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ABSTRACT : A fi>edback design methodfor un uncontroiluble singular q’stem is proposed by which 
(I set of possible stute,feedback gains can be designed to sh(ft certain e<genaalues to other real or 
complex scalars. The method cun be applied to single- or multi-input systems. and if so the method 
obtuins non-unique possibl~~,j>edbuck gains. If the original system is regulur, real und impulse,free, 
the closed-loop system ulso preserves these properties. (CT 1997 The Franklin Institute. Published 
by Elsevier Science Ltd 

I. Introduction 

Singular systems, also called descriptor systems, generalized systems, semi-state 
systems or implicit systems, can capture the dynamic behavior of many physical sys- 
tems; therefore, they have attracted the attention of many researchers in recent decades 
(1-13). For a survey of singular systems, see Ref. (1) or (2). 

The state feedback design for singular systems has been studied by many researchers 
(3-10). However, most previous studies have focused on controllable systems. It has 
been proven (l-3) that if a singular system is controllable, then a state feedback exists 
that can arbitrarily shift all (finite) eigenvalues to new locations and eliminate all 
impulsive modes. On the other hand, if a singular system is uncontrollable, some 
eigenvalues or impulsive modes cannot be shifted; however, it may still be possible to 
shift other eigenvalues. 

Recently, Tornambe (10) proposed a method for dealing with the feedback design 
problem in uncontrollable systems, by which a state feedback can be designed to shift 
those eigenvalues that can be shifted to other places, and if the system is impulse free, 
to preserve this property in the closed-loop system. However, there are some restrictions 
on his approach. Firstly, real and complex eigenvalues can only be shifted to real 
scalars. Secondly, if some non-real eigenvalues must be shifted, the method can be 
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applied only to single-input systems. Thirdly, only one solution can be found, no matter 
if it is a single- or multi-input system. 

This paper proposes a more generalized method for feedback design for uncon- 
trollable systems. If some eigenvalues can be shifted, a set of possible state feedback 
gains can be designed to shift them to other real or complex scalars. The method can 
be applied to multi-input systems, even when there are real or complex eigenvalues to 
be shifted. Also, the possible feedback gains obtained by this method are not unique 
for multi-input systems, providing a greater degree of freedom for control purposes. If 
the original system is regular, real and impulse free, these properties are preserved in 
the closed-loop system. 

The organization of the paper is as follows. In Section II, some preliminary results 
are discussed. In Section III, the feedback gain design methodology for shifting eig- 
envalues is presented. An example showing design performance is illustrated in Section 
IV. Section V concludes the paper. 

II. Some Preliminary Results 

Consider the following linear time-invariant singular system: 

E.?(t) = Ax(t)+Bu(t), (1) 

where x(t)ER”, u(t)eR”‘, A&‘““, B&C”““’ and E may be singular. If a linear state 
feedback law defined by 

u(t) = Kx(t)+r(t), (2) 

where KER”“” and r(t)~Rn, is applied to Eq. (l), the closed-loop system has the following 
form 

Let 

E-k(t) = (A + BK)x(t)+ Br(t). (3) 

rE 1 

We can then obtain the following lemma. 

Lemma I 
(a) System Eq. (1) is regular if and only if rank GE_A(k) = nk, k = 1,2, . 
(b) System Eq. (I) is impulse free if and only if rank LE,A = n + rank E. 

Pro@ For a proof of point (a) see Ref. (1) or (ll), and for a proof of point (b) see Ref. 
(IO). a 

The following lemma concerns the properties of eigenvalues and eigenvectors in 
singular systems and the proof can be found in Ref. (10). 



Movable Eigenvalues in Uncontrollable Singular Systems 741 

Lemma 2 
Let hi be a left eigenvector of an eigenvalue /I, in system Eq. (1). 
(a) If hTB#O, then for all y,@Z’, we can find a feedback (Eq. (2)) that shifts the 

eigenvalue i,, to a new location y! and leaves the other eigenvalues in Eq. (1) 
unchanged. 

(b) If h?B = 0, then for any feedback (Eq. (2)) Y jr is an eigenvalue of the closed-loop 
system. 

In light of Lemma 2, the following definition can be given. 

Definition 1 
Let I., be an eigenvalue in Eq. (1) and h, its left eigenvector. If hTB#O, we call 2, a 

movable eigenvalue; otherwise, we call /2, an immocable eigenvalue. If all the immovable 
eigenvalues are stable (the real parts are negative), then the system is called stabilizable. 

The following lemma discusses the properties of movable eigenvalues. 

Lemma 3 
Let 11, and h&’ be left eigenvectors of two distinct movable eigenvalues 2, and i.? 

in Eq. (I), and y,, y& two other distinct complex scalars. Consider the following 
matrix 

(a) We can findj; and f&R”’ such that the matrix in Eq. (4) is non-singular. 
(b) We can find ,f, and .f+Y’, where f* = T,, such that the matrix in Eq. (4) is non- 

singular. 

Proqf! 
(a) If, for all ,f, and f&R”‘, matrix Eq. (4) is singular, then, by evaluating its deter- 

minant, we can obtain 

(h;B)T(h;B) (h:B)T(h:B) 

.f%,-~J(~*-Y*) - Gz-?,)(A-liz) 
)h = 0, Yf,,,f,ER”‘X ’ (5) 

Thus, the matrix between f: and fi in Eq. (5) is a zero matrix, and so is its 
transpose. Adding the matrix and its transpose, we can obtain 

((A, -l;J(& -72) - (21-1?,)(22 - Q)((h:B)=(h;B) + (h;B)T(/r:B)) 
___ = (2, -Y,)(~*-Yz)(~z-YI)(/zI -Y2) 

o, 

Since, (i.? -r,)(n, -?J -(i., -~,)(&-y~) = (I., -&)(1;, -11~) ~0, we obtain 

(h:B)T(h;B) + (h:B)=(hTB) = 0. 

If the relation is left-multiplied by (h:B) and right-multiplied by (hTB)=, then 

Il~f~II:lI~T~ll~+((~:~)(~:~))2 = 0, 
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where (I II2 represents the 2-norm. Therefore, h:B = 0 or h:B = 0. I, or ,I2 is not 
movable, a contradiction. 

(b) This can be proven using methods similar to those used for the proof of point (a). 
??

ZZZ. Shifting Movable Eigenvalues 

We now state the main problem dealt with in this paper. 
Consider a real, regular, impulse free and stabilizable uncontrollable singular system 

Eq. (1). Let A = {I.,,&, ,Ap} be a set of distinct complex scalars chosen from the 
movable eigenvalues in Eq. (l), and let r = {y,,y2, ,y,} be another set of distinct 
complex scalars that satisfy AnT = @. We want to find possible feedback gains KER”‘~” 
that shift the movable eigenvalues in A to elements in r while leaving the other 
eigenvalues in Eq. (1) unchanged. Furthermore, the resulting closed-loop system Eq. 
(3) must also be real, regular and impulse free. 

If an eigenvalue is movable, it can be shifted to any other complex scalar. However, 
if the closed-loop system must be real, the new eigenvalues chosen must be real or form 
self-conjugate pairs. Therefore, eigenvalues cannot in fact be shifted arbitrarily. In 
most practical applications, it is important to require that the system be real. When 
that is so, shifting a non-real movable eigenvalue to a real scalar also entails shifting 
its conjugate to a real scalar, and if a real movable eigenvalue is shifted to a non-real 
scalar, we must also shift another real movable eigenvalue to the conjugate of the non- 
real scalar. If there is no other real movable eigenvalue, the movement cannot be 
performed. This consideration motivated us to define the following four types of 
possible shift pairs. 

1. An ordered pair ((i.),(y)) m which /ZJER is called a possible shift pair of the first 
type; we denote the set of all such ordered pairs as S,. 

2. An ordered pair ({i,i:}, {y,,y2}) in which y,, ‘JEER, kC and I. # x, is called a possible 
shift pair of the second type; we denote the set of all such ordered pairs as &. 

3. An ordered pair ({/I,,&},(~,~)) in which J.,,&R, ~EC, y # 7, is called a possible shift 
pair of the third type; we denote the set of all such ordered pairs as &. 

4. An ordered pair ({&x},{l;,y}) in which &:GC’, E. # i7 and y # 7, is called a possible shift 
pair of the fourth type; we denote the set of all such ordered pairs as S,. 

Definition 2 
For the two sets A and I- defined above, if we can find disjoint decompositions 

A = ,;,A; and I- = ,;,I-, for which A,nA, = a, r,nr, = @, if i#j, and the ordered 
pair (A,,r,), ig( 1, . ,q}, is included in S,,,j = 1,2,3,4, then we call the order pair (AJ) 
a possible shift pair. 

This yields the following lemma. 

Lemma 4 
Let system Eq. (1) be real. If we can find a feedback gain K that moves the set of 

movable eigenvalues in A to elements in I- and makes the closed-loop system real, then 
(A,T) must be a possible shift pair. 
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In what follows, we first discuss the design of the feedback gains for the four special 
cases in which (AJ) is included in S,, j = 1,2,3,4, then discuss the design of feedback 
gains for the general case in which (AJ) is a possible shift pair. 

3.1. Shifting one real moaable eigendue 

Consider the case in which (A,I)ES,. A = {A} and I = {y}, where A,yeR. Denote the 
left eigenvector of i as h. Since A is movable, we can find an,fER”’ such that hTBf#O. 
Let 

t = (Y-4 
hTBf (6) 

The feedback gain can then be obtained from 

K = tjhTE. (7) 

Theorem I 
If all possible feedback gains satisfying Eqs (6) and (7) are applied to Eq. (1) then 

the closed-loop system Eq. (3) will have the following properties. 

(a) If Eq. (1) is real, then Eq. (3) will also be real. 
(b) If Eq. (1) is regular and impulse free, then Eq. (3) will also be regular and impulse 

free. 
(c) The feedback gains will shift the eigenvalue i. to y, and leave the other eigenvalues 

of Eq. (1) unchanged. 

Proqfi Here we prove only the preservation of regularity. Other proofs can be obtained 
using methods similar to those used in Ref. (10). Let Q(k) = -Btflkp’hT~R”x’z, 
k=1,2;. .,and 

I 

1; 

0 . . 0 o- 

- Q(l) I . . 0 0 
R(k) = Q(2) -Q(l) . 0 0 

i .ii 

. . 

(-I)“Q(k) (-l)“P’Q(k-l) . -Q(l) I_ 

ER(~+I)~IX(k+‘t~,k = 1,2, . . (8) 

It can be seen that G,, + BK(k) = R(k)G&k). Thus, rank G,,+&k) = rank G&k) 
and, according to Lemma 1, if Eq. (1) is regular, then Eq. (3) must also be regu1ar.m 

3.2. Shifiing tivo motluble eigemdues 
Consider the cases in which (A,&S,,S, or S,. There are two distinct movable 

eigenvalues, i., and &, which will be moved to two distinct new ones, y, and yz. Denote 
the left eigenvectors of A, and AZ as h, and hz, respectively. Then, according to Lemma 
3, we can find (a) fi and ,fi~R”‘~ ’ or (b) ,f; and f,~c”~ ‘, where j; =I;, such that the 
matrix 
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is non-singular. If the feedback gain is chosen as follows: 

(9) 

(10) 

then we obtain following theorem. 

Theorem II 
If all possible feedback gains satisfying Eqs (9) and (10) are applied to Eq. (1) then 

the resulting closed-loop system Eq. (3) will have the following properties. 

(a) If Eq. (1) is regular and impulse free, then Eq. (3) will also be regular and impulse 
free. 

(b) The feedback gains will shift the eigenvalues {I.,,>.,} to {1/,,y2}, and leave the other 
eigenvalues in Eq. (1) unchanged. 

(c) (1) In the case in which ((3.,,~*),i~,,i’*})~S?r ifj’,.,f~&“’ then K will be real. 
(2) In the case in which (I~,,E,,),(y,,yz})~S,, iff; =,f’,, then K will be real. 
(3) In the case in which ((,I,,&), (~,,,Y~})E&, if,f> =,f’,, then K will be real. 

Pro@ 

(a) Let 

and R(~)ER”h+“““‘“+““, k = I,‘, be as defined in Eq. (8). It can be shown 
that G,;,+,,(k) = R(k)G,,Jk). Thus, rank G,,,,+,,(k) = rank G,,,,(k) and, 
according to Lemma 1, if Eq. (1) is regular, then Eq. (3) must also be regular. 
It can be seen that L,.,d+BK = R(l)LE,,. Thus, rank LE,A+RK = rank L,,, and, 
according to Lemma 1, if Eq. (1) is impulse free, then Eq. (3) must also be 
impulse free. 

(b) It can be shown that 

Thus, i’, and y2 are eigenvalues of Eq. (3). Assume that o, is a right eigenvector 
of A,, where i,, # i,,iWz; this means (A -?&I, = 0. It can be seen that Ku, = 0. Thus, 
(A + BK-_J)t,, = 0 and I,, is still an eigenvalue of Eq. (3). 

(c) In all three case, it can be shown that K = I?, and thus, K is also real. W 

3.3. General case 
If we want to shift the movable eigenvalues in A to elements in J and the closed- 

loop system is real, then, according to Lemma 4, (A,lY) must be a possible shift pair. 
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From this fact and the preceding discussion, we may conclude that the feedback K can 
be obtained using the following algorithm. 

Algorithm.for shifting movable eigenvalues 

Step 1: 

Step 2: 
Step 3: 

Step 4: 

Step 5: 

Find disjoint decompositions A = , G, A, and r = , t$, Ti, for which A,n A, = @, 

r,nr, = 0, i#j, and the ordered pair (AJ’,), i6{ 1, . ,q} is included in S,, 
j = I ,2,3,4. 
Let i = 1 and A, = A. 
Design the feedback gain K, for the system with system matrices E, A,_, , B in 
order to shift the movable eigenvalues in A, to elements in r,. If (A,,r,)&,, the 
feedback gain K, can be designed using Eqs (6) and (7). If (A,,T,)&.S, or S,, 
the feedback gain K, can be designed using Eqs (9) and (I 0). 
Let A, = A, ~, + BK,. If i = q, go to Step 5; otherwise, let i = i+ I and go to 
Step 3. 
The feedback gain K for shifting the movable eigenvalues in A to elements in 
r can be obtained from 

K= t K,. 
,= I 

The algorithm presented above and the feedback design methods for the four special 
cases lead to the main theorem of this paper. 

Theorem III 
If all possible feedback gains obtained using the algorithm presented above are 

applied to Eq. (I), then the resulting closed-loop system Eq. (3) will have the following 
properties. 

(a) If Eq. (I) is real, then Eq. (3) will also be real. 
(b) If Eq. (1) is regular and impulse free, then Eq. (3) will also be regular and impulse 

free. 
(c) The feedback gains will shift the movable eigenvalues in A to elements in r, and 

leave the other eigenvalues in Eq. (1) unchanged. ??

1 0 0 0 

0 1 0 0 
E= 

0 0 0 1 

0 0 0 1 

It is easy to find 

IV. Example 

Consider the following real system. 

1 ,A= 
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det(A - X) = - (A+ 1)(A2 + 1) and rank L,,, = 4 + rank E. 

Hence, the system is regular and impulse free. 
The system has three eigenvalues - l,,j, -.j. The left eigenvector of - 1 is h, = [0 0 

0 llT. Since h:B = 0, - 1 is an immovable eigenvalue and the system is an uncontrollable 
system. The left eigenvector ofj is h = [-j 1 - 1 +j 1 -I]‘. Since h’B = [- 1 j] #O, j is 
a movable eigenvalue. This means -j is also a movable eigenvalue and its left eig- 
envector is i;. We want to design a feedback gain K to move the eigenvalues {j, -.j} to 
{ - 1 +.j,- 1 -j}. It can be seen that ({j,-,j}, { - 1 +j,- 1 -j})E&. Let f = [1 j]‘; then, 
from Eqs (9) and (lo), we obtain 

The feedback gain is real. Furthermore, we have 

det(A+BK-kl$)= -(I.+l)(~2+21+l)andrankL,,+.K=4+rankE. 

Hence, the closed-loop system is also regular and impulse free. 

V. Conclusion 

In this paper, we propose a feedback design method for uncontrollable singular 
systems. Four special types of shift pairs are defined according to the properties of the 
eigenvalues as candidates for shifting, and possible feedback gains are given for each 
type. If the resulting closed-loop system must be real, the shifting pair can be decom- 
posed as combinations of the four special types of possible shift pairs. Therefore, the 
overall feedback gain can be obtained by iterating the design of each special shift pair. 
Tornambe’s approach (10) proposes only feedback gains for shifting one eigenvalue. 
Thus, eigenvalues can only be shifted to real scalars, and if some eigenvalues to be 
shifted are non-real, the approach can only be applied to single-input systems. Our 
approach considers feedback gains for shifting two eigenvalues. Therefore, the eig- 
envalues can be shifted to other real or complex scalars and the approach can be 
applied to multi-input systems. Also, if the system has multiple inputs, the solutions 
our approach yields are not unique. This provides a greater degree of control freedom. 
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