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A new stress-pressure-displacement formulation for the planar elasticity equations is proposed by introducing
the auxiliary variables, stresses, and pressure. The resulting first-order system involves a nonnegative
parameter that measures the material compressibility for the elastic body. A two-stage least-squares finite
element procedure is introduced for approximating the solution to this system with appropriate boundary
conditions. It is shown that the two-stage least-squares scheme is stable and, with respect to the order
of approximation for smooth exact solutions, the rates of convergence of the approximations for all the
unknowns are optimal both in the H'-norm and in the L?-norm. Numerical experiments with various
values of the parameter are examined, which demonstrate the theoretical estimates. Among other things,
computational results indicate that the behavior of convergence is uniform in the nonnegative parameter.
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. INTRODUCTION

In the last ten years, the least squares finite element techniques have been extensively applied in
many different fields such as fluid dynamics [1-12], elasticity [13—17], electromagnetism [18—
19], and semiconductor device physics [20] (see also [21-23] and many references therein). The
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least-squares finite element approach represents a fairly general methodology that can produce
a variety of algorithms. For the elasticity problem, Franca et al. [15, 16] proposed some finite
element methods that are constructed by adding various least-squares terms to the classical mixed
formulation. These methods can be subdivided into two categories for attaining stability, depend-
ing on whether the Babuska—Brezzi condition is circumvented or satisfied. Results for the full
least-squares finite element methods applied to a stress-pressure-displacement formulation with
the displacement boundary conditions have been recently reported in [17]. The present article
investigates a two-stage least-squares finite element procedure for treating the elasticity equations
with more general boundary conditions.

Introducing the auxiliary variables (stresses and pressure), we can recast the original two-
dimensional elasticity system of second-order equations as an equivalent parameter-dependent
first-order system with eight equations and six unknowns, in which the nonnegative parameter
measures the material compressibility for the elastic body. This new stress-pressure-displacement
formulation is different from thatin [15, 24, 25] but is similar to the third formulation introduced in
[16]. It can be further decomposed into two dependent subsystems, the stress-pressure system and
the displacement system recovered from the stresses and pressure. Moreover, we can prove that
the stress-pressure system with appropriate boundary conditions is an elliptic system in the sense
of Petrovski and satisfies the Lopatinski condition [26]. Taking advantage of these properties,
we propose a two-stage least-squares finite element procedure for these two subsystems to obtain
approximations of all the unknowns in an orderly way.

The two-stage least-squares finite element presented approach offers many advantages:

® Because the two-stage procedure leads to two minimization problems (rather than the
saddle point problem resulting from the mixed finite element procedure), the approximation
spaces need not satisfy the BabuSka—Brezzi condition, and a single continuous piecewise
polynomial space can be used for approximating all the unknowns in both stages.

® [ts discretization results in two symmetric and positive definite linear algebraic systems
both with condition number O(h~?2), where h is the mesh parameter. This allows the use
of efficient solvers such as the conjugate gradient method to solve the corresponding large
linear systems.

® Accurate approximations of the stresses, pressure, and the displacements can be obtained
in an orderly way according to the two-stage procedure.

® Under suitable regularity assumptions, the least-squares approximations for all the un-
knowns have optimal order of approximation in the H'-norm and in the L2-norm.

® Numerical experiments with various values of the parameter are examined, which confirm
the theoretical error estimates. Among other things, computational results indicate that the
behavior of convergence is uniform in the nonnegative parameter.

In addition, compared with the least-squares finite element methods developed in [17], the most
significant features of the present approach are the following:

® The methods used in [17] work well only for the displacement boundary conditions, but
the present two-stage least-squares method can be applied to the general stress-pressure-
displacement boundary conditions, which are more useful in practical applications.

® Just as for the two-stage methods [5, 27], the proposed method has a computational advan-
tage over the methods in [17]. Indeed, a linear system of size 6N must be solved for the
methods in [17], where N is the dimension of the common approximation space. However,
the two-stage procedure requires only the solution of a system of size 4N, followed by the
solution of a system of size 2V, each with smaller bandwidths.
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The remainder of the article is organized as follows. In Section II, we propose a new stress-
pressure-displacement formulation for the elasticity equations. This is then decomposed into two
subsystems, the stress-pressure system and the displacement system, with respective appropriate
boundary conditions. In Section III, a two-stage least-squares finite element procedure is given, as
well as its fundamental properties. In Section IV, a priori estimates for the stress-pressure system
are derived. In Section V, error analysis is presented. In Section VI, the condition numbers of the
resulting linear systems are estimated. Finally, in Section VII, some numerical experiments are
examined to demonstrate this approach.

Il. PRELIMINARIES

We shall consider the numerical solution of the boundary value problem,

14 .
—2/1,{V~E(u)+ 1_2VV(V~u)} =f in{, 2.1
u=0 onl', 2.2)
2u {5(u)+ IVQV(V-u)I} ‘n=g only, (2.3)

with the following notation:

Q C R? is a bounded domain representing the region occupied by an elastic body.

I' := 09 is the smooth boundary of €2, which is partitioned into two disjoint open parts,
'y and Ty, such that T' = T'; U Ty and measure (T';) > 0.

w is the shear modulus given by

TG g
where v is the Poisson ratio, 0 < v < 0.5, and E' > 0 is the Young modulus. The upper
limit of the Poisson ratio, i.e., v — 0.5~ corresponds to an incompressible material.
u = (uy,uz)! is the displacement field.
f = (f1, f2)! is the density of a body force acting on the body.
g = (g1, g2)" is the density of a surface force acting on I's.
n = (ny,n9)" is the outward unit normal vector to 9.
e(u) is the strain tensor given by

) = (i (0))axe = (5 (@i + Diuy)zca

Iis the 2 x 2 identity matrix.

Introducing the auxiliary variables, @1, @2, ¢3, and p, such that

_0m
Pr="F0 24
_n 2.5)

@2*67?};
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8u2
- 2.6
P = 5 (2.6)
1-2 0
—p1 Ip="2 @7)
v Oy
on () and letting

1-2 1

e=—"50, O<v<-

v 2

we can rewrite (2.1) as

dpr 1 0p2 18@3 Jp

2u{—ax‘zay‘zay ax} fi in€, @9

Op1 _10¢r 10ps op
,u{ 9y 20r 2 0n (1+6) 9y = fy in Q. 2.9)

We call @; the stresses and p the artificial pressure, and remark that the ‘‘pressure’” p gives
the hydrostatic pressure only in the incompressible limit (cf. Remark 2.1 below). Note that a
combination of ¢y, ¢2, 3 and p can represent the actual stresses o;; (for 4, j = 1, 2), which are
given by

14

o) = (o )2z = 2 { o) + -2 (V-0

Also, by (2.4)—(2.7), we obtain the following two compatibility equations:

3301 ng o .
9y 5 = 0 inQ, (2.10)
%4_%4'_ 87_0 in Q. (2.11)

ox dy or

System of Eqs. (2.4)—(2.11) is the so-called stress-pressure-displacement formulation for
the two-dimensional elasticity equations, which is different from those in [15, 24, 25] but is
similar to the third formulation introduced in [16]. Moreover, we can show that a sufficiently
smooth solution of (2.1) solves system (2.4)—(2.11), and vice versa. It is interesting to observe
that the relations between the stresses ;, pressure p, and the displacements u; are defined by
Egs. (2.4)—(2.7), and the stress-pressure system (2.8)—(2.11) is independent of the displacements
u;. Therefore, if one can solve (2.8)—(2.11) with appropriate boundary conditions, then the
displacements can be recovered from the stresses and pressure by solving Eqgs. (2.4)—(2.7) with
the boundary requirement u = 0 on I';. Our two-stage procedure is thus motivated.

Remark 2.1. For the incompressible limit, ¢ = 0, the first-order system (2.4)—(2.11) is
the system of stress-pressure-velocity Stokes equations, which have been studied in [5, 8]. In
the context, u represents the velocity field for the Stokes flow, p expresses the pressure with
appropriate scaling, and i denotes the inverse of the Reynolds number. We also remark that all
the results developed below still hold for the case of € = 0. -

To deal with the boundary conditions, we note that (2.2) implies that the tangential derivatives
of u; vanish, Vu; - (n2, —n1)t = 0,i = 1,2, that is,

nop1 —nipe2 =0 onl'y, (2.12)
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nip1 +nows +enip=0 onl}y. (2.13)
Combining (2.12)—(2.13) with
niuy +noug =0 onT'y,
we can verify (2.2) as well. Also, boundary conditions (2.3) can be written as

2unip1 + puneps + unsws — 2unip = g1 onI's. (2.14)

—2unap1 + pnipe + punips — 2pu(1 + €)ngp = go onTy. (2.15)

Itis now clear that our strategy is to solve the stress-pressure system (2.8)—(2.11) with boundary
conditions (2.12)—(2.15) at the first stage, i.e., to solve

Lop® = Ayy®, + By®, = F in (), (2.16)
Ryp® = Csp® = G onT, 2.17)
where ¢ = (¢17 Y2, 9037p)t7 F= (fla f27070)ts
2 0 0 2u
| 0 —p —p 0
Asp = 0O -1 0 O ’
1 0 0 €

1 0 0 0 '
0 0 1 0
o ng —Ny 0 0 o 0
Csp_<n1 0 ny 6n1> and G—<O> onTl'y,
o 2uny  png png —2uny I
Cop = <—2/m2 pny pny —2pu(1 + €)ng and G = g2 on .

The second stage is to solve the displacement system (2.4)—(2.7) with boundary conditions (2.2),
1.e., to solve

Lqu = Agu, + Bgu, = ®° inQ, (2.18)

Rqu:=Cqu=0 only, (2.19)

where ®¢ = (1, ©a, 03, —p1 — €p)?, the vector ® = (1, @2, @3, p)! solves the stress-pressure
problem (2.16)—(2.17), and
10
3 Cd - ( 01 > .

Ag =

[l e R R
o= oo
[N eN =)
— o o O
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For constructing numerical solutions to these first-order problems, we will apply the least-squares
principles in connection with finite element techniques to both stages.

It is interesting to point out that although the displacement system involves four first-order
equations (2.4)—(2.7) with two unknown functions u; and us, those first-order equations are
pairwise dependent, according to (2.10) and (2.11).

We shall require some function spaces defined on (2 throughout this article [28, 29]. We
let H%(2),s > 0 integer, denote the Sobolev space of functions that have square-integrable
derivatives of order up to s on €2; as usual, L?(Q2) := H°(Q). The associated inner product and
norm are given by

(u,v)s = Z /an‘u~3av,

lal<s

lulls = v/ (u, u)s,

respectively. For the product space [H*(€2)]™, the corresponding usual inner product and norm
are also denoted by (-,-)s and || - ||s, respectively, when there is no chance for confusion. Let
HE(Q) be the closure of D(2) in H*(£2), where D(£2) denotes the linear space of infinitely
differentiable functions on ) with compact support. We denote by H~*(2) the dual space of
HE () normed by

fuloe = sup Lot
ozoensa) 10l
where (-, -) denotes the duality pairing.

The existence, uniqueness, and smoothness of the solution of original second-order problem
(2.1)—(2.3) with smooth data are well-known (see, e.g., [30, 31]). Thus, it is reasonable to assume
that the stress-pressure problem (2.16)—(2.17) and the displacement problem (2.18)—(2.19) have
unique (strong) solutions ® € [H'(Q)]* and u € [H'(Q)]?, respectively, for given functions
F € [L*(Q)]* and G € [L?(09Q)]2. It is also understood that, when € = 0, we further require
fQ p = 0 here, as well as in the approximations. Actually, the unique solvability of problem
(2.18)—(2.19) can be ensured by virtue of Egs. (2.4)—(2.7) and the boundary requirement u = 0
on I'y, provided measure (T';) > 0.

For simplicity, we shall also assume that the boundary data G in (2.17) is identical to 0, i.e.,
g = (g1, 92)" = 0 on I'y. This can be achieved under some suitable assumptions. For example,
assume there exist 1, 1o € H'() such that the traces of ¥; and 15 on I are given, respectively,

by
0 onTI'y;
Y= { gim1 — gang on D'y,

and
o = 0 onTI'y;
2 { ga2n1 + ging on s

Define
1= 1/)1, 5 = iz}
2 %

By the change of variables ® = (&1, @a, @3, p)*, where

P1 =01 —Q1, P2=2—¢s, $3=p3, D=Dp,
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the stress-pressure problem (2.16)—(2.17) can be transformed into the following form:

Lgp® := Aypy®, + B, @, = F inQ,

Rep®:=Cyp®=0 onT,

which is the desired result.

lll. TWO-STAGE LEAST-SQUARES PROCEDURE

We first define two function spaces for our problems,

S={¥ec[H Q) Ryp¥ =00nT}, (3.1)

V={vec[H (Q)]*Rqv=00nT,}, (3.2)
and then define the least-squares quadratic functional J,, : S — R by
Tp(¥) = | L0 — FI3 = (A Vs + By, ¥,) — FI3 VT €S, (33)

It is evident that the exact solution ® € S of the stress-pressure problem (2.16)—(2.17) minimizes
(3.3), since jsp(@) = 0, and a zero minimizer of the functional [J,, on & solves problem
(2.16)—(2.17). Thus, the least-squares method for (2.16)—(2.17) is defined to be the following
minimization problem:

Seek ® € S such that J;,(®) = glég Tsp(P). (3.4)

Taking the first variation, we can find that problem (3.4) is equivalent to

Seek @ € S such that B,, (P, U) = F,,(¥) VU € S, 3.5)
where
Byp(®, ) = / (Agp®, + Byp®,) - (AU, + B, U,) VO, € S, (3.6)
Q
Fop(T) = / F-(AyV, + B, U,) VU eS. 3.7
Q

Therefore, a least-squares finite element approximation to the solution of problem (2.16)—
(2.17) is defined by

Seek @, € S, such that B, (®p, ¥p) = Fsp(Vy) V¥, € S, (3.8)

where the finite-dimensional subspace S;, C & (with r > 0) is assumed to possess the following
approximation property: for every ¥ € SN [H"T1(2)]*, there exists ¥), € S} such that

1@ = Wpllo +hll® = Wplli < CR™H[]], 41, 3.9)

where C' is a positive constant independent of ¥ and h. In what follows, C' will denote a positive
constant always independent of h, not necessarily the same in different occurrences.
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After the stress problem (2.16)—(2.17) is solved by using the least-squares finite element
scheme (3.8), our second stage is to solve the displacement problem (2.18)—(2.19) approximately.
Define the following least-squares functional

Ja(v) = [|[Lav — ©°||§ = ||(Agvs + Bav,) — |3 Vv eV, (3.10)

where ¢ = (1, @2, @3, —p1 — ep)t, with ® = (1, 2, 3, p)¢ being the solution of problem
(2.16)—(2.17). Similar to the least-squares method for the stress-pressure problem, we define the
following minimization problem:

Seek u € V such that Jy(u) = {/nel]r)l Ja(v), (3.11)
or, equivalently,
Seek u € V such that B4(u,v) = Fy(v) Vv e, (3.12)
where
Ba(u,v) = /Q(Aduz + Bquy) - (Agvg + Bgvy) Yu,v eV, (3.13)
Fa(v) = /Q O - (Agvy + Bavy) Vv e, (3.14)

Since the data function ®¢ can be obtained only through the numerical scheme (3.8), the
associated least-squares approximate scheme for (2.18)—(2.19) is defined by

Seek uy, € V¥ such that By(up,, vi) = Fa(vy) Vvi, € VY, (3.15)

where

j—d(Vh) = / @Z . (AdV}m + dehy) Yvy, € V}IZ, (3.16)
Q

®f, = (P1h, P2n, P3h, —P1n — €pn)’, the vector @5 = (P1n, P2n, Pan, pr)" is the solution of
problem (3.8), and the finite-dimensional subspace V,f C V (for p > 0) is also assumed to be
equipped with the following approximation property: for every v € VN [HP+1(Q)]?, there exists
vy, € V) such that

v =villo+hllv = vali < CRPTH V|1, (3.17)

where C'is a positive constant independent of v and h.

It is easily seen that B, (-,-) and Bg(-,-) define two inner products on S x S and V x V,
respectively. The positive-definiteness is ensured by the fact that the stress-pressure problem
(2.16)—(2.17) and the displacement problem (2.18)—(2.19) possess a unique solution for each
given smooth function F' € [L?(02)]%. Denote the reduced norms, respectively, by

[W]|sp = /Bsp(¥,¥) V¥ €S, (3.18)

IVlla = v/ Ba(v,v) ¥Yvel. (3.19)

Then, evidently, there exists a positive constant C' such that

[9]lsp < CI¥[lL VY €S, (3.20)
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[vla < Cllvlly Yv e, (3.21)

since both L, and L, are first-order differential operators with constant coefficients.
We have the following fundamental properties of the first stage (3.8).

Theorem 3.1.  Let ® € S be the solution of the stress-pressure problem (2.16)—(2.17) with the
given functions F € [L*(Q)]* and G = 0.

(i) Problem (3.8) has a unique solution ®y, € S; satisfying the following stability estimate:
[®nllsp < [ lo- (3.22)

(i1) The matrix of the linear system associated with problem (3.8) is symmetric and positive
definite.

>iii) The following orthogonality relation holds:

Bsp((p — Py, \I/h) =0 V¥, € S;; (3.23)
(iv) The approximate solution Oy, is a best approximation of ® in the || - || sp-norm, that is,
D — Py|lsp = inf | — Tpllsp- .24
e M LB A G.24)
(V) If® € SN[H"TYQ)]4, then
[Lsp®h — Fllo = [|® = Pnllsp < CR"[[ @141 (3.25)

Proof. To prove the unique solvability, it suffices to prove the uniqueness of the solution, since
S; is a finite-dimensional space. Let ®;, be a solution of (3.8). Then by the Cauchy—Schwarz
inequality, we have

||q)h||§p = Bsp((bhm(bh) = (F, Esp(Ph)O
||F||OH£sp(I)h||0
[ llol|@nllsp:

which implies (3.22). Consequently, the solution ®;, of problem (3.8) is unique.

Assertion (ii) follows from the fact that the inner product Bs)(-, -) is symmetric and positive
definite. Subtracting the equation in (3.8) from the equation in (3.5), we get (3.23). To prove
(iv), by (3.23) and the Cauchy—Schwarz inequality, we obtain

IN

1 — @I, = Bop(® — Dp, @ — Py)
Bsp(® — @, © — Uy,)
[® = Pnllspl|® — Wnllsp Y¥h € Sh,

IA

which implies (3.24).
Finally, let ¥}, € S} such that (3.9) holds with ¥ replaced by ®. Together with (3.24) and
(3.20), we can obtain (3.25). -
Similar to Theorem 3.1 with minor modifications, we have the following results for second
stage (3.15).

Theorem 3.2. Letu € V be the solution of the displacement problem (2.18)—(2.19).
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(i) Problem (3.15) has a unique solution wy, € V¥ satisfying the following stability estimate:
[anlla < [[®lo, (3.26)

where ®5 = (¢1h, P2n, P3h, —P1h —€Pn)", and P, = (©1h, Pon, 3k, Pr)" is the solution
of problem (3.8).

(i1) The matrix of the linear system associated with problem (3.15) is symmetric and positive
definite.
(iii)) The following relation holds:

Bd(u — uh,vh) = (q)e — sz,ﬁdvh)o Vvy, € V,Il), (3.27)
where € = (1, pa, 3, —p1 — ep)t, and ® = (p1, P2, ©3,p)" is the solution of problem
(2.16)-(2.17). .

In the following two sections, we will prove that the || - ||sp-norm and the || - ||4-norm are

equivalent to the || - ||;-norm in the respective spaces S and V. By (3.22) and (3.26), we will have
the following corollary.

Corollary 3.1.  The two-stage least-squares finite element scheme (3.8) and (3.15) is stable

with respect to the || - ||1-norm, i.e.,
|@rlls < CJIFo, (3.28)
luplli < C[|Fo, (3.29)
where C'is a positive constant independent of h. -

IV. A PRIORI ESTIMATES

In this section we shall apply the theory given by Wendland [26] to derive coercive type a
priori estimates for the solution ® to the stress-pressure problem (2.16)—(2.17). Following these
estimates, the error estimates for the least-squares finite element approximation (3.8) can be
obtained.

We shall show that L), is an elliptic operator in the sense of Petrovski, and that the boundary
operator Ry, in (2.17) satisfies the Lopatinski condition. Then (L,, Rsp) is a regular elliptic
system and so, by [26], it is a Fredholm operator with zero nullity, which enables us to get the a
priori estimates (cf. Theorem 4.1 below).

For all (¢,m) € R? and (£,7) # (0,0), we have

det(fAsp + WBsp) = 2#2(1 + 6)(52 + 772)2 # 0.

Thus, (2.16) is an elliptic system in the sense of Petrovski. Taking (£,7) = (1,0), we find that
Asp is nonsingular and

s 0 0

2p(1+€) 1+€
) 0 0 -1 0
Ap = 1
0 - 1 0
1 0 0 1

2p(1+e)
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Then the original elliptic system (2.16) can be transformed into the following form:

®, + B,®, =F inQ,

where
€ 2+e€
0 2(1+e€) 2(1-:-6) 0
- ) -1 0 0 0
By, = A, By =
P P -1 0 0 —2(1+e¢)
1 1
0 T 2(1+e) 2(1+e) 0
it 1
. ) 0
F=A_F=
v 1,
1
preEm s

We now check the Lopatinski condition as follows: after elementary operations, we can find
that the eigenvalues of matrix Bﬁp are ¢ and —7, each with multiplicity two. Consider the eigenvalue
T+ = ¢ in the upper half-plane, to which there is a pair of linearly independent generalized
eigenvectors p; and ps of B’ip obtained from

szpl —T+P1 = 07
Bﬁpm — T+P2 = P1,

where

p1 = (0,1,—1,-2(1 + €)i)*,

)

_ (At 41+, 21+9(2+30 i
P2 = 24¢ 7 24€ 24¢€ ’

Notice that

P = (p1,P1, P2, P2)’
is nonsingular. Let

Q = (q1,q1,92,G2)

be the inverse matrix of P. Then

2+3e¢ 2+3¢e 2+e€ 2+€

“80+a9! 30t+9’ T8it9 8(1to

1 1 _ _24e 24€

o— 2 2 S+’ 8(ite)
- 24€ 24€
0 0 T8+t s+’

4(1+5)i _4(11-i-5)i 0 0
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Now we have

%(m + i) #0  onT'y;

det{2C,(q1,q2)} =

2
_%(”1 +n2i)2#0  onDy,

forall ¢ > 0 and (n1,n2) # (0, 0). That is, the Lopatinski condition is fulfilled for our boundary
conditions (2.17). Thus, we have the following theorem.

Theorem 4.1.  For the boundary value problem (2.16)—(2.17), we have the following a priori
estimates: for each | > 0 there is a constant C > 0 such that if W € [H1(Q)]4, then

[lle1 < CLUILsp ¥l + [ Rsp P41 - 4.1

L]
By an interpolation argument in [35] (see also [26, Lemma 8.2.1]), the inequalities (4.1) can
be extended to the case [ > —1. Taking! = 1,1 = 0, and [ = —1 in (4.1), we have, respectively,

1]z < ClILsp Tl VT € SN[H* Q)] 4.2)
[P]1 < CllLsp¥llo VY €S, (4.3)
[P0 < CllLep¥ll-1 V¥ €S. 4.4

The a priori estimates (4.2), (4.3), and (4.4) play crucial roles for the least-squares error estimates
of the stresses and pressure in the next section.

Remark 4.1. It is unclear whether the constant C' in (4.2)—(4.4) is independent of the non-
negative parameter e, since the constant in (4.1) is not explicitly known (cf. [32], page 74,
Remark 2). -

V. ERROR ESTIMATES

It is easily seen that the bilinear form Bs), is continuous on S x S; the coercivity of B, follows
from (4.3). Thus, we first obtain the following result.

Theorem 5.1.  Let ® € S and ®;, € S}, be the solutions of problems (2.16)—(2.17) and (3.8),
respectively. Assume that ® € [H"+1(Q)]*. Then there exists a positive constant C independent
of h and ® such that

|® = @ull < B0 1. (5.1)
Proof. Since the || - ||sp-norm is equivalent to the || - ||;-norm on the space S, the assertion
follows from (3.25) immediately. -

For deriving the optimal L2-estimates, we need the following regularity assumption that we
shall use in the subsequent result.

Assumption (A1).  Forany V¥ € [HE(Q)]*, the unique solution ® of the problem
L,® =T inQ,

Ryp®=0 onTl (5.2)
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belongs to S N [H?(2)]*.
Evidently, this is a reasonable assumption because the differential operator Ly, is of first order
and the data function W is in [H}(Q2)]%.

Theorem 5.2. Let ® € S and ®;, € S} be the solutions of problems (2.16)—2.17) and (3.8),
respectively. Assume that ® € [H"™+1(Q)]* and that assumption (A1) holds. Then there exists a
positive constant C' independent of h and ® such that

[® — @pllo < CR™TH| @41 (5.3)

Proof. LetWU e [H}(€)]*andlet® € SN[H?2(Q)]* be the corresponding solution to problem
(5.2). Then

[(Lap(® = 1), ©)o| = [(Lap(® — 1), Lep®)o

[(Lsp(® — @), Lop(® — Wp))o| YU, €S (by (3.23)
1 £sp(® = @) o]l Lp(® = Ti) o Vs € S,

C|® — Bpll1||® — Tnll1 YV, €SF

Ch||® — ®u[11[| P2 (by (3.9))

Ch|® — ®p|1[|Lsp @1 (by (4.2))
Chl|® — @11

N

IANIN TN

In addition, the L? inner product (Ls,(® — ®5,), ¥)y defines a bounded linear functional on
[Hg (2)]*, since
[(Lsp(® = @), W)o| < [|Lsp(® — @n)0]| W] V¥ € [Hg ()]
Therefore,
||['sp(q) - (I)h)||—1 < C(hH@ - (I)hHl- (54)

Combining (5.4) with (4.4) and (5.1), we can readily conclude estimate (5.3). -

The results of Theorem 5.1 and Theorem 5.2 indicate that the rates of convergence for the
stresses and pressure are optimal, both in the H'-norm and in the L?-norm. We now estimate the
rates of convergence of the approximations for the displacements. The continuity of the bilinear
form B, can be obtained easily. For any v = (v1,v2)! € V = {v € [H}(Q)]*;v=0o0nT4},

we have
8’[11 2 8’1)1 2 8’[]2 2 8’1)2 2
Ba(v,v) = —-— - - -
a(v,v) /Q<8x> +<8y * Ox * oy
= IVvI5.
It follows from the Poincaré—Friedrichs inequality that
Ba(v,v) = C|Iv|]i, (5.5)

i.e., By is coercive on V x V. Similar to Theorem 5.1, we have the optimal order of convergence
in the H'-norm for the displacements.

Theorem 5.3. Let® € S,u € V,and u;, € Vﬁ be the solutions of problems (2.16)—(2.17),
(2.18)~(2.19), and (3.15), respectively. Assume ® € [H™1(Q)]* and u € [HPT1(Q)]2. Then
there exists a positive constant C' independent of h,u, and ® such that

lu—unll < COPlfullyrs + 17112 40). (5.6)
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Proof. For any v;, € V?, by (5.5) and (3.27) we have

Cllup, = vili < Ba(up — vi,up — vy)

= Ba(u—vp,up —vp) — Bg(u—up,up — vy)

= By(u—vp,up —vp) — (P — @5, La(un, — vp))o
Cllu = vallillun = valls + Cl|®° — @5 [|of[un — vally
Clla=vall1 + 12 = @nllo)[lun = vall1,

IAIA

which implies
lur =il < C(llu=valls + 1@ = @rllo) Yvi €V}
Thus,

lu=vall + [lun = val:

[u—upfr <
< C(lu=valli + |2 = o) Yvi €V},
Choose vy, € V,’; such that (3.17) holds with v replaced by u. Then we obtain

lu—wfi < C(lla=vali +[[® = @nll1)
< C7|allprr + A7 @][41)-

This completes the proof. -

Similar to the derivation of Theorem 5.2, we shall use the Aubin—Nitsche trick [28, 33] to
establish the optimal L2-estimates for the displacements. For each h, consider the following
adjoint problem:

Find @ € V such that Bg(Q,v) = (u —up,v)y Vv e V. (5.7

Note that the right-hand side of the equation in (5.7) defines a bounded linear functional on V.
Thus, the unique solvability of problem (5.7) is ensured by the Lax—Milgram lemma, since B, is
coercive on V x V. We now assume the following regularity assumption (cf. [14]).

Assumption (A2).  Assume the unique solution @ of problem (5.7) belongs to [H*(Q)]> NV
and there exists a positive constant C' independent of 4 and u — uy, such that

[alls < Clja —uplo- (5.8)
Then we have the following optimal L?-estimates for the displacements.

Theorem 54. Let ® € S,u € V, and u;, € V) be the solutions of problems (2.16)~(2.17),
(2.18)-(2.19), and (3.15), respectively. Assume that ® € [H™1(Q)]*,u € [HPT1(Q)]?, and
regularity assumptions (A1) and (A2) hold. Then there exists a positive constant C' independent
of h,u, and ® such that

[ —upflo < CORPHullpr + A7 @[|s1). (5.9)
Proof. Choosing v =u —uy € Vin (5.7), we have
By(t,u —up) = [u— w3,
which together with (3.27) enables us to obtain

Bd(fl — Wp, U — llh) = ||u — uh||(2) — ((I)e — @;,Edwh)o Vwy, € V}ZL)
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It follows that

[l — w13

Bd(ﬁ — Wp, U0 — uh) + (‘be — Z, Edwh)o
= Bd(ﬁ — Wp, U0 — uh) + (@s — Z, cd(Wh — fl))o + ((I)" — Z7£dﬁ)0

[0 —whll1l[a—unlls + [[@° = @ [lo][T — wall1 + [|@° — @7 |lo]|T|2,

IA

for all wj, € V7. Choose wj, € Vy so that
18— wylli < Chl[d]>.
Hence, together with (5.8) we have
[u—up )| < Chllu—ullolu—uplls + Ch||® — Pyl —unflo + Cl|® — Ppllo/lu — s llo,
which implies
la—upllo < C(hllu—uply +2f|® = Ppllo + |2 — Pallo)-

This completes the proof. -

VI. CONDITION NUMBERS

In this section, we shall give estimates for the condition numbers of the linear systems arising
from problem (3.8) and problem (3.15). Recall that the condition number for a symmetric and
positive definite m x m matrix M is defined by

)\max max p (E)

condition number of M = = — —
>\min nmn p (‘:)

where Apax and Ay, are the largest and smallest eigenvalues of M, and p(Z) is the Rayleigh
quotient,
=M= -
p(E) = =t v:‘:(gla'-'7€m)t€Rm7 ‘:‘7&0

—
—

We shall assume that the respective bases { @1, ..., Pk } and {uy, . .., uy } of the finite element
spaces S; and V} are chosen so that the following conditions hold: there exist positive constants
Aq and A; such that forall &1, ..., &k, m1,---,7k € R,

K K 2 K

MR <D G| <A & ©.1)
i=1 i=1 0 i=1
k k 2 k

MR 02 < D mawg|| < AR . 6.2)
i=1 i=1 0 i=1

The above conditions hold for most finite elementispaces S} and Vf:. If, in addition, the corre-
sponding regular family {7}, } of triangulations of (2 is quasi-uniform [28, 34], i.e., there exists a
positive constant C' independent of & such that

h < Cdiam(QF) VO! € T, Ty, € {Th},
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TABLE L. The approximations ®;, with £ = 2.5 and v = 0.25 (e = 2.0).

1/h L?-error RelErr L?-rate || - ||sp-error RelErr || - ||sp-rate
2 0.85600 2.91285e-1 — 7.15156 4.58279%-1 —
4 0.24756 8.42423e-2 1.79 3.52245 2.25722e-1 1.02
8 0.06657 2.26540e-2 1.89 1.76541 1.13130e-1 1.00
16 0.01708 5.81339-3 1.96 0.88398 5.66466e-2 1.00
32 0.00431 1.46587¢-3 1.99 0.44219 2.83361e-2 1.00

then we have the following inverse estimates:

2

K K K
D G| <ChP) 6% <CAY &, (6.3)
i=1 1 i=1 0 i=1
k 2 k 2 k
D onwl| <CRTD maw|| < CAY 7, (6.4)
i=1 1 i=1 0 i=1

where C'is a positive constant independent of h.

Theorem 6.1.  Under conditions (6.1) and (6.3) [respectively, (6.2) and (6.4)] the condition
number of the linear system arising from problem (3.8) [respectively, problem (3.15)] is O(h~2).

Proof. Let @, := Zfil &®; € ;. Since the bilinear form By, (-, ) is coercive on S x S,
by (6.1) we have

K
Bop(®n, ®n) = Cll@nf = C @[5 > CALR® Y €.

i=1
On the other hand, by the continuity of By, (+,-) on S x S, we get from (6.3) that

K
Bop(®1, n) < O @47 < CA2 Y €.

=1

Thus, Amax < CAy and i, > CAh2, and so the condition number for problem (3.8)
is O(h™2). The estimates of the condition number for problem (3.15) can be achieved in a
similar way. -

TABLE II. The approximations uy with E = 2.5 and v = 0.25 (e = 2.0).

1/h L?-error RelErr L?-rate || - ||a-error RelErr || - ||a-rate
2 0.17245 2.43881e-1 — 1.40921 4.48564e-1 —
4 0.04299 6.08011e-2 2.00 0.70905 2.25697e-1 0.99
8 0.01075 1.52010e-2 2.00 0.35569 1.13221e-1 1.00
16 0.00269 3.79905e-3 2.00 0.17801 5.66632e-2 1.00

32 0.00067 9.48164e-4 2.00 0.08903 2.83383e-2 1.00
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TABLE III. Rates of convergence in the || - ||sp-norm with E = 2.5 and small e.

v =0.49 v = 0.499 v = 0.4999 v = 0.49999 v = 0.499999
1/h €~ 4.1e-2 € ~ 4.0e-3 € ~ 4.0e-4 € ~ 4.0e-5 € ~ 4.0e-6
2 - - - - -
4 0.97 0.96 0.96 0.96 0.96
8 0.98 0.98 0.97 0.97 0.97
16 0.99 0.99 0.99 0.99 0.99
32 1.00 1.00 1.00 1.00 1.00

VIl. NUMERICAL EXPERIMENTS

We shall present a simple example solved by using our two-stage least-squares finite element
scheme (3.8) and (3.15). To simplify the numerical implementation, we shall assume that 2 =
(0,1) x (0,1),T'; = 09, and the square domain €2 is uniformly partitioned into a set of 1/h?
square subdomains Q? with side-length h. The problem we present has the smooth exact solution,

©1 m cos(ma) sin(my)

P2 msin(mx) cos(mwy)

ws | 7 cos(mx) sin(my) 7.1
p | | —Z(cos(mx)sin(my) + sin(rx) cos(my)) ‘
up sin(mz) sin(my)

Ug sin(mz) sin(7y)

Substituting (7.1) into (2.16)—(2.17), we have G = (0,0)%, F = (f1, f2,0,0)¢, and

f1 = 2um? { (Z + i) sin(mz) sin(ry) — (; + 1) cos(z) Cos(wy)} ,

fo = 2un? { (2 + i) sin(mx) sin(my) — (; + 1) cos(mz) Cos(wy)} .

Piecewise bilinear finite elements are applied for all the unknowns. For the case of Poisson’s
ratio » = (.25 and Young’s modulus £ = 2.5, the results are collected in Table I and Table II,
where RelErr denotes the relative error and, for simplicity, the data function @, is replaced by the
exact function ®€ in the second stage (3.15). Since the || - ||sp-norm and the || - ||4-norm are both
equivalent to the H'-norm on the spaces S and V), respectively, the numerical results in Table
I and Table II indicate that the two-stage least-squares procedure (3.8) (3.15) achieves optimal
convergence both in the L2-norm and in the H'-norm for all the unknowns.

TABLEIV. Rates of convergence in the L?-norm with E = 2.5 and small e.

v =0.49 v = 0.499 v = 0.4999 v = 0.49999 v = 0.499999
1/h €~ 4.1e-2 € ~ 4.0e-3 € ~ 4.0e-4 € ~ 4.0e-5 € ~ 4.0e-6
2 — - — — —
4 1.78 1.76 1.76 1.76 1.76
8 1.89 1.89 1.89 1.89 1.89
16 1.96 1.95 1.95 1.95 1.95

32 1.99 1.98 1.98 1.98 1.98
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The behavior of convergence for the stresses and pressure influenced by the nonnegative
parameter € is particularly examined. Table III and Table IV exhibit that, except on very coarse
meshes, the optimal convergence is still essentially ensured for various values of the parameter,
even for nearly incompressible elasticity. That is, computational results in Table III and Table IV
indicate that the behavior of convergence is uniform in the nonnegative parameter.

The authors would like to thank two anonymous referees for their careful reading of the manuscript
and their fruitful comments and suggestions.
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