig. 4(b) shows the energy-level-
synthesis results for the input text used in Fig. 4(a). Clearly,
the trajectories of the synthesized energy levels also match
quite well with their original counterparts for most syllables.
In initial -duration synthesis, RMSE’s of 17.2 and 18.5 ms

were obtained for the closed and the open tests, respectively.
Fig. 4(c) shows the synthesized syllableinitial durations for
the same input text used previously. In the figure we see
that the trajectories of synthesizedinitial durations also match
very well with their original counterparts for most syllables.
In final-duration synthesis, RMSE’s of 33.3 and 36.7 ms
were obtained for the closed and the open tests, respectively.
Fig. 4(d) shows the synthesized syllablefinal durations for the
same input text used previously. Again we find in the figure
that the trajectories of the synthesizedfinal durations match
very well with their original counterparts for most syllables.
In intersyllable pause duration synthesis, both the training and
the test processes were slightly modified for cases in which a
PM existed. During training, the term
in (7) was simply set to zero for this special case in order
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Fig. 4. (Continued).

to eliminate its dominant effect on the weight adjustment.
During testing, a constant pause duration ( ms) was used
whenever a PM occurred. Experimental results are also shown
in Table V. RMSE’s of 23.7 and 54.5 ms were obtained for
the closed and the open tests, respectively. Fig. 4(e) shows the
synthesized intersyllable pause durations for the same input
text used previously. In the figure we see that the trajectories
of the synthesized pause durations match reasonably well with
their original counterparts for most syllables. Many major
breaks were correctly set at proper locations without any
PM. Although a few large mismatch errors occurred, some
of the mismatching long breaks synthesized may still properly
represent alternative breathing breaks. An informal listening
test (discussed below) confirmed that only very few long
breaks were unnaturally set.

Two typical examples of the pitch contour synthesis in the
open test are shown in Fig. 5(a) and (b), respectively. We see
in these figures that most synthesized syllable pitch contours
resemble their original counterparts in both shape and level.
It is worth noting that in Fig. 5(a), the synthesized pitch

contour shapes of syllables 4 to 7, whose lexical tonalities
are all Tone 3, look like the standard patterns of Tone 2,
Tone 3, Tone 2, and Tone 3, respectively. Actually, these four
syllables form two bisyllabic words. Similarly, in Fig. 5(b),
the synthesized pitch contour shapes of the last two syllables,
whose lexical tonalities are all Tone 3, look like the standard
patterns of Tone 2 and Tone 3, respectively. But here these two
syllables belong to different words. These results show that the
famous Sandhi rule of changing a Tone 3 to a Tone 2 when
it is followed by a Tone 3 has been correctly implemented
here. By careful listening of both the original and synthesized
pitch contours of all syllable sequences with 3-3 tone pair
and 3-3-3 tone sequence in the data base, we were able to
relabel the tonalities of all Tone 3 syllables with the actual
tones being pronounced, and to calculate the number of tone
changes. Table VI lists the experimental results. As shown
in the table, the rate of correct synthesis was 86% for 3-
3 tone pairs and 77.4% for 3-3-3 tone sequences. Through
further error analysis, we found that most errors occurred at
syllables that can be pronounced as either Tone 2 or Tone
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Fig. 4. (Continued).

3. So, only very few annoying mispronunciations of Tone 3
were perceived. This confirms that the Sandhi rule for Tone
3 change was automatically learned and implicitly retained
by the RNN prosody synthesizer. We then examined some
other pitch contour modification phonologic rules. The four
tone concatenation rules of , , and
proposed in [9] were examined. Here, the superscript “”
denotes that pitch contour mean or shape should be adjusted in
order to connect the two pitch contours more smoothly. Fig. 6
shows the average synthesized pitch-contour-pair patterns for
these four tone-pairs. We note here that the average pitch-
contour-pair pattern of each tone-pair was produced through
two orthogonal polynomial expansions using the two sets of
four average pitch contour parameters of the tone-pair. It can
be seen in the figure that all average patterns for these four
synthesized pitch-contour pairs match reasonably well with
those of the actual speech. However, as Fig. 6 shows, these
four rules are not completely correct and must be modified.
This judgement is based on comparing the average pattern
of each pitch-contour pair in the actual speech with that

formed by directly concatenating the average pitch contours
of the corresponding two tones. Specifically, the three tone
concatenation rules of , and should be
changed to , and , respectively. Last, the
synthesis rules for Tone 5 were examined. The most significant
property of Tone 5 pronunciation is the relatively low energy
level and short duration. By examining the average values
of the synthesized energy levels and syllablefinal durations
for all tones, we found that Tone 5 has the lowest energy
level and the shortestfinal duration. These results match our
linguistic knowledge. Based on above discussion, we can
therefore conclude that many human F0 phonologic rules were
learned by the proposed RNN prosody synthesizer.

To examine the characteristics of the prosodic model in
greater detail, we vector-quantized the outputs of the first part
of the RNN prosody synthesizer into eight classes and assigned
each class a state, forming an eight-state finite state automaton
(FSA). This FSA operates according to a clock synchronized
with input text words. Table VII lists some FSA statistics,
including the state transition probabilities, the distributions
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Fig. 5. Two typical synthesized syllable pitch contour sequences.

TABLE VI
(a) TONE-3–CHANGE STATISTICS IN THE SYNTHESIZED PITCH

CONTOURS OFSYLLABLE SEQUENCES WITH 3–3 TONE PAIRS.
(b) TONE-3–CHANGE STATISTICS IN THE SYNTHESIZED PITCH

CONTOURS OFSYLLABLE SEQUENCES WITH3–3–3 TONE SEQUENCES

(a)

(b)

of beginning and ending words in the sentential and the
paragraphic texts, the distributions of words before and after
PM’s, and the distributions of words of different lengths. Fig. 7
depicts the topology of the FSA as only some most significant
state transitions are drawn. Tables VII(b) and VII(c) show
that State 1 and State 2 are the ending states of sentences

(a) (b)

(c) (d)

Fig. 6. The average patterns of the original (solid lines) and the synthesized
(dotted lines) pitch-contours of 4 tone-pairs: (a) 40-4, (b) 4-30, (c) 3-10, and
(d) 4-10. The patterns shown by the broken lines are formed by directly
concatenating the two average pitch contours of the corresponding tones.

TABLE VII
(a) STATISTICS FROM THE FSA DERIVED BY THE FIRST PART OF THE RNN:

STATE TRANSITION PROBABILITIES. (b) STATISTICS FROM THE FSA DERIVED BY

THE FIRST PART OF THE RNN: BEGINNING AND ENDING WORDS OFSENTENTIAL

AND PARAGRAPHIC TEXTS. (c) STATISTICS FROM THE FSA DERIVED BY

THE FIRST PART OF THERNN: DISTRIBUTIONS OF WORDS BEFORE AND

AFTER PM. (d) STATISTICS FROM THE FSA DERIVED BY THE FIRST PART

OF THE RNN: DISTRIBUTIONS OF WORDS WITH DIFFERENT LENGTHS

(a)

(b)

(c)

(d)

or paragraphs. State 4 is the beginning state of sentences.
From Table VII(d), we find that State 7 is associated with
monosyllabic words. State 0 is associated with polysyllabic
words with lengths greater than or equal to 3. State 0 is also
associated with most proper nouns. Some trisyllabic words
are associated with State 6. From Fig. 7 [or Table VII(a)],
it can be found that State 5 and State 7 both have a high
probability of following State 4, so they appear very often
near the beginnings of sentences. State 4 follows State 1 and
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Fig. 7. Topology of the FSA derived from the first part of the proposed
RNN prosody synthesizer.

State 2, usually with a PM located between them. State 7
sometimes follows State 3 forming an adjectival phrase. More
interpretations of the FSA may be inducted by observing
other texts and their corresponding encoded state sequences
as generated by the prosodic model.

We then examined the relationship between the FSA
states and the prosodic phrase structure of Mandarin speech.
Fig. 4(a) shows the syllable pitch mean trajectory of part of a
paragraphic utterance. By manually marking the intonational
phrase boundaries with “#” and the intermediate phrase
boundaries with “$,” we find from the figure that many
prosodic phrases are present in the speech segment. By
observing the states of the constituent words of these prosodic
phrases, we find that an intonational phrase always starts
with a State 4 word and ends with a State 1 or State 2
word. Many intermediate phrases start with State 3 words.
State 5 and State 7 words often follow State 4 words at the
beginnings of intonational phrases. Table VIII(a) and VIII(b)
list, respectively, the statistical means of the three prosodic
parameters of pitch mean, energy level, andfinal duration
for the first and last syllables of words of each state. In
Table VIII(a) we see that the first syllable of a State 4 word
has, on average, the lowest pitch mean, the highest energy
level, and the shortestfinal duration. And the first syllable
of a State 5 word has, on average, a lower pitch mean,
higher energy level, and shorterfinal duration. By contrast,
Table VIII(b) shows that the last syllables of State 1 and State
2 words have, on average, the highest pitch means, the lowest
energy levels, and the longestfinal durations. Obviously,
these properties conform to the acoustic characteristics of
the beginning and ending syllables of intonational phrases.
Lastly, by comparing Table VIII(a) and VIII(b), we find
that for each state the last syllable of a word always has,
on average, a higher pitch mean, lower energy level, and
longerfinal duration than first syllables of words of the same
state. So, the stress on a word is usually placed on the first
syllable.

The above discussion confirms that the FSA is linguistically
meaningful. The following two conclusions can therefore be
drawn. First, the first part of the RNN, which generates the
FSA, is an effective prosodic model for exploring the prosodic
phrase structure of Mandarin Chinese. Second, the effects of
high-level linguistic features on prosodic information gener-

TABLE VIII
(a) STATISTICAL MEANS OF THE THREE PROSODICPARAMETERS OF

PITCH MEAN, ENERGY LEVEL, AND FINAL DURATION FOR THE FIRST

SYLLABLES OF WORDS IN EACH STATE . (b) STATISTICAL MEANS OF THE

THREE PROSODIC PARAMETERS OF PITCH MEAN, ENERGY LEVEL, AND

FINAL DURATION FOR THE LAST SYLLABLES OF WORDS IN EACH STATE

(a)

(b)

ation must have been properly considered by the proposed
prosodic model using only word-level linguistic feature inputs.

Lastly, a pitch-synchronous-overlap-add (PSOLA) based
Mandarin TTS system was used for subjective testing of the
proposed RNN prosody synthesizer. It was realized in real-
time on a PC/AT 486 with a 16-b Sound Blaster add-on card.
It used a set of 411 base-syllable waveforms extracted from the
training data set as the basic synthesis units. Statistical model-
based text analysis was used to automatically tag the input text
to generate all linguistic features needed by the system. We
note that the POS’s of all words were automatically generated
by this system. Three groups of prosodic information including
pitch contour, energy level, and three durational parameters
were generated by the proposed RNN prosodic information
synthesizer. Informal listening tests using many long input
texts not included in the database, conducted with many
native Chinese-speakers living in Taiwan confirmed that all
synthesized speech sounded very natural. Based on those tests,
we can therefore conclude that the proposed RNN prosody
synthesizer performed very well and is practically useful for
Mandarin TTS systems.

V. CONCLUSIONS

A new neural network-based prosodic information synthe-
sizer for Mandarin TTS has been discussed in this paper.
It employs a compact four-layer RNN that simultaneously
generates prosodic information including syllable pitch con-
tour, energy level,initial and final durations, as well as
intersyllable pause duration. Trained on a large set of sentential
and paragraphic utterances, the RNN prosody synthesizer
learned many human phonologic rules including the well-
known Sandhi Tone 3 change rule. Detailed analysis of its
hidden layer activities revealed that the well-trained RNN has
the ability to track phonologic states of the prosodic phrase
structure of the speech being synthesized from input texts.
So, the effects of high-level linguistic features on prosodic
information generation are well handled by the RNN. Ex-
perimental results showed that most synthesized parameter
sequences match very well with their original counterparts.
A PSOLA-based Mandarin TTS system was also developed
for further evaluating RNN performance. Informal listening
tests involving many native Chinese-speakers confirmed that
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all synthesized speech sounded very natural. So, the proposed
RNN is a promising prosodic information synthesizer for
Mandarin TTS systems.
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