
Pergamon 

~nr. J. Solids S~rucfurrs Vol. 35, No. 13. pp. 1395-1410, 1998 
0 1998 Elsevier Science Ltd 

PII : SOO20-7683(97)00113-3 

All rights reserved. Printed in Great Brilain 
002s7683/98 519.00 + .OO 

EVALUATION OF BUCKLING AND FIRST-PLY 
FAILURE PROBABILITIES OF COMPOSITE 

LAMINATES 

S. C. LIN 
National Yunlin Polytechnic Institute, Yunlin 632, Taiwan, Republic of China 

T. Y. KAM* and K. H. CHU 
Department of Mechanical Engineering, National Chiao Tung University, 1001 Ta Hsueh Rd, 

Hsin Chu 30050, Taiwan, Republic of China 
e-mail:tykam@cc.nctu.edu.tw 

(Receioed 29 September I996 : in renised form 10 April 1997) 

Abstract-A procedure for failure probability evaluation of composite laminates subjected to in- 
plane loads is proposed. The material properties, fiber angles and layer thicknesses of the laminates 
are treated as random variables in the reliability analysis. The statistics of first-ply failure loads and 
buckling strengths of the laminates are determined via the stochastic finite element method. The 
failure probabilities of the laminates which are susceptible to buckling and first-ply failure are 
computed using the statistics obtained in the stochastic finite element analysis. The feasibility and 
accuracy of the present approach are validated using the results obtained via the Monte-Carlo 
method. A number of examples of reliability analysis of composite laminates subject to in-plane 
loads are given to illustrate the applications of the procedure. 0 1998 Elsevier Science Ltd. 

I. INTRODUCTION 

Laminated composite materials have become an important engineering material for the 
construction of automobile, mechanical, space and marine structures in the past decade. 
The use of laminated composite materials in designing these structures has resulted in a 
significant increase in payload, weight reduction, speed, maneuverability and durability. In 
pursuing these achievements, the reliability design of laminated composite structures has 
thus become an important subject of research. A number of researchers have studied the 
failure probability of composite laminates subjected to in-plane loads (Cederbaum et al., 
1990 ; Sun and Yamada, 1978). Cassenti (1984) investigated the failure probability and 
probabilistic location of failure in composite beams based on the weakest-link hypothesis. 
Kam and his associates (1992, 1993) and Engelstad and Reddy (1992) studied the reliability 
of linear or nonlinear laminated composite plates subjected to transverse loads. In the 
previous reliability analysis of composite laminates, only one failure mode, e.g. first-ply 
failure or ultimate fracture, was considered. In this paper, a procedure is developed for 
reliability analysis of laminated composite plates with random material properties and 
uncertain stacking sequences subject to in-plane loads. Two failure modes, namely, buckling ; 
and first-ply failure are considered in the reliability analysis. The stochastic finite element 
method is used to obtain the statistics of buckling strength and first-ply failure load required 
for reliability analysis. The reliability assessment of the laminated composite plates is, 
achieved using the strength statistics and the probability theories. The feasibility and: 
applications of the present procedure are demonstrated by means of examples of reliability 
analysis of laminates subject to in-plane loads. Results obtained from the Monte-Carlo 
method are used to validate the accuracy of the present procedure. 

*Author to whom correspondence should be addressed. 
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2. UNCERTAINTIES IN COMPOSITE LAMINATES 

A composite laminate is a stack of layers of fiber-reinforced laminae. The fiber- 
reinforced laminae are made of fibers and matrix, which are of two different materials. The 
way in which the fibers and matrix materials are assembled to make a lamina, as well as 
the layup and curing of laminae are complicated processes and may involve a lot of 
uncertainty. Therefore, the material properties of a composite laminate are random in 
nature. In the following stochastic finite element analysis, the elastic moduli (E,, E,, v,~, 
G,*, G,,, G2J of the material are treated as independent random variables, and their statistics 
are used to predict the mechanical behavior of composite laminates. Furthermore, fiber 
orientations and thicknesses of laminae may fluctuate in the vicinity of the prescribed 
values, depending on the manufacturing process. It is, therefore, necessary and desirable to 
investigate the effects of the uncertain stacking sequence on the reliability of composite 
laminates. Herein, the fiber orientation, 0, and the thickness t, of each layer are also 
considered to be random. The uncertainties of the stacking sequence can be expressed in 
the following forms (Nakagiri et al., 1986) : 

0j = Oi(l +COi) (la) 

ti= t;(l+qJ i= 1,2,...,N (lb) 

where oi and vi stand for random variables for Bi and t,, respectively ; 8, and & are the mean 
values of the variables Bi and t,, respectively ; N is the number of layers. It is noted that 
uncertain layer thickness can cause uncertainty in the z-coordinates of the layer boundary 
and centroid. 

Fromnowon,ai(i= 1,2,... ,2N+ 6) will be used to denote the basic random variables 
in which cl; (i= 1, 2,... , IV) denote the fiber orientations, cli (i = N+ 1, . . ,2N) the layer 
thicknesses, and ai (i = 2N+ I, . . ,2N+ 6) the material properties E,, E2, v,~, G,2, G,, and 
GZ3, respectively. The afore-mentioned uncertainties in mechanical properties and stacking 
sequence of composite laminae can cause variations in the elements of the constitutive 
matrix of the laminate. 

3. STOCHASTIC FINITE ELEMENT ANALYSIS 

The present stochastic finite element analysis of laminated composite plates consisting 
of random parameters is based on the first-order shear deformation theory (Mindlin, 1951) 
and the mean-centered second-order perturbation technique. Spatial variability is not 
considered in the stochastic finite element formulation. The shear deformable finite element 
developed by Kam and Chang (1992a, 1992b) is used in the finite element analysis. The 
element can be applied to the analyses of both thin and thick plates, and it contains five 
degrees-of-freedom (three displacements and two slopes, i.e. shear rotations) per node. In 
evaluating the terms of element stiffness matrix, a quadratic element of the serendipity 
family and the reduced integration are sued. The loaddisplacement relation of a laminated 
composite plate can be expressed as 

KD=P (2) 

where K is the structural stiffness matrix, D the vector of nodal displacements, and P the 
vector of nodal forces. Detailed derivation of the stochastic finite element method has been 
reported in the literature (e.g. Kam and Lin, 1992). A brief review of the method is given 
as follows. 

Based on the mean-centered second-order perturbation technique, the stiffness matrix, 
K, is expanded in terms of the random variables cli (i = 1, 2, . . . ,2N+ 6), which represent 
structural uncertainties existing in the plate, as 
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where 6ai = ai- ai with bi denoting the mean value of the random variable ai ; A4 = 2N+ 6 ; 
K(O) is the zeroth-order structural stiffness matrix, which is identical to the deterministic 
structural matrix ; Kj’) is the first-order structural stiffness matrix with respect to random 
variables ai ; and K:$’ is the second-order structural stiffness matrix with respect to random 
variables ai and a? The nodal displacements are also influenced by the structural uncer- 
tainties and thus the displacement vector possesses a similar expression : 

D = D(O) + $J D:;‘&i+ i ,$ ,$ D$’ Ga,dcl,. 
i= 1 I I, I 

(4) 

4. FIRST-PLY FAILURE LOAD 

A composite laminate is assumed to fail when any ply in the laminate fails. Failure of 
the laminate is determined from first-ply failure analysis in which the Tsai-Wu criterion is 
adopted. If LP is defined as the strength ratio, Tsai-Wu criterion (Tsai, 1980) expressed in 
tensor form can be written as 

Jet FijCiOj + Apl;;~i - 1 = 0 (5) 

where Fijy Fi are functions of material strengths and Gi are stresses in material directions. It 
is noted that failure of the laminate occurs when the strength ratio of any ply, rZ,, is less 
than or equal to the applied load. Again the mean-centered second-order perturbation 
technique and the stochastic finite element method can be used to find the statistics of 
strength ratio from eqn (5). The mean and variance of the strength ratio are expressed as 

and 

(7) 

The zeroth, first, and second-order strength ratios in the above equations can be determined 
from the truncated Taylor series form of eqn (5) following the same procedure as described 
in the previous section. It is noted that the layer that possesses the largest failure probability 
is used to determine the statistics of the first-ply failure load of the laminate in the above 
analysis. 

5. BUCKLING STRENGTH 

The deterministic approach to evaluate the buckling load of a composite laminate can 
be found in the literature (Kam and Chang, 1992b). Herein, the effect of initial imperfections 
is not considered in the buckling analysis. The buckling load of a laminate is determined 
by solving the following eigenvalue problem : 

[K+&K$D = 0 (8) 

where & is load multiplier and K, is the geometrical stiffness matrix of the laminate subject 
to edge loads of unit magnitude. The smallest value of the load multiplier is defined as the 
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buckling strength of the laminate. The statistics of buckling strength can be determined 
from the above equation via the mean-centered second-order perturbation technique and 
the stochastic finite element method. The mean and variance of buckling strength are 
expressed as 

and 

6. RELIABILITY ANALYSIS 

The reliability assessment of a composite structure, in general, requires information 
on the probability distribution and not just on the statistical moments of the strength of 
the structure. In the above stochastic finite element analysis of composite laminates, 
however, only statistical moments of strength ratio and buckling load can be determined 
while the types of probability distributions of the above strength variables are indeterminate. 
Therefore, it is worth studying the effects of various probability distributions on laminate 
reliability before any attempt to choose probability distribution types for the strength 
variables is made. LetyiP andfn,(v) be the probability density functions of strength ratio 
and buckling load, respectively. For the deterministic applied load, PC, the failure prob- 
abilities of the laminate subject to either first-ply failure or buckling are determined from 
the following equations : 

First-ply failure 

Pf = F,f,,(u) du. 
s 0 

(11) 

buckling failure 

(12) 

In the following analysis, three types of probability distributions, namely, normal, log- 
normal and Weibull distributions will be adopted in eqns (11) and (12) to evaluate the 
failure probabilities of the laminates. 

In case the two failure modes are dependent, the correlation between buckling strength 
and first-ply failure load can be estimated from the covariance of & and & : 

(13) 

where cov[ .] denotes covariance. It is noted that if the basic random variables CI, are 
independent, cov[a,, Ocj] = 0 when i # j and cov[c(,, a,] becomes the variance of U, when i = j. 
In the above equation both & and & can be determined in the previous sections. The 
coefficient of correlation for & and &, is thus obtained as 

(14) 

where A denotes standard deviation. Herein, both 1, and & are assumed to be lognormal 
variates. The joint probability density function of &, and & is written as 
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fx,,Y(X,Y) = l 
2xA,Ay,/~ 
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--24$) F)+ ey}];- (15) 

where X = In &, and Y = In &. Define the probabilities of the following failure events as 

and 

P[C,] = P[laminate fails due to first-ply failure] = 
s 

0pcX,(z4 du 

s 

p, 
P[C,] = P[laminate fails due to buckling] = J&4 du. 

0 

(16a) 

(16b) 

The reliability of the laminate subject to both first-ply failure and buckling is thus expressed 
as 

P, = 1 - Pf = 1 - {P[C,] + P[C,] - P[C, n CJ} (17) 

where P, is reliability ; Pf is failure probability. The joint probability in eqn (17) is expressed 
as 

with 

x= 
lnP, - E[ln A,] 

A Inl, 

lnP, - E[ln A,] 
Y= A In& 

The probability given by eqn (18) can be evaluated using 
mathematical package (1989). 

(18b) 

the BNRDF routine of IMSL 

7. EXPERIMENTAL INVESTIGATION 

The probability distribution of laminate buckling strength was studied experimentally. 
A number of Gr/Ep [O”/90”/O”/90”]2s square laminates of size 10 x 10 cm were subjected to 
axial buckling test using a lo-ton Instron testing machine. The top and bottom edges of 
the laminates were clamped during test. The test procedure has been reported in the 
literature (Kam and Chu, 1995). A typical load-stroke relation of the laminate is shown in 
Fig. 1. The test results were fitted by normal, Weibull or lognormal distributions as shown 
in Figs 24. It is noted that lognormal distribution yields the best fit of the test data. 
Therefore, it is reasonable to assume lognormal distribution for buckling load in reliability 
analysis of laminates. 

8. RESULTS AND DISCUSSION 

The afore-mentioned stochastic finite element method (SFEM) and the reliability 
evaluation technique are used to study the reliability of the angle-ply laminate in Fig. 5. 
The statistics of the random parameters used in the analysis are listed in Table 1. The 
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Fig. 1. Load-stroke relation of laminate subject to buckling test. 
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buckling load=12.7 KN 

2.0 

I ‘ test data 1 

1 2 5 10 20 30 40 50 60 70 80 90 95 98 99 

Probability(%) 
Fig. 2. Buckling test data fitted by normal distribution. 
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Buckling load In(P) 
Fig. 3. Buckling test data fitted by Weibull distribution. 

10 
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Probability (%) 
Fig. 4. Buckling test data fitted by lognormal distribution. 

laminate is subjected to uniform compressive edge load of 57 lb in-’ in X-direction. The 
mean first-ply failure or buckling loads of the laminate of constant mean thickness witb 
different layup patterns are shown in Fig. 6. It is noted that the number of ply groups has 
a more significant effect on the mean buckling load than the mean first-ply failure load off 
the laminate, and the first-ply failure load is much higher than the buckling load for fiber 
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Fig. 5. Geometry and boundary conditions of laminate 

Table 1. Statistics of material properties 

Random Expected 
variable value 

Standard 
deviation 

Material 
strength 

Expected 
value 

19.2 x 10m6 psi 
1.56 x 10m6 psi 
0.82 x 10d6 psi 
0.82 x 10e6 psi 
0.49 x 10e6 psi 

0.24 
0.03 in 

0.96 x 10m6 psi 
0.78 x IO-’ psi 
0.41 x 10e5 psi 
0.41 x 10e5 psi 

0.245 x IO-’ psi 
0.012 

0.003 in 
1’ or 3” 

& 219.5x IO-3 
xc 246.0 x IO- ’ 
yr 6.350 x 10. ’ 
yc 6.350x 10-l 
R 9.800 x 10-l 
s 12.60 x lo-’ 
T 9.800x lo-’ 

- 

* Subscripts T and C denote tension and compression, respectively ; Sis in-plane shear strength ; R, Tare transverse 
shear strengths. 

8000 

- : first-ply fiilure load 
.......... : buckling strength 

?? : [-e/e] 

Ply Angle 8 (deg.) 
Fig. 6. Expected values of buckling strength and first-ply failure load for laminates of constant 

thicknesses with different fiber angles and numbers of layers. 



Buckling and first-ply probabilities 

&ii; 

o,14 1 ,_.,._,_,.._.._.__.. ~ ___.._....,.._.___. hi: __................ o . . . . . . . . . . . . . . . . . . . ti . . . . 

0.121 

0.10 

0.08 

0.06 i 

Ply Angle 0 (deg.) 
Fig. 7. Coefficients of variation of different types of strength vs fiber angle of a two-layered [-O/O] 

laminate with random layer thicknesses. 
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MCM SFEM 

buckling sire@ Cl .__........... 

0.08 - tit-p~f5hn-e load * - 

g .I 
*% z 0.06 - 

0 20 40 60 80 

Ply Angle 8 (deg.) 
Fig. 8. Coefficients of variation of different types of strength vs fiber angle of a two-layered [-O/O] 

laminate with random material properties. 

angle 6, at less than about 40”. Irrespective of the number of ply groups, the primary failure 
mode of the laminate is buckling for 8 < 40” if a deterministic approach is adopted. The 
present SFEM and Monte-Carlo method (MCM) are used to study the coefficient of 
variation of laminate strength. Figures 7 and 8 show the coefhcients of variation for the 
buckling and first-ply failure load of a [ -tl/fl] laminate composed of different random 
parameters. It is noted that the results obtained by the present SFEM closely match those 
obtained by the MCM in which over 1000 data have been generated for each case. The 
randomness of layer thickness has greater effects on the variation of laminate buckling 
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tirst-ply 
E&re load 

0.0 
0 500 1000 1500 2000 2500 3t 

Magnitude of Edge Load (lb/in) 
Fig. 9. Failure probabilities of [ - 20”/20”/ - 20”/20”] laminate with random material properties of 

different probability distribution types (C.O.V. is 10%). 

strength than that of first-ply failure load, as shown in Fig. 7. When the laminate is 
composed of random materials, a fiber angle of around 45” may yield the largest variation 
for buckling load and the smallest for first-ply failure load as shown in Fig. 8. 

Next, consider the effects of the probability distribution types of strength ratio or 
buckling load on failure probability of composite laminates. Herein, the two failure modes, 
i.e. buckling and first-ply failure are assumed to be independent. The expected fiber angle 
is set as either 8 = 20” or 8 = 60” for the [ - ~/6/-~/6] laminate. The statistics of the 
random variables listed in Table 1 are again used in the reliability analysis. The Monte- 
Carlo method is first used to simulate the failure probabilities of the laminates composed 
of random material properties, layer thickness or fiber angles and subjected to an edge load 
of different magnitudes. The random variables are assumed to be of normal, lognormal or 
Weibull distributions. Random number generators, RNMVN for normal or lognormal 
variates and RNWIB for Weibull variates in IMSL mathematical package (1989), are 
adopted in the Monte-Carlo simulation of the laminates. Over 1000 sets of simulation are 
generated for normal or lognormal variates and 4000 for Weibull variates. An independence 
check is performed for simulation involved with Weibull variates. The failure probabilities 
of the laminates are also evaluated via the stochastic finite element method on the basis of 
either eqn (11) or eqn (12) in which probability density functions of the strength ratio or 
buckling load are assumed to be normal, lognormal or Weibull distributions. The failure 
probabilities obtained via the above two approaches are shown in Figs 9-l 5 for comparison. 
Figures 9 and 10 show the failure probabilities of the [ - 20”/20”/-20”/20”] laminate 
with random material properties of different probability distributions and coefficients of 
variation (C.O.V.). It is noted that the failure probabilities obtained via the stochastic finite 
element method closely match those via the Monte-Carlo method. The big gap between the 
two failure probability curves in Figs 9 or 10 indicates that buckling is the major failure 
mode of the laminate. For each failure mode, the clustering of the failure probability curves 
predicted using different probability distribution types for the random material properties, 
strength ratio or buckling strength indicates that the effects of the types of probability 
distributions on the failure probabilities of the laminate are small. When comparing the 
curves in Fig.9 with those in Fig. 10, it is noted that the increase in coefficients of variation 
of material properties reduces the slopes of the failure probability curves. Similar phenom- 
enon can also be observed for the laminate composed of random layer thicknesses or fiber 
angles as shown in Figs 11 and 12. Figures 13-15 show the failure probabilities of the 
[ - 60”/60”/ - 60”/60”] laminate composed of various random parameters. Again, the failure 
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0 500 1000 1500 2000 2500 31 

Magnitude of Edge Load (lb/in) 
Fig. 10. Failure probabilities of [ - 20”/20”/ - 20”/20”] laminate with random material properties of 

different probability distribution types (C.O.V. is 20%). 

0.8 

0.0 
0 500 1000 1500 2000 2500 3000 

Mangitude of Edge Load (lb/in) 
Fig. 11. Failure probabilities of [ - 20”/200/ - 20”/20”] laminate with random layer thicknesses of 

different probability distribution types (C.O.V. is 10%). 

probabilities predicted by MCM closely match those predicted by the SFEM and the 
probability distribution types of the basic random parameters, strength ratio or buckling 
load have small effects on the failure probabilities of the laminate. It is also noted that in 
contrast to Figs 9, 11 and 12 the gaps between the buckling and first-ply failure probability 
curves in Figs 13 and 15 are small and the curves of different failure modes in Fig. 14 even 
cross over each other. This implies that both buckling and first-ply failure modes are 
important for the laminates. The shapes of the curves also indicate that the variation of 
buckling load is much larger than that of the first-ply failure load. Therefore, when con- 
sidering layer thicknesses as random variables (see Fig. 14), buckling dominates the failure 
of the laminate for small load, but as load increases first-ply failure becomes more dominant. 
In conclusion, the results presented in Figs 9-15 show that among the random parameters 
the randomness of layer thickness has the greatest effect on the failure probability of the 
angle ply laminates, probability distribution types of basic random parameters and laminate 
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500 1000 1500 2000 2500 3( 

Magnitude of Edge Load (lb/in) 
Fig. 12. Failure probabilities of [ - 20”/20”/ - 20”/20”] laminate with random fiber angles of different 

probability distribution types (standard deviation is 3”). 

- : Nom1 

- -- : Weibdl 

0 50 100 150 200 250 300 350 400 450 5 10 

Magnitude of Edge Load (lb/in) 
Fig. 13. Failure probabilities of [ - 60”/60”/ - 60”/60”] laminate with random material properties of 

different probability distribution types (C.O.V. is 10%). 

strengths have small effects on the failure probability of the laminates, and for small fiber 
angle buckling dominates the failure of the laminates. 

Finally, consider the reliability of angle-ply laminates with same thickness, but com- 
posed of different numbers of layer groups. The laminates are subjected to a uniform 
compressive edge load of 57 lb in-’ in X-direction. The reliabilities of the laminates with 
various random parameters considering either single or multiple failure modes are shown 
in Figs 16-19. Figures 1618 show the reliabilities of the laminates considering either 
buckling or first-ply failure. Figure 19 shows the reliabilities of the laminates with various 
random parameters considering both buckling and first-ply failure. It is noted that buckling 
dominates the reliability of the laminates irrespective of the type of random parameters 
and number of layer groups considered in the analysis because the variation of buckling 
strength is larger than that of first-ply failure load and the applied load is small. In general, 
the increase in the number of layer groups will decrease the buckling failure probability, 
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Magnitude of Edge Load (lb/in) 
Fig. 14. Failure probabilities of [-60”/60”/- 60”/60”] laminate with random layer thicknesses of 

different probability distribution types (C.O.V. is 10%). 

0 50 100 150 200 250 300 350 400 450 5 IO 

Magnitude of Edge Load (lb/in) 
Fig. 15. Failure probabilities of [ - 60”/60”/ - 60”/60”] laminate with random fiber angles of different 

probability distribution types (standard deviation is 3”). 

but, on the other hand, increase the first-ply failure probability of the laminate. Figure 20 
shows the correlation between buckling and first-ply failure loads of a [-0/0] laminate. 
The results obtained by the SFEM closely match those obtained by the MCM. Buckling 
load is perfectly correlated with first-ply failure load when only random layer thicknesses 
are considered in the analysis. Buckling load may be negatively correlated with first-ply 
failure load if fiber angles or material properties are random and mean fiber angles are 
large (e.g. 0 > 40” for random material properties). 

9. CONCLUSIONS 

A procedure for reliability analysis of composite laminates with single or multiple 
failure modes has been developed on the basis of the stochastic finite element method. The 
accuracy of the stochastic finite element method in predicting statistics of buckling and 
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0.6 
,x 
:; 
% % 
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0.4 ......-. : first-ply f&lure 
- : buckling fiilure 

Cl : [-WI] 
0 : [-e/e/-e/e] 

L\ : [-mx-e/e/-o/e] 

Ply Angle 8 (deg.) 
Fig. 16. Reliabilities of laminates with random fiber angles considering either buckling or first-ply 

failure. 
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0.6- 
3 
3 
.s 
z 
d o.4- - : first-ply &lure 

. - : buckling ihre 

0.2 I3 

i 

: [-e/e] 

0 : I-em/-e/e] 

A : [-e/e/-e/e/-e/e] 

0.0 

Ply Angle 0 (deg.) 
Fig. 17. Reliabilities of laminates with random layer thicknesses considering either buckling or first- 

ply failure. 
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A : [-8/&~/t&~/~] 

0 10 20 30 40 50 60 70 80 

Ply Angle 8 (deg.) 
Fig. 18. Reliabilities of laminates with random material properties considering either buckling or 

first-ply failure. 

0.6- 
g 
L$ 

z 0.4- 
______ : random materials 
- : random thicknesses 

I 
: dompl)_&s 

0.2 0 : [-we] 
0 : [-e/e/-we] 
b : [-e/e/-e/w-e/e] 

0.0 
0 10 20 30 40 50 60 70 80 ' 

Ply Angle 0 (deg.) 
Fig. 19. Reliabilities of laminates with various random parameters considering both buckling and 

first-ply failure. 
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‘. . . . . . d” 
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Fig. 20. Correlation between buckling strength and first-ply failure load of two-layered [O/-O] 

laminate with different fiber angles and various types of uncertainties, 

first-ply failure loads has been verified by the Monte-Carlo method. The applications of 
the proposed procedure have been demonstrated by means of the reliability predictions of 
angle-ply laminates with different types of failure modes subject to in-plane edge loads. It 
has been shown that the variations of ply thicknesses have the greatest effects on the 
variations of laminate strengths as well as laminate reliability. Thus, tight control on ply 
thickness variation is essential for achieving high reliability. Other important random 
variables, such as applied loads, initial imperfections and lamina strengths, which were not 
included in the present method should be considered in future studies. 

Acknowledgement-This research was supported by the National Science Council of the Republic of China under 
Grant no. NSC 85-2212-E009-019. Their support is gratefully acknowledged. 

REFERENCES 

Cassenti, B. N. (1984) Probabilistic static failure of composite material. AIAA Journal22(1), 103-l IO. 
Cederbaum, G., Elishakoff, I. and Librescu, L. (1990) Reliability of laminated plates via the first-order second 

moment method. Journal of Composite Structures 15, 161-161. 
Engelstad, S. P. and Reddy, J. N. (1992) Probabilistic nonlinear finite element analysis of composite structures. 

AIAA Journal 31(2), 362-369. 
IMSL User’s Manual (1989) IMSL Incorp., Houston, TX. 
Kam, T. Y. and Chu, K. H. (1995) Buckling of laminated composite plates subject to nonuniform in-plane edge 

loads. ASME, Materials and Design Technology 71,207-216. 
Kam, T. Y. and Lin, S. C. (1992) Reliability analysis of laminated composite plates. Proceedings o/the NSC, Part 

A, Vol. 16, pp. 163-171. 
Kam, T. Y., Lin, S. C. and Hsiao, K. M. (1993) Reliability analysis of nonlinear laminated composite plate 

structures. Composite Structures 25, 5033510. 
Kam, T. Y. and Chang, R. R. (1992a) Finite element analysis of shear deformable laminated composite plates. 

ASME Journal of Energy Resources Technology 115,4146. 
Kam, T. Y. and Chang, R. R. (1992b) Buckling analysis of shear deformable laminated composite plates. 

Composite Structures 22, 223-234. 
Mindlin, R. D. (1951) Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. Journal 

of Applied Mechanics 18, 3 l-38. 
Nakagiri, S., Tani, S. and Takabatake, H. (1986) Stochastic finite element analysis of uncertain in-ply stresses in 

fiber reinforce plastic laminated plate. ZMeChE 3438. 
Sun, C. T. and Yamada, S. E. (1978) Strength distribution of a unidirectional fiber composite. Journal of Composite 

Materials 12, 1699176. 
Tsai, S. W. (1980) Introduction to Composite Materials. Technomic Publishing. 


