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ABSTRACT

Expressions for ε-entropy rate, ε-mutual information rate and ε-
divergence rate are introduced. These quantities, which consist of the
quantiles of the asymptotic information spectra, generalize the inf/sup-
entropy/information/divergence rates of Han and Verdú. The algebraic
properties of these information measures are rigorously analyzed, and
examples illustrating their use in the computation of the e-capacity are
presented. In Part II of this work, these measures are employed to
prove general source coding theorems for block codes, and the general
formula of the Neyman-Pearson hypothesis testing type-II error expo-
nent subject to upper bounds on the type-I error probability.

I. INTRODUCTION AND MOTIVATION

Entropy, divergence and mutual information are
without a doubt the most important information theo-
retic quantities. They constitute the fundamental mea-
sures upon which information theory is founded.
Given a discrete random variable X with distribution
Px, its entropy is defined by [7]

HQO i - S PxQc) \og2PxQc) = EP[-
X "

H(X) is a measure of the average amount of uncer-
tainty in X. The divergence, on the other hand, mea-
sures the relative distance between the distributions
of two random variables X and X that are defined on
the same alphabet :

As for the mutual information I(X;Y) between ran-
dom variables X and Y, it represents the average
amount of information that Y contains about X. It is
defined as the divergence between the joint distribu-
tion PXY and the product distribution PxPy.

PXy(X,Y)
IQC-Y) = D(PXY \PxPy) = EpJog2XY

More generally, consider an input process X
defined by a sequence of finite dimensional distribu-
tions [11]: xkxn=QC*\...,X(?)Tn = i • Let Y={Y"=
(^\ ..., ^ n ) ) } ^ = 1 be the corresponding output pro-
cess induced by X via the channel W={W"=(Wf \ ...,
W%^)}™= j , which is an arbitrary sequence of «-dimen-
sional conditional distributions from X" to f1, where
X and Y are the input and output alphabets respec-
tively. The entropy rate for the source X" is defined
by[2], [7]

*Correspondence addressee
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H(X) i Blim±E[ - log Pxn(Xn)],

assuming the limit exists. Similarly the expressions
for the divergence and mutual information rates are
given by

Í ) â lim l£Dog

and

x* (Yn)

respectively.
The above quantities have an operational sig-

nificance established via Shannon's coding theorems
when the stochastic systems under consideration sat-
isfy certain regularity conditions (such as stationarity
and ergodicity, or information stability) [9], [11].
However, in more complicated situations such as
when the systems are non-stationary (with time-vary-
ing statistics), these information rates are no longer
valid and lose their operational significance. This
results in the need to establish new information mea-
sures which appropriately characterize the operational
limits of arbitrary stochastic systems.

This is achieved in [10] and [11] where Han and
Verdú introduce the notions of inf/sup-entropy/infor-
mation rates and illustrate the key role these infor-
mation measures play in proving a general lossless
(block) source coding theorem and a general channel
coding theorem. More specifically, they demonstrate
that for an arbitrary finite-alphabet source X, the ex-
pression for the minimum achievable (block) source
coding rate is given by the sup-entropy rate H (X),
defined as the limsup in probability of {IIn) log
\IPxn(Xn) [10]. They also establish in [11] the for-
mulas of the e-capacity Ce and capacity1 C of
arbitrary single-user channels without feedback (not
necessarily information stable, stationary, ergodic,
etc.). More specifically, they show that

and

sup sup {R: Fx(R)<£}<Ce< sup sup {R: Fx (R) < £},
x x

= sup/(X;y),
x

where

Fx (R) = lim supPr [(l/n)ixnYn(Xn;Yn) <R],

(l/n)ixnYn(X"; Y") is the sequence of normalized in-
formation densities defined by

r vn !vn\

Pynfy")

and l(X;Y) is inf-information rate between X and Y,
which is defined as the liminf in probability of
(l/n)ixnyn(Xn;D.

By adopting the same technique as in [10] (also
in [11]), general expressions for the capacity of
single-user channels with feedback and for Neyman-
Pearson type-II error exponents are derived in [4] and
[6], respectively. Furthermore, an application of the
type-II error exponent formula to the non-feedback
and feedback channel reliability functions is demon-
strated in [6] and [5].

The above inf/sup-entropy/information rates are
expressed in terms of the liminf/limsup in probabil-
ity of the normalized entropy/information densities.
The liminf in probability of a sequence of random
variables is defined as follows [10]: if An is a sequence
of random variables, then its liminf in probability is
the largest extended real number U_ such that for all

(1)

Similarly, its limsup in^probability is the smallest ex-
tended real number U such that for a/1

(2)

Note that these two quantities are always defined; if
they are equal, then the sequence of random variables
converges in probability to a constant.

It is straightforward to deduce that Eqs. (1) and
(2) are respectively equivalent to

liminfPr\An <U_-Ç] =limsupPr\An <U_-%\ = 0 . (3)

and

lim inf Pr [A n >U+ Ç] = lim sup Pr \A „ >Ü + £] = 0 . (4)
n —> n —»°°

1Definition ([8], [11]): Given 0<ε<1, an (n, M, ε) code for the channel W has blockength n, M codewords and average (decoding) error
probability not larger than ε. A non-negative number R is an ε-achievable rate if for every δ>0, there exist, for all n sufficiently large,
(n, M, ε) codes with rate (1/n) log M>R-δ. The supremum of all ε-achievable rates is called the ε-capacity, Cε. The capacity C is the
supremum of rates that are ε-achievable for all 0<ε<1 and hence C=limε 0 Cε.

In other words, Cε is the largest rate at which information can be conveyed over the channel such that the probability of a decoding
error is below a fixed threshold e, for sufficiently large blocklengths, Furthermore, C represents the largest rate at which information can
be transmitted over the channel with asymptotically vanishing error probability.
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We can observe however that there might exist
cases of interest where only the liminfs of the prob-
abilities in (3) and (4) are equal to zero; while the
limsups do not vanish. There are also other cases
where both the liminfs and limsups in (3)-(4) do not
vanish; but they are upper bounded by a prescribed
threshold. Furthermore, there are situations where
the interval \JJ_, U ] does not contain only one point;
for e.g., when An converges in distribution to another
random variable. Hence, those points within the in-
terval HL, U] might possess a Shannon-theoretic op-
erational meaning when for example An consists of
the normalized entropy density of a given source.

The above remarks constitute the motivation for
this work in which we generalize Han and Verdú's
information rates and prove general data compression
and hypothesis testing theorems that are the counter-
parts of their e-capacity channel coding theorem [11].

In Part I, we propose generalized versions of the
inf/sup-entropy/information/divergence rates. We
analyze in detail the algebraic properties of these in-
formation measures, and we illustrate their use in the
computation of the e-capacity of arbitrary additive-
noise channels. In Part II of this paper [3], we utilize
these quantities to establish general source coding
theorems for arbitrary finite-alphabet sources, and the
general expression of the Neyman-Pearson type-II
error exponent.

II. GENERALIZED INFORMATION
MEASURES

Definition 1. (Inf/sup-spectrum)
If {A„}~=1 is a sequence of random variables,

then its inf-spectrum u(-) and its sup-spectrum ~u~ (•)
are defined by

à,.

and

^ A
= limsupPr[Än<0}.

In other words, «(•) and u (•) are respectively the
liminf and the limsup of the cumulative distribution
function (CDF) of An. Note that by definition, the
CDF of An - Pr{A„ < 0}-is non-decreasing and right-
continuous. However, for «(•) and ~~ū (•), only the

non-decreasing property remains2.

Definition 2. (Quantile of inf/sup-spectrum)
For any 0<<5<l, the quantiles t/g and Us of the

sup-spectrum and the inf-spectrum are defined by3

if {d:lT(O)<S} =

sup{0: ~ū(d) < S), otherwise,

and

if
Us otherwise,

respectively^ It follows from the above definitions
that £/§ and Us are right-continuous and non-decreas-
ing in S.

Note that the liminf in probability U_ and the
limsup in probability U of An satisfy

and

U=Ur,

respectively, where the superscript "-" denotes a strict
inequality in the definition of Ur; i.e.,

Note also that

u_<us<Us<U.

Remarkjhat LĮg and Us always exist. Furthermore,
if U_s= Us V5e [0,1], then the sequence of random
variables An converges in distribution to a random
variable A, provided the distribution sequence of An

is tight.
For a better understanding of the quantities de-

fined above, we depict them in Fig. 1.
In the above definitions, if we let the random

variable An equal the normalized entropy density of
an arbitrary source X, we obtain two generalized en-
tropy measures for X: the ô-inf-entropy-rate K

2 It is pertinent to also point out that even if we do not require right-continuity as a fundamental property of a CDF, the spectrums u(·) and
u (·) are not necessarily legitimate CDFs of (conventional real-valued) random variables since there might exist cases where the "prob-
ability mass escapes to infinity" (cf. [1, page 346]). A necessary and sufficient condition for «(•) and u (•) to be conventional CDFs
(without requiring right-continuity) is that the sequence of distribution functions of An be tight [1, page 346]. Tightness is actually
guaranteed if the alphabet of An is finite.

3 Note that the usual definition of the quantile function φ(δ) of a non-decreasing function F(·) is slightly different from our definition
[1, page 190]: φ(δ)=sup{θ: F(θ)<δ}. Remark that if F(·) is strictly increasing, then the quantile is nothing but the inverse of F(·): φ(δ)=

F-1(δ).
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and the 6-sup-entropy-rate H5(X) as described in
Table 1. Note that_the inf-entropy-rate H(X) and the
sup-entropy-rate H (X) introduced in [10] are spe-
cial cases of the 5-inf/sup-entropy rate measures:

H(X)=H0(X), and ~H(X)=~Hy-(X).

Analogously, for an arbitrary channel W=PY\x with
input X and output y (or respectively for two obser-
vations X and X ), if we replace An by the normalized
information density (resp. by the normalized log-like-
lihood ratio), we get the 5-inf/sup-information rates
(resp. 5-inf/sup-divergences rates) as shown in
Table 1.

The algebraic properties of these newly defined
information measures are investigated in the next sec-
tion.

III. PROPERTIES OF THE GENERALIZED
INFORMATION MEASURES

Lemma 1.
Consider two arbitrary random sequences,

{An)~=i a n d {ßn>r=i • L e t ~ū (•) a n d M(-) denote re-
spectively the sup-spectrum and inf-spectrum of
{An}~_ Į . Similarly, let ~V (•) and v(-) denote respec-
tively the sup-spectrum and inf-spectrum of {#„}~=1 •
Define u£sup{d:JT_(d)<ö}, U5=sup{6:u(6)<Ö},
Y 8 = s u p { 0 : V ( 0 ) < < 5 } , V á { 0 ( 0 ) < 5 }

(LL±Y)S+ y= sup{0: QTTÏXe) <

(U+V)6+y=sup{0:(u_

and

= lim supPr {An+ Bn < 0},
n —>°°

(u±v)(O)tliminfPr{An+Bn<e},
n —>

Then_the following statements hold.
1. U_§ and U¿ are both non-decreasing functions of

öe [0,1].
2. For <5>0, 7>0, and !>

(U±¥)6+y>U8+Vy, (5)

and

Vy. (6)

3. For ^ 0 , 7>0, and

(U±V)8<U&+Y+ V <,_„-, (7)

and

Fig. 1. The asymptotic CDFs of a sequence of random variables
{A„}"=1 . ~M~ ()=sup-spectrum of An; «()=inf-spectrum of

An-

V)s<Us+r+Vū_yy. (8)

Proof:
The proof of property 1 follows directly from

the definitions of i/g and Us and the fact that the inf-
spectrum and the sup-spectrum are non-decreasing in
Ö.

To show (5), we first observe that

Pr{An+Bn<U^Vy}<Pr{An<Us}+Pr{Bn<VY}.

Then

limsupPr{An+Bn<Us+Vy}

<limsup(Pr{An <U n <Vy})

n —>°
n <Vy}

<S+y,

which, by definition of (U+Y)s+r yields (5).
Similarly, we have

Pr{An+Bn<Us+

Then

\iminfPr{An+Bn<Us + Vy)

<liininf(Pr {An <Us) + Pr{Bn <Vy})
n —>

< lim sup Pr {An <US} + lim inf Pr {Bn < Vy}
n —>

<8+y,

which, by definition of (U + V)s+y, proves (6).
To show (7), we remark from (5) that (U+V)į&

(=V)y<(IJ±Y=V)ô+r=Us+r Hence,
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Table 1. Generalized information measures where <5e [0,1].

Entropy Measures

System

An: Norm. Entropy Density

Entropy Sup-Spectrum

Entropy Inf-Spectrum

<5-Inf-Entropy Rate

5-Sup-Entropy Rate

Sup-Entropy Rate

Inf-Entropy Rate

Arbitrary Source X

(1/n) hxn(Xn) = - (1/n) log Pxn(Xn)

~hx(6) è Um supPr {(1/n) hxn(Xn) < 6}
n —»°n

= lim inf Pr {(1/n) hr(X
n) < 6}

{dh

/į(*)

= H0(X)

Mutual Information Measures

Arbitrary channel W=Py\x w i t n input X and output YSystem

An: Norm. Information Density

Information Sup-Spectrum

Information Inf-Spectrum

5-Inf-Information Rate

5-Sup-Information Rate

Sup-Information Rate

Inf-Information Rate

= (1/n) log
A,.

:(Xn,Yn)

i(Xrf6) = hm supPr {(1/n) i(X»Yn)(Xn;Yn)<0}

Cn;Yn)<9}
A """*'
= liminfPr{(l/n)icr

= sup {d: ^

I(X;Y)=1O(X;Y)

Divergence Measures

System

An: Norm Log-Likelihood Ratio

Divergence Sup-Spectrum

Divergence Inf-Spectrum

5-Inf-Divergence Rate

¿-Sup-Divergence Rate

Sup-Divergence Rate

Inf-Divergence Rate

Arbitrary sources X and X

Xn)'n) dxn(Xn f X ) = (1/n) log [ dPy-/ dP^-] (Xn)

x i ¿(^) â lim sup Pr {(1/n) dxn(Xn I X") < 0}

x\x(e) = HminfPr {(l/n)¿r(X" | X")< 0}

~D(X\X)£D1-(X\X)

(Note that the cases 5+^=1 or y=\ are not allowed
here because they result in LL\==V.\=°°, and the
subtraction of two infinite terms is undefined. That
is why the condition for property 2, \<8+ y, is replaced
by l>5+yin property 3.)

The proof is completed by showing that

(9)

By definition,

= lim sup Pr { - Bn < 6}
n —>o°
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= l-limjnfPr{Bn<-8} 3.

So v(-e+)=l-(^O(0)- Then

where the inequality follows from v(0)>v(iT). Finally,
to show (8), we observe from (6) that (U + V)s +

U Hence,

{U+V)s<U5+r-{-Y)r.

Using (9), we have the desired result.

If we take 5=y=0 in (5) and (7), we obtain

(U + V)>U + V. and (U + V)<U + V .

which mean that the liminf in probability of a se-
quence of random variables An+Bn is upper [resp.
lower] bounded by the liminf in probability of An plus
the limsup [resp. liminf] in probability of Bn. This
fact is used in [11] to show that

FL(Y) - ~H{Y | X) <L{X;Y) <JL(Y) -JL(Y \ X),

which is a special case of property 3 in Lemma 2.
The next lemmas will show some of the analo-

gous properties of the generalized information mea-
sures.

Lemma 2.
For Ö, y, Ô+ ye [0,1), the following statements

hokL _
1. Hs(X)>0. Hs(X)=0 if and only if the sequence

{Xn=(Xi?\ ...,X^)}^=1 is ultimately deterministic
(in probability).

(This_property also applies to H^X), IS(X;Y),
UX;Y), DS(X\\Y), and^(F||i)J
2. Ls(X;Y)=I_d(Y;X) and IS(X;Y)= IS(Y;X).

2¿(X;Y)<Ik+y(Y)-Hr(Y\X),

MX;Y)<Hs+y(Y)-lïy(Y\X),

lr(X;Y)<Hs+7(Y)-Hô(Y\X),

I¿+r(X;Y)>Hs(Y)-~H(l_y)-(Y\X),

(10)

(11)

(12)

(13)

and

Iô+y(X;Y)>Hô(Y)-HQ_r(Y\X) (14)

4. 0<Hs(X)<Hô(X)<log\X\, where each X^eX, i=l,
..., n and n=l,2,..., and X is finite.

5.

Proof:
Property 1 holds because

Pr{¿

and

Property 2 is an immediate consequence of the
definition.

To show the inequalities in property 3 we first
remark that

¿V(O=¿iv f ncr .y") + \h cffĄY« | xn),

where (1//I)Ä(X«, Y»)(Y" I Xn)=-(l/n)logPYn\xn(r \xn).
With this fact, (10) follows directly from (5), (11)
and (12) follow from (6), (13) follows from (7), and
(14) follows from (8). _

Property 4 follows fromjhe factjhat H5{-) is
non-decreasing in 8: H8(X)< Hr(X)= H (X), and that
H (X) is the minimum achievable (i.e., with asymp-
totically negligible probability of decoding error)
fixed-length coding rate for X as seen in [3, Theorem
3.2] and [10].

Property 5 can be proved using the fact that

n vnvn 7n\ — 1 ; rvn

;
(X",

By applying (5), and letting y=0, we obtain the de-
sired result.
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Lemma 3. (Data processing lemma)
Fix <5e [0,1). Suppose that for every n, X\ and

X" are conditionally independent given X\ . Then

Proof:
By property 5, we get

;X2),

where the equality holds because

I CI L y f lynyl
A A A 3

CL L v "

Lemma 4. (Optimality of independent inputs)
Fix de [0,1). Consider a finite alphabet, discrete

memoryless channel - i.e., />y«|x"=n"=iPy,|x/. for
all n. For any input X and its corresponding output
Y,

15(X,Y)<IS(Y-/Y)=1(Y;T),

where Y is the output due to X , which is an inde-
pendent process with the same first order statistics as

Proof:
First, we observe that

¿log
dPv

n\\n dPy

(IPy" \vn

In other words,

1 Ci i y" vn

d(PxnXPyn)

! dPyn

:n,Yn)+Mog—?-(xnr)

By evaluating the above terms under
ting

and let-

.y-K A , .

= lim supPxnr {įlog X p (YB
dP VT"

and

we obtain from (5) (with y^O) that

since D(Y\\ Y )>0 by property 1 of Lemma 2.
Note that the summable property of (l/n)log

n, Y") (i.e., it is equal to
^/XPj)]^^)), the Che-

byshev inequality and the finiteness of the channel
alphabets imply

and

It finally remains to show that

which is proved in [11, Theorem 10].

IV. EXAMPLES FOR THE COMPUTATION
OF e-CAPACITY

In [11], Verdú and Han establish the general
formulas for channel capacity and e-capacity. In
terms of the £-inf-information rate, the expression of
the e-capacity becomes

sup_/£-(Y;T) <C£< sup_/£(T;T),
X X

where £€(0,1).
We now provide examples for the computation

of Ce. They are basically an extension of some of the
examples provided in [11] for the computation of
channel capacity. In this section, we assume that all
the logarithms are in base 2.

Let the alphabet be binary X=y={0,\}, and let
every output be given by

where © represents the addition operation modulo-2
and Z is an arbitrary binary random process inde-
pendent of X.

To compute the £-capacity we use the results of
property 3 in Lemma 2:

;Y)> X) = HJY)- X)

and

leUL ;X) £ min{ H£+fft - H

(15)

\X)Jie+fl) -77/ Y \X)},

(16)
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where £>0, y>0 and l>e+y. The lower bound in (15)
follows directly from (13) (by taking <5=0 and y=e~).
The upper bounds in (16) follow from (10) and (11)
respectively.

Ce<supJ£(X;Y)
x

<sup (H£ + 7Q[)-~Hr(Y\X)}.
x

Since the above inequality holds for all 0<7<l-£, we
have:

C e < o < i n f _sup{H£ + y(Y)- ~Hy(Y \ X)}

< o < inf _£{supHe + y 0 0 - inf~Hy(Y \ X)} .

By the symmetry of the channel, Hy{Y\X)= Hy(Z)
which is independent of X. Hence,

< inf {log22-7/7(Z)} = inf
0<y<\-e ' Q<j\

where the last step follows by taking a Bernoulli uni
form input. Since \-Hy{Z) is non-increasing in y

(Note that the superscript "^ indicates a strict in-
equality in the definition of Hy{-); this is consistent
with the condition /+£<1.)

On the other hand, we can derive the lower
bound to C£ by choosing a Bernoulli uniform input in
(15). We thus obtain

l-~Hū_JZ)<C£<l-~Ha_£)-(Z).

Note that there are actually two upper bounds (16).
In this example, the firs_^_upper bound 1-H(1_£)-(Z)
(which is no less than 1- H^_£y(Z)) is a looser upper
bound, and hence, can be omitted. In addition, we
demonstrate in the above derivation that the compu-
tation of the upper bound to C£ involves in general
the infimum operation over the parameter y. There-
fore, if the optimizing input distribution does not have
a "nice" property (such as independence and unifor-
mity), then the computation of (17) may be compli-
cated in general.

Remark:
An alternative method to compute C£ is to de-

rive the channel sup-spectrum in terms of the inf-spec-
trum of the noise process. Under the optimizing
equally likely Bernoulli input X* we can write

-, Pyn\v"\Y X )

i (X*.y¿9) = lim supPr ¿ log —-* < 0}

= lim sup Pr ¿ log Pzn(Zn) - i-log P r (Y
n) < 0}

= lim sup Pr {¿log Pzn(Z") < (9 - 1}

= lim sup Pr {- ¿log Pzn(Zn) >l-9}

Hence,

J£(X* ;Y) = sup{0: 1 -h z ( ( l -

= sup{(l-ß):hz(ß-)>l-e}

= l+sup{(-ß):hz(ß-)>l-£}

= l-inf{ß:hz(ß~)>l-e}

= l-sup{ß:hz(ß-)<l-e}

= \-~H{y_£)-(Z).

Similarly,

Therefore,

= 1 -7/

Example 1.
Let Z be an all-zero sequence with probability

ß and Bernoulli (with parameter p) with probability
1-/3. Then the sequence of random variables
(l/n)hZn(Zn) converges to atoms 0 and hb(p)=-plog
p-(l-p)log(l-p) with respective masses ß and 1-/3.
The resulting hz{9) is depicted in Fig. 2. From (18),
we obtain i(x<rfß) a s shown in Fig. 3.

Therefore,

_j l-hb(p), if
c~{ 1, if 1 -

When e=l-ß, Cglies somewhere between l-hb(p) and
1.

Example 2.
If Z is a non-stationary binary independent
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1

ß

0

1
1
1

— ė —

1
1

A.

1
1
1
1

0 hb(p)

Fig. 2. The spectrum of (l//i)/izn(Z") for Example 1.

1 - / 3

0

i

\-hb(p) 1

Fig. 3. The spectrum of (l/n)i{Xn, rn)(X"; Y") for Example 1.

sequence with Pr{Z!=l }=p¡, then by the uniform
boundedness (in i) of the variance of random vari-
able -logPzfâ), namely,

Var[ - log />Z.(Z,)] < E[( logPz (Z,))2]

< sup

we have (by Chebyshev's inequality)

Pr {

for any y>0. Therefore, #(1_£)-(Z) is independent of
e, and CP is equal to 1 minus the largest cluster point

^ i ) t i . e . ,

1t

and

7/(1 _ £)-(Z) = lim sup 1 t

C£ = 1 -«"(Z) = 1 - lim sup
W i = 1

where H(Zi)=hb(p¡). This result is illustrated in Figs.
4 and 5.

/ / (Z) cluster points \-H{Z)

Fig. 4. The spectrum of {\ln)hZn{Z") for Example 2.

1-//(Z) cluster points 1-//(Z)

Fig. 5. The spectrum of (l(n)i(Xn, Y*)W\ Y") for Example 2.

V. CONCLUSIONS

In light of the work of Han and Verdú in [10]
and [11], generalized entropy, mutual-information,
and divergence rates are proposed. The properties of
each of these information quantities are analyzed, and
examples illustrating the computation of the e-capac-
ity of channels with arbitrary additive noise are pre-
sented.

In [3], we use these information measures to
prove a generalized version of the Asymptotic
Equipartition Property (AEP) and general source cod-
ing and hypothesis testing theorems.

ACKNOWLEDGMENT

The authors would like to thank Prof. S. VerdVi
for his valuable advice and constructive criticism
which helped improve the paper.

REFERENCES

1. Billingsley, P. Probability and Measure, Wiley,
New York (1986).

2. Blahut, R.E. Principles and Practice of Informa-
tion Theory, Addison Wesley, Massachusetts
(1988).

3. Chen P.-N. and F. Alajaji, "Generalized Source
Coding Theorems and Hypothesis Testing: Part
II — Operational limits," Journal of the Chinese
Institute of Engineers, Vol. 21, No. 3, May
(1998).

4. Chen P.-N. and F. Alajaji, "Strong Converse,
Feedback Channel Capacity and Hypothesis Test-
ing," Journal of the Chinese Institute of Engi-
neers, Vol. 18, pp. 777-785, November 1995; also
in Proceedings of CISS, John Hopkins Univ., MD,
USA, March (1995).

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

4:
51

 2
8 

A
pr

il 
20

14
 



292 Journal of the Chinese Institute of Engineers, Vol. 21, No. 3 (1998)

5. Chen P.-N. and F. Alajaji, "The Reliability Func-
tion of Arbitrary Channels with and Without
Feedback," Proceedings of the 18'th Biennial
Symposium on Communications, Queen's Univer-
sity, Kingston, Ontario, June (1996).

6. Chen, P.-N. "General Formulas for the Neyman-
Pearson type-II Error Exponent Subject to Fixed
and Exponential type-I Error Bounds," IEEE
Transactions on Information Theory, T-42(1):
316-323, January (1996).

7. Cover T.M. and J.A. Thomas, Elements of Infor-
mation Theory, Wiley, New York (1991).

8. Csiszár I. and J. Körner, Information Theory:
Coding Theorems for Discrete Memoryless Sys-
tems, Academic, New York, 1981.

9. Gray, R.M. Entropy and Information Theory.

Springer-Verlag, New York (1990).
10. Han T.S. and S. Verdú, "Approximation Theory

of Output Dtatistics," IEEE Transactions on In-
formation Theory, IT-39(3): 752-772, May
(1993).

11. Verdú S. and T.S. Han, "A General Formula for
Channel Capacity," IEEE Transactions on Infor-
mation Theory, IT-40(4) : 1147-1157, Jul. (1994).

Discussions of this paper may appear in the discus-
sion section of a future issue. All discussions should
be submitted to the Editor-in-Chief.

Manuscript Received: June 25, 1997
Revision Received: Jan. 11,1998

and Accepted: Jan. 24, 1998

Fady Alajaji

Queen's University

Kingston, ON K7L 3N6, Canada

ira Ä

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

4:
51

 2
8 

A
pr

il 
20

14
 


