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ABSTRACT

In light of the information measures introduced in Part I, a gener-
alized version of the Asymptotic Equipartition Property (AEP) is
proved. General fixed-length data compaction and data compression
(source coding) theorems for arbitrary finite-alphabet sources are also
established. Finally, the general expression of the Neyman-Pearson
type-II error exponent subject to upper bounds on the type-I error prob-
ability is examined.

I. INTRODUCTION

In Part I of this paper [3], generalized versions
of the inf/sup-entropy/information/divergence rates
of Han and Verdú were proposed and analyzed.
Equipped with these information measures, we
herein demonstrate a generalized Asymptotic
Equipartition Property (AEP) Theorem and establish
expressions for the infimum (l-e)-achievable (fixed-
length) coding rate of an arbitrary finite-alphabet
source X. These expressions turn out to be the
counterparts of the e-capacity formulas in [11, Theo-
rem 6]. We also prove a general data compression
theorem; this theorem extends a recent rate-distor-
tion theorem [9, Theorem 10(a)] by Steinberg and
Verdú (cf the remarks at the end of Sections II. 1 and
II.2).

The Neyman-Pearson hypothesis testing prob-
lem examined in [4] is revisited in light of the gener-
alized divergence measures.

Since this work is a continuation of [3], we re-
fer the reader to [3] for the technical definitions of
the information measures used in this paper.

II. GENERAL SOURCE CODING THEOREMS

The role of a source code is to represent the out-
put of a source efficiently. This is achieved by intro-
ducing some controlled distortion into the source,
hence reducing its intrinsic information content.
There are two classes of source codes: data compac-
tion codes and data compression codes [2]. The ob-
jective of both types of codes is to minimize the
source description rate of the codes subject to a
fidelity criterion constraint. In the case of data com-
paction, the fidelity criterion consists of the probabil-
ity of decoding error Pe. If Pe is made arbitrarily
small, we obtain a traditional error-free (or lossless)
source coding system. Data compression codes are a
larger class of codes in the sense that the fidelity

*Correspondence addressee
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criterion used in the coding scheme is a general dis-
tortion measure. We herein demonstrate data com-
paction and data compression theorems for arbitrary
(not necessarily stationary ergodic, information
stable, etc.) sources.

In this section, we assume that the source al-
phabet X is finite1.

1. Data compaction coding theorem

Definition 1. (e.g. [2])
A block code for data compaction is a set

Cn consisting of M=\Cn\ codewords of blocklength
n:

*- n - I e 1' C 2 ' •"' LM> '

where each «-tuple c"eX", i=l, 2, ..., M.

Definition 2.
Fix l>£>0. R is a (l-£)-achievable data com-

paction rate for a source X if there exists a sequence
of data compaction codes Cn with

rimsup-į-log|C„ =R,

and

where Pe(Cn)=Pr( Xn£ Cn) is the probability of decod-
ing error. The infimum (l-e)-achievable data com-
paction rate for X is denoted by Ti_£(X).

For discrete memoryless sources, the data com-
paction theorem is proved by choosing the codebook
Cn to be the (weakly) typical set [2]and applying the
Asymptotic Equipartition Property (AEP) [2] [5]
which states that (l/n)hXn(Xn) converges to H(X) with
probability one (and hence in probability). The AEP
-- which implies that the probability of the typical
set is close to one for sufficiently large n — also holds
for stationary ergodic sources [5]. It is however in-
valid for more general sources -- e.g., nonstationary,
nonergodic sources. We herein demonstrate a gener-
alized AEP theorem.

Theorem 1. (Generalized AEP)
Fix l>£>0. Given an arbitrary source X, define

Then (Vy>0) such that the following statements
hold.

1.

2.

limmfPr{7n[He(X)-y]}<£
n —>

\immfPr{rn[H£(X)+ÏÏ}>£
n —>

(D

(2)

3. The number of elements in Tn[ H£(X)], denoted by
\7n[~HeQC)]\, satisfies

. (3)

4. (Vy>0)(3p=p(y)>0, No and a subsequence {nj}
n_l

such that \/nj>N0),

\%.[lie(X)+Y]-rnj[lj£(X)-y)\>p(r)exp{nj('H£(X)-y)},
(4)

where the operation A-B between two sets A and B is
defined by A-B=Ar\Bc, with Bc denoting the comple-
ment set of B.

Proof:
(1) and (2) follow from the definitions. For (3),

we have

n

x" e
Z _ exp{-n(H£(X)+Y)}

+ y]-rn[H¿X)- y]

y]-<Tn[H£(X)-y] exp{-n(H£(X)+y)}

It remains to show (4). (2) implies that there ex-
ist p=p(y)>0 and Â i such that for all n>Ni,

Pr{rn[H£(X)+y]}>e +

Furthermore, (1) implies that for the previously cho-
sen p(y), there exist Af2 and a subsequence {n¡}°°_ such
that for all nį>N2,

Pr{Tn[H£(X)-y]}<e

Therefore, for all nj> N0=m2ix(Ni, N2),

P(y) < Pr {<rn [HE(X) +y]-rn (H£(X) - y]}

?n[H£(X)+y]-<Tn[H£(X)-y] exp{-nj(H£(X)-y)}.

Comment:
With the illustration depicted in Fig. 1, we

1 Actually, the theorems in this section also apply for sources with countable alphabets. We assume finite alphabets in order to avoid
uninteresting cases (such as H ε(X)= ) that might arise with countable alphabets.
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can clearly deduce that Theorem 1 is indeed a
generalized version of the AEP since:
• The set

B -A =rn(H£(X)+n-rn(He(X)- 7)

= {xn - ¿ l o g JVC*")-*

is nothing but the typical set.

• (1) and (2) => that q=Pr(B-A)>0 infinitely often.
• (3) and (4) => that the number of sequences in B-A

(the dashed region) is approximatively equal to
exp{n H£(X)}, and thej)robability of each sequence
in B-A is ~qxexp{-n H£(X)}.

• In particular, if X is a stationary ergodic source,
then ~H£(X) is independent of e and ~H£QC)=HJX)
=H Ve(0,l), where H is the source entropy rate

H= lim į-Ep H[-\ogPxn(Xn)].

In this case, (l)-(2) and the fact that H£(X)=H£(X)
Vf imply that the probability q of the typical set
B-A is close to one (for n sufficiently large),
and (3) and (4) imply that there are about enH

typical sequences of length n, each with pro-
bability about e~"H. Hence we obtain the conven-
tional AEP (cf [3, Theorem 3.1.2] or [2, Theorem
3.4.2]).

We now apply Theorem 1 to prove a general
data compaction theorem for block codes.

Theorem 2. (General data compaction theorem)
Fix l>£>0. For any source X,

~He-QC)<T,_e{X)<~H£QC).

Note that actually r 1_ e(Z)=^£_(Y), since TX_E{X) is
left-continuous in e (cf Appendix B).

Proof: Forward part (achievability):
We need to prove the existence of a sequence of

block codes Cn with

1lim sup j - log Cn <H£(X) + 2y,

and

n —>

Choose the code to be Cn=1n[ H£(X)+y\. Then
by definition of T„[-],

rn[H£(X)+y] <exp{n(H£(X)+y)}.

Fig. 1. Illustration of the_Generalized AEP Theorem.
A=Tn[H¿X)-y\, B=Tn[ H¿pí) + y\, and (B-A) is the dashed
region.

Therefore

Mog\Cn\<H£QC)+y<H£(X)-

On the other hand,

which implies from (2) that

limmf [1 - Pe(Cn)] = lim.mf Pr {Tn[H£(X) +Y]}>e.

Hence,

liminfPe(CJ<l-£.

Accordingly, T{_£(X)<H£(X)+2yîov any y>0. This
proves the forward part.

To show the converse part, we need the follow-
ing remark.

Remark:
For all x"

where C* is the optimal block code defined as fol-
lows: for any block code Cn with |C„| = |C*|,
Pe(C*n)<Pe(Cn).

This result follows directly from the definition
of C\ and the fact that Pe(C*n)=Pxn([C*n]

c). The above
remark indeed points out that the optimal code must
be of the shape

(5)

2. Converse part: We show that for all codes with
code rate
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R = lim sup (1/n) log I Cn <H £-QC),

By definition of H£~(X), there exists 0<£'<£ such that
R<~H£<X)<~H£-(X).

Since Pe(C*n)<Pe(Cn) for C* with the same size
as Cn, we only need to show

\imsupPe(C*n)>l-e.

(5) already gives us the shape of the optimal block
code. We claim that the set irn[W£(X)+y\-rn[H£{X)]
is not contained in C* for any y>0 infinitely often
because if it were, then by slightly modifying the
proof of (4), it can be shown that there exists y>0
such that

c:

>p(7)exp {n

for some positive p(7), subsequence {«_,-}"_ j and suf-
ficiently large j , implying that

R >~He<X)

This violates the code rate constraint R<H£(X).
Hence, C* is a subset of T„[ H£<X)] for all but fi-
nitely many n. Consequently,

limmf [1 -Pe(C;)] = limmf Pr(C*n)imm

where the last inequality follows from the definition
of H £{X). This immediately implies that

This proves the converse part.
•

Observations:
• For the sake of clarity, we only considered in Theo-

rem 2 the case where £e(0,l). We can however
easily extend the resultjo the cases where_e=0 and
£=1. By definition, ~H0-(X)=-°° and H1(X)=oo.
Therefore, to show that Theorem 2 holds for £=0
and £= 1, it suffices to prove that

< HO(X) (7)

The validity of (7) follows from the proof of the
forward-part of Theorem 2; similarly, (8) can be
verified using the same arguments in the proof of
the converse-part of Theorem 2.

• Theorem 2 is indeed the counterpart of the result
on the channel £-capacity in [11, Theorem 6]. It
describes, in terms of the parameter £, the relation-
ship between the code rate and the ultimate prob-
ability of decoding error:

Pe~l-eandR=~H£-(X).

• Note that as e î l , ~H~£-{X)-*~H\-{X)=H\X). Hence,
this theorem generalizes the block source coding
theorem in [8], which states that the minimum
achievable fixed-length source coding rate of any
finite-alphabet source is H(X).

• Consider the special case where -(l/n)logPXn(Xn)
converges in probability to a constant H; this re-
duces Theorem 1 to the conventional AEP [3]. In
this case, both /**(•) and h x (•) degenerate to a unit
step function:

u(0-H) =
1, if 0>H;
0, if 0<H,

and

yielding H(X)= H£-(X)= H(X)=H for all £e(0,l),
where H is the source entropy rate. Hence, our re-
sult reduces to the conventional source coding theo-
rem for information stable sources [10, Theorem
1].
More generally, if — (l/n)logPXn(Xn) converges in
probability to a random variable Z whose cumula-
tive distribution function (cdf) is F z ( ) , we have

Pe~l-FZ(R) for R= ~H£-(X) = H£-(X).

Therefore, the relationship between the code rate
and the ultimate optimal error probability is also
clearly defined.
Example: Consider a binary exchangeable (hence
stationary but nonergodic in general [1]) source X.
Then there exists a distribution G concentrated on
the interval (0,1) such that the process X is a
mixture of Bernoulli (6) processes where the
parameter de 0=(O 1) and has distribution G
[1, Corollary 1]. In this case, it can be shown via
the ergodic decomposition theorem that -(1/n)
\ogPxn(X") converges in probability to Z=hb(6) [1]
[7], where hb(x)=-x\og2(x)-(l-x)log2(l-x) is the bi-
nary entropy function. We therefore find that the
cdf of Z is Fz(z)=P(hb(Q)<z) where d has distribu-
tion G. Finally, note that as e î l , Pe—»0 and

T0(X)>Hr(X) ( 8 ) lim£ T j H e-(X) = inf [r: dG(h b(0)<r)=l] = essQ sup h b(6).
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P. N. Chen and F. Alajaji: Generalized Source Coding Theorems and Hypothesis Testing: Part II 297

The above equation is indeed the minimum
achievable (i.e., with Pe—>0) fixed-length source
coding rate for stationary nonergodic sources [6].

Remark:
In this work, the definition that we adopt for the

(l-£)-achievable data compaction rate, is slightly dif-
ferent from the one used in [8, Definition 8]. As a
result, our T\.e{X) is right-continuous with respect to
(1-e), and is equal to He.QC) for £e(0,l] and 0 for
£=0 (cf Appendix B). In fact, the definition in [8]
also yields the same result, which was separately
proved by Steinberg and Verdú as a direct conse-
quence of Theorem 10(a) [9] (cf Corollary 3 in [9]).
To be precise, their TX.£{X), denoted by Te{\-e,X) in
[9], is shown for 0<£<l to be equal to

Te(l-£,X)=Rv(2(l-e)), (cf Definition 17 in [9])

= inf {9: lim sup Px* [ - -į- log PxnQCn) > 6\ < 1 - £}

= inf {ft limmf Px» [ - 1 log P^QC") <ą>e)

=mí{6: h(d)>e)

=sup{0: h{0)<£)

In Theorem 10.(a) of [9], Steinberg and Verdú
provide a data compression theorem for arbitrary
sources under the restriction that the probability of
excessive distortion due to the achievable data com-
pression codes is equal to zero (cf Definitions 30 and
31 in [9]). We herein provide a generalization of their
result by relaxing the restriction on the probability
of excessive distortion.

Definition 5. (Distortion inf-spectrum and e-sup-
distortion rate)
A Let^X and {pn(-,))n7>\ t>e given. Let/(AT)
={fn(X

n)}™= j denote a sequence of data compression
codes for X. The distortion inf-spectrum Ä<x
for f(X) is defined by

= limmf Pr {±PW(T , /„(T )) < 6}.

For any l>£>0, the e-sup-distortion rate ~KE(X,f(X))
is defined by

X£ (X,f(X)) = sup {ft A Kjctjfß) < e),

Note that Theorem 10(a) in [9] is a data compression
theorem for arbitrary sources which the authors show
as a by-product of their results on finite-precision
resolvability theory[9]. Here, we establish Theorem
2 in a different and more direct way; it is proven us-
ing the generalized entropy measure introduced in [5]
and the Generalized AEP (Theorem 1). In the next
section, we generalize Theorem 10(a) of [9].

2. Data compression coding theorem

Definition 3. (e.g. [2])
Given a source alphabet X and a reproduction

alphabet % a block code for data compression of
blocklength n and size M is a mapping /„(•): x"—>y"
that results in |Į/„||=M codewords of lengt n, where
each codeword is a sequence of n reproduction let-
ters.

Definition 4.
A distortion measure p„(-, •) is a mapping

p.:

We can view the distortion measure as the cost of
representing a source n-tuple X" by a reproduction n-
tuple/„(X").

which is exactly the quantile of A.QC

Definition 6.
Fix D>0 and l>£>0. R is a (l-e)-achievable data

compression rate at distortion D for a source X if there
exists a sequence of data compression codes /„(•)
with

limsup(l/n)log|/J=/?,
n —>°°

and (l-£)-sup-distortion rate less than or equal to D:

Note that stating that the code has (l-E)-sup-distor-
tion rate less than or equal to D is equivalent to stat-
ing that the limsup of the probability of excessived
istortion (i.e., distortion larger than D) is smaller than
e: limsupPr{(l/n)p„(X",/n(Z"))>D}<£. The infimum

n —»°°

(l-f)-achievable data compression rate at distortion
D for X is denoted by TX_E{_D, X).

Theorem 3. (General data compression theorem)
Fix £>>0 and l>£>0. Let X and {pn{-, •)}„>! be

given. Then

where

R, £(D)=
1

inf
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and Py\x={P Y"\X"Y° denotes a sequence of condi-
tional distributions satisfying the constraint
X l £ ( Z , y ) < D . In other words, Tl_E(D,X)=Rl_E(D),
except possibly at the points of discontinuities of
Ri-E(D) (which are countable).

Proof:
1. Forward part (achievability): Choose y>0. We will

prove the existence of a sequence of block codes
with

lim sup (1/n) log Cn
n —»<*>

and

Step l:Let P y\x be the distribution achieving
R\-£(D), and let Pf be the F-marginal of
r X r Y\X •

Step 2:Let R satisfy Rl_E(D)+2y>R>Rl_E(D)+y.
Choose M=enR n-blocks independently accord-
ing to Py, and denote the resulting random
set by Cn.

Step 3:For a given Cn, we denote by A(Cn) the set of
sequences x"eX" such that there exists y"e Cn

with

(l/n)pn(xn,yn)<D+y

Step A'.Claim:

lim sup Ey[Pxn(Ą C(C„))] < e.

The proof of this claim is provided in Appen-
dix A.
Therefore there exists (a sequence of) C* such
that

step 5: Define a sequence of codes {/„} by

arg min pn(xn,y"), if xn e A(Ç*n) ;

0_ otherwise,

where 0 is a fixed default «-tuple in (yn.
Then

since (VxneA(C*)) there exists V"GC* such
that (l/n)pn(x

n,yn)<D+y, which by definition

A(x,f(x))

Fig. 2.

of/„ implies that
Step 6:Consequently,

: ±= \iminfPxn{xn e JC: ±pn(x
n,fn(x

n))<D +

>liminfPxn{A(C!)}

> l - £ .

Hence,

where the last step is clearly depicted in Fig.
2.

This proves the forward part.

2. Converse part: We show that for any sequence of
encoders {/"„}"=1, if

~Kū_E)-(X,f(X))<D,

then

Let

, otherwise.

Then to evaluate the statistical properties of the ran-
dom variable (l/n)pn(Xn/n(Xn)) under distribution Px>>
is equivalent to evaluating the random variable
(l/n)pn(Xn, ï ) under distribution PX"Y" • Therefore

Rn ET(D)=
(1"£)

inf 7(X,Y)
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<~H(Y)-11(Y\X)

<H(X)

where the second inequality follows from [5, Lemma
3.2] (cf (3.12) with 7=1" and 6=0), and the third in-
equality follows from the fact that H(Y\X) >0.

Observations:
1. Comparison with Steinberg and Verdú 's result [9].

If £¿0, then

/?a.(D)î/MD)â inf

Remark that Ri-(D)_is nothing but the sup rate-
distortion function R (D) described in Definition
14 of [9]. Therefore, this theorem reduces to
Theorem 10.(a) of [9] when elf). Note that accord-
ing to the terminology of [9, Definition 14], R\_e{D)
may be called the (l-e)-sup rate-distortion func-
tion.
2. Comparison with the data compaction theorem.

For the probability-of-error distortion measure
pnJCn-*Xn, namely,

n , if xn

0, otherwise,

we define a data compression code fn:X"-^Xn

based on a chosen data compaction code book

x\ if xn
 G Cn ;

0., if xn t C„ ,

where 0 is some default element in X". Then
(l/n)pn0t\/„(*")) is either 1 or 0 which results in a
cumulative distribution function as shown in Fig. 3.
Consequently, for any 5e [0, 1),

Pr {£ Pn(Xn,fn(X
n)) <ô} = Pr {Xn =fn(X

n)}.

In other words, the condition

is equivalent to

Pr{X" =fn(Xn)}

0 1 D

Fig. 3. The CDF of (1/n) pn(X
n, fn(X")) for the probability-of-er-

ror distortion measure.

which is exactly the same as lim sup Pr {Xn

By comparing the source compaction and
compression theorems, we remark that Hx_e(X) is
indeed the counterpart of R\_e(8) for the probability-
of-error distortion measure and öe [0,1). In particu-
lar, in the extreme case where e goes to zero,

inf
{Px\x:\im

1

which follows from the fact that (cf (3.12) and (3.14)
in [5, Lemma 3.2)

~HQi)-~H{X < ~H(X)-H_(X | X),

and ~H(X \ X) =JL(X \ X) =0. Therefore, in this case,
the data compression theorem reduces (as expected)
to the data compaction theorem (Theorem 2).

III. NEYMAN-PEARSON HYPOTHESIS
TESTING

In Neyman-Pearson hypothesis testing, the ob-
jective is to decide between two different explana-
tions for the observed data. More specifically, given
a sequence of observations with unknown underly-
ing distribution Q, we consider two hypotheses:

•Ho: Q=Px (null hypothesis).
•Hi: Q=PX (alternative hypothesis).

If we accept hypothesis Hi when HQ is actually true,
we obtain what is known as a type-I error, and the
probability of this event is denoted by a [2]. Ac-
cepting hypothesis Ho when H\ is actually true re-
sults in what we call a type-II error; the probability
of this event is denoted by ß. In general, the goal is
to minimize both error probabilities; but there is a
tradeoff since if a is reduced beyond a certain thresh-
old then ß increases (and vice-versa). Hence, we
minimize one of the error probabilities subject to a
constraint on the other error probability.

In the case of an arbitrary sequence of observa-
tions, the general expression of the Neyman-Pearson
type-II error exponent subject to a constant bound on
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the type-I error has been proved in [4, Theorem 1].
We re-formulate the expression in terms of the e-inf/
sup-divergence rates in the next theorem.

Theorem 4. (Neyman-Pearson type-II error expo-
nent for a fixed test level)

Consider a sequence of random observations
which is assumed to have a probability distribution
governed by either Px (null hypothesis) or P x (alter-
native hypothesis). Then, the type-II error exponent
satisfies

~DE-{X J X) < lim sup- į log ß*n(£) <DE(X [ X)

De-{X Į X) < lim inf - į log ß*n{e) <D_£(X \ X)

where ß*n(£) represents the minimum type-II error
probability subject to a fixed type-I error bound
EG [0,1).

The general formula for Neyman-Pearson type-
II error exponent subject to an exponential test level
is also proved in [4, Theorem 3]. We, herein provide
an extension of this result and express it in terms of
the e-inf/sup-divergence rates.

Theorem 5. (Neyman-Pearson type-II error expo-
nent for an exponential test level)

Fix se (0,1) and ee [0,1). It is possible to choose
decision regions for a binary hypothesis testing prob-
lem with arbitrary datawords of blocklength n, (which
are governed by either the null hypothesis distribu-
tion Px or the alternative hypothesis distribution P į ),
such that

I (s)\\X)l i m m f - I log/?; >De(X(s)\\X) and

or

lim sup- -į- log otn>Dl_i

limmf- į log ßn >D£Qt{s) \\X) and

lim sup- -L log otn >D j _e(Y * \\X),

(9)

(10)

where AT exhibits the tilted distributions {Px

{'}n = l

defined by

dP,
dP%n) = Q L exp {s log jj£ (x")} dP?<?"),

and

â Í

Here, ccn and ßn are the type-I and type-II error

probabilities respectively.

Proof:
For ease of notation, we use X to represent X

We only prove (9); (10) can be similarly demon
strated.

By definition of dP^ (•), we have

Let H=limsup(l/n)logQn(5). Then, for any
n —>°°

such that \/n>N0,

From (11),

.dji s f

= liminfPr{-Lí/í«(

< lim inf Pr édx»(Xn \\x")>-^-d- ¿TI- h

n —>oo

0
s s

Thus,

D E(X X) = sup {0: _¿ ¿ - Į ¿«(ö) < e}

>sup{ö: i _

1—5

7) - < 1 - £}

Finally, choose the acceptance region for null
hypothesis as
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-(Xn)>De(x\\x)}.

Therefore

X)}
X

and

<exp{-nDe(x\\x)},

ur v" _.n. ~r~ .Si H _t

- s
I

s(í-syn

- 5

Then, for n>N0,

ccn<Pxn {į log >Dl_£(X¡ X)}

Consequently,

l immf- į logßn >~D£(X®| Í ) and

IV. CONCLUSIONS

In light of the new information quantiles intro-
duced in [3], a generalized version of the Asymptotic
Equipartition Property (AEP) is proved. General data
compaction and compression (source coding) theo-
rems for block codes and general expressions for the
Neyman-Pearson hypothesis testing type-II error ex-
ponent are also derived.

Finally, it is demonstrated that by using these
new quantities, Shannon's coding theorems can be
reformulated in their most general form and the error
probability of an arbitrary stochastic communication
system can be determined.

T,-e{D,X)

D¿X\\X)

UXW

HÔ(X)
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NOMENCLATURE

C
PWn=PYn\Xn

d

hXn(X")

hx(d)
hx(ß)
U¿X\\X)

UX-Y)

A
Pxn
dXn(X"\\Xn)

~D_{X\\X)
H(X)
I(X;Y)

(l-£)-achievable data compaction
rate
(l-£)-achievable data compression
rate at distortion D
5-inf-divergence rate
5-inf-entropy rate
5-inf-information rate
5-sup-divergence rate
5-sup-entropy rate
5-sup-information rate
e-sup-distortion rate
£-capacity
channel capacity
channel transition distribution
distortion inf-spectrum
divergence inf-spectrum
divergence sup-spectrum
entropy density
entropy inf-Spectrum
entropy sup-Spectrum
inf-divergence rate
inf-entropy rate
inf-information rate
information density
information inf-spectrum

information sup-spectrum
input alphabet
input distributions
log-likelihood ratio
output alphabet
sup-divergence rate
sup-entropy rate
sup-information rate
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APPENDIX A

Claim (cf Proof of Theorem 3)

\imsupEy[Pxn(Ac(C*n))]<£.
n —>°°

Proof:
step 1: Define

Since

step 2: Let K(x", yn) be the indicator function of A„ y:

KQcn,y") =
1, if Qcn,yn)GA^;

0, otherwise.

step 3: By following a similar argument in [9, equa-
tions (9)-(12)], we obtain,

EY[Pxn(Ąc(C*J)]

y(C*n) E Pxn<?*)
x"tA(C;)

= Z Z Py(c*n)

= Z Pxn(x"Xl- Z Py"(yn)K(xn,yn)f

< Z PxnQcnXl-e-n(I(*:9)+y>x Z P ^ U y " ^ ^ " , / ) ) 1

< 1 - Z Z Px.Qcn)Pr\xn(yn\x")K(xn,yn)
"x" x"er" '

M

Therefore

lim sup E Yn[Pxn(ĄL (C Jj\ < 1 - lim inf Pr (Ą
n —>°° n ~*°°

<l-(I-£) = £.

APPENDIX B

Claim: Fix ee [0, 1). T£(X) is right-continuous in £.
proof: Suppose T£(X) is not right-continuous for

some ee [0, 1). Then there exists 7>0 such that

liminfPr(Da{(l/„)pn(Y", Yn)<~K l_£(X,Y)+')))>\-£, w h i c h guarantees the existence of R satisfying
n —>

and

n —>

we have

lim inf Pr (E = {(\ln) irçnQCn, y") < / (X,Y) + ») = 1 ,

lim inf Pr (A fb = lim inf Pr (D n E)

> lim inf Pr (D) + lim inf Pr (E) - 1

TE+¿X)<R-y<R<TE(X)

for every l-£><5>0. Hence, R-yis (e+5)-achievable
for every l-£><5>0, and R is not e-achievable.

By definition of (£+<5)-achievability, there ex-
ists a code Dn(S) such that

lim sup( l/n)\og\Dn(5)\=R-y and

lim supPe(Dn(S))<£+ô.
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Therefore, there exists M(ô) such that for n>M(S),

(1/n) log \Dn(5)\<R and Pe(Dn(S))<e+28.

Observe that if we increase the code size of Dn(S) to
obtain a new code D\{8) with (1/n) log \D\{S)\=R
for n>M(S), then the error probability will not in-
crease, i.e.,

Pe(D'n(5))<e+2ö.

Now define a new code En as follows:

En=D\(S) for M(<5)<n<max{M(<5), M{8I2)}

En=D\(S/2) for max{M(<5), M(6/2)}<n

<max{M((5), M(<5/2), M(<5/3)}

En=D\(ö/3) for max{M(<5), M(<5/2), M(<5/3)}<n

<max{M(<5), M(<5/2), M(5/3), M(<5/4)}

Then for n>M(S), (1/n) log|£„|=.R but limsupPe(£w)<

e, contradicting the fact that R is not e-achievable.

Claim:

Tx_£(X)=He.{X) for £<=(0,l] and Tx(X)=0.

Proof:
The first result is an immediate consequence of

the right-continuity of Tx.e{X) w.r.t. ( l -£)e[0 , l ) .
T\(X), by definition, is the infimum of the 1-achiev-
able data compaction rate which requires the exist-
ence of codes Cn with

and

limsup(l/n)log|C„|=/?,
n —>°°

limsupPe(Cn)<l,

We can then choose an empty code set, and obtain
Tx(X)=0.

Discussions of this paper may appear in the discus-
sion section of a future issue. All discussions should
be submitted to the Editor-in-Chief.
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