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Abstract 

A consistent co-rotational finite element formulation and numerical procedure for the linear buckling analysis of three-dimenslonal elastic 
Euler beam is presented. A mechanism for generating configuration dependent conservative moment is proposed and the corresponding load 

stiffness matrix is derived. It is assumed that the prebuckling displacements and rotations of the structure and the corresponding 

deformations of the elements are linearly proportional to the external loading. The prebuckling rotations of the structure are fixed axis 
rotations or small rotations, and the effect of the prebuckling displacement on transformation matrix for the coordinates transformation can 

be ignored. All coupling among bending, twisting and stretching deformations for beam element is considered by consistent linearization of 

the fully geometrically nonlinear beam theory. An inverse power method for the solution of the generalized eigenvalue problem is used to 

find the buckling load and buckling mode. Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed 

method. 0 1998 Elsevier Science S.A. 

1. Introduction 

The linear buckling analysis has been the subject of considerable research, and many valuable results have 
been reported in the literature [l- 131. The buckling of the beam structures is caused by the coupling among 

bending, twisting and stretching deformations of the beam members. Thus, the buckling analysis is known as a 
second-order analysis [l]. In order to capture correctly all coupling among bending, twisting and stretching 

deformations of the beam elements, the formulation of beam elements might be derived by consistent 
linearization of the fully geometrically nonlinear beam theory [14]. However, the governing equations of 

conventional linear buckling analysis are not derived from the consistent linearization of the fully geometrically 
nonlinear beam theory. Thus, the conventional linear buckling analysis cannot account for the complete 

deformational coupling. A large number of nonlinear models of thin-walled beams has been proposed (e.g. see 
the references in [ 151). However, most of them are applied to the non-linear analysis of beams. Their application 

in the linear buckling analysis has been rather limited (e.g. [ 12,131. To the authors’ knowledge, it seems that 
their governing equations are not obtained by consistent linearization of the fully geometrically nonlinear beam 

theory. The objective of this study is to present a consistent co-rotational finite eiement formulation and 
numerical procedure for the linear buckling analysis of three-dimensional elastic Euler beam using consistent 
linearization of the fully geometrically nonlinear beam theory. In [ 161, Hsiao presented a co-rotational total 
Lagrangian formulation of beam element for the nonlinear analysis of three-dimensional beam structures with 
large rotations but small strains. All coupling among bending, twisting and stretching deformations for beam 
element is correctly considered by the fully geometrically nonlinear beam theory. Element deformations and 
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element equations are defined in terms of element coordinates which are constructed at the current configuration 

of the beam element. The element deformations are determined by the rotation of element cross section 
coordinates, which are rigidly tied to element cross section, relative to the element coordinate system. In 

conjunction with the co-rotational formulation, the higher-order terms of nodal parameters in element nodal 

force and stiffness matrix are consistently dropped. It seems that this element can be adapted for the linear 

buckling analysis of the beam structures. Thus, the beam element presented in [16] is modified and employed 

here. 
The configuration dependent conservative moment is considered and the corresponding load stiffness matrix 

is derived. It is assumed that the prebuckling displacements and rotations of the structure and the corresponding 

deformations of the elements are linearly proportional to the external loading. The prebuckling rotations of the 

structure are fixed axis rotations or small rotations, and the effect of the prebuckling displacement on 

transformation matrix for the coordinates transformation can be ignored. An inverse power method for the 

solution of the generalized eigenvalue problem is used to find the buckling load and buckling mode. Numerical 

examples are presented to demonstrate the accuracy and efficiency of the proposed method. 

2. Finite element formulation 

In the following only a brief description of the beam element is given. The more detailed description may be 

obtained from [16]. 

2.1. Basic assumptions 

The following assumptions are made in derivation of the beam element behavior. 

(1) The beam is prismatic and slender, and the Euler-Bernoulli hypothesis is valid. 

(2) The cross section of the beam is doubly symmetric. 

(3) The unit extension and the twist rate of the centroid axis of the beam element are uniform. 

(4) The cross section of the beam element does not deform in its own plane and strains within this cross 

section can be neglected. 

(5) The out-of-plane warping of the cross section is the product of the twist rate of the beam element and the 

Saint Venant warping function for a prismatic beam of the same cross section. 

(6) The deformations of the beam element are small. 

2.2. Coordinate systems 

In this paper, a co-rotational total Lagrangian formulation is adopted. In order to describe the system, we 

define four sets of right handed rectangular Cartesian coordinate systems: 

(1) A fixed global set of coordinates, Xc (i = 1,2, 3) (see Fig. 1); the nodal coordinates, displacements, and 

rotations, and the stiffness matrix of the system are defined in this coordinates. 

(2) Element cross section coordinates, xf (i = 1,2,3) (see Fig. 1); a set of element cross section coordinates 
is associated with each cross section of the beam element. The origin of this coordinate system is rigidly 
tied to the shear center of the cross section. The ZK~ axes are chosen to coincide with the normal of the 
unwrapped cross section and the xi and .x: axes are chosen to be the principal directions of the cross 
section. 

(3) Element coordinates, xi (i = 1,2,3) (see Fig. 1); a set of element coordinates is associated with each 
element, which is constructed at the current configuration of the beam element. The origin of this 
coordinate system is located at node 1, and the x, axis is chosen to pass through two end nodes of the 

element; the x2 and x3 axes are chosen to be the principal directions of the cross section at the 
undeformed state. Note that this coordinate system is a local coordinate system not a moving coordinate 
system. The deformations, internal nodal forces and stiffness matrix of the elements are defined in terms 
of these coordinates. In this paper the element deformations are determined by the rotation of element 
cross section coordinate systems relative to this coordinate system. 
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Fig. I. Coordinate systems. 

(4) Load base coordinates, Xp (i = 1,2,3); a set of load base coordinates is associated with each 
configuration dependent moment. The origin of this coordinate system is chosen to be the node where the 
configuration dependent moment is applied. The mechanism for generating configuration dependent 
moment is described in this coordinates, and the corresponding external load and load stiffness matrix are 
defined in terms of this coordinates. 

In this paper, the symbol { } denotes column matrix. The relations among the global coordinates, element 
cross section coordinates, element coordinates and load base coordinates may be expressed by 

XG=AG#, XG =A,$, XG = AGpXP (1) 

where Xc = {XF, XF, X,“}, xS = {xf, xi, xs}, x = {xi, x2, x,}, and Xp = {Xp, X:, X:}; A,,, A,, and AGP are 
matrices of direction cosines of the element cross section coordinate system, element coordinate system, and 
load base coordinate system, respectively. 

2.3. Rotation vector and rotation parameters 

For convenience of the later discussion, the term ‘rotation vector’ is used to represent a finite rotation. Fig. 2 
shows that a vector b which as a result of the application of a rotation vector + is transported to the new 
position b. The relation between b and b may be expressed as [ 171 

b=cos&+(l-cos~$)(u~b)+sinf#@Xb) (2) 

where 4 is the angle of counterclockwise rotation, and a is the unit vector along the axis of rotation. 
Let ej and es (i = 1,2,3) denote the unit vectors associated with the xi and $ axes, respectively. Here, the 

traid es in the deformed state is assumed to be achieved by the successive application of the following two 
rotation vectors to the traid ei: 

0, = e,n (3) 

and 

0, = e,t (4) 
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Fig. 2. Rotation vector 

where 

n = (0, e&e; + 0:)“2, e&e; + rQ1’*] 

= (0, n2, nJ (5) 

t = {cos en, e,, 4,) (6) 

cos 0, = (1 - f?; - oy (7) 

dW 
O, = - ds 7 

in which n is the unit vector perpendicular to the vectors e, and es and t is the tangent unit vector of the 
deformed centroid axis of the beam element. Note that es coincides with t. 0, is the inverse of cos 6”. u(s) and 
W(S) are the lateral deflections of the centroid axis of the beam element in the x2 and xg directions, respectively, 
and s is the arc length of the deformed centroid axis. 

Using Eqs. (2)-(8), the relation between the vectors e, and es (i = 1,2,3) in the element coordinate system 
may be obtained as 

ef = [t, R, , R,]e, = Re, (9) 

R, =cosd,rl +sinO,r,, R, = -sin 8,r, + cos 0, r2 

r, = {-f3,, cos 0, + (1 - cos O,>ni, (1 - cos 6,)n,n,> 

r2 = {0,, (1 - cos O,>n,n,, cos 0, + (1 - Cos O,,)rz:> 

(10) 

where R is the so-called rotation matrix. The rotation matrix is determined by bi (i = 1,2,3). Thus, 0, are called 
rotation parameters in this study. 

Let 8 = {Or, o,, 0,) be the column matrix of rotation parameters, 68 be the variation of 6. The tmid ef 
(i = 1,2,3) corresponding to 8 may be rotated by a rotation vector &#J = (64,) S&, S+,> to reach their new 
positions corresponding to 8 + 68 [ 161. When 0, and 0, are much smaller than unity, the relationship between 68 
and SC+ may be approximated by [161 

-412 
0 1 6&=T-%$. (11) 
1 
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2.4. Nodal parameters and forces 

The element employed here has two nodes with six degrees of freedom per node. Two sets of element nodal 

parameters termed ‘explicit nodal parameters’ and ‘implicit nodal parameters’ are employed. The explicit nodal 

parameters of the element are used for the assembly of the system equations from the element equations. They 
are chosen to be ujj, the x, (i = 1, 2,3) components of the translation vectors uI at node j(j = 1,2) and +ij, the x, 

(i = 1, 2,3) components of the rotation vectors +j at node j(j = 1,2). Here, the values of 4j are reset to zero at 

current configuration. Thus, SC$~~, the variation of 4,j, represent infinitesimal rotations about the xi axes [16], and 

the generalized nodal forces corresponding to S+ij are m,,, the conventional moments about the x< axes. The 

generalized nodal forces corresponding to Suij, the variation of ulj, are J;,, the forces in the x, directions. 

The implicit nodal parameters of the element are used to determine the deformation of the beam element. 

They are chosen to be u;,, the x1 (i = 1,2, 3) components of the translation vectors u, at node j (j = 1,2) and qj, 

the nodal values of the rotation parameters fl (i = 1,2,3) at node j (j = 1,2). The generalized nodal forces 

corresponding to Suij and Sflj are J;, and ml, the forces in the x, directions and the generalized moments, 

respectively. Note that rnt. are not conventional moments, because SO, are not infinitesimal rotations about the x, 

axes at deformed state. 
In view of Eq. (1 l), the relations between the variation of the implicit and explicit nodal parameters maybe 

expressed as 

(12) 

where Su, = {SU,~, SuZj, SuJj}, Sg = {SO,,, SOZj, S13~~3j) and S4j = {SC&,, C&j, S&j, (j = 1,2); Z and 0 are the 
identity and zero matrices of order 3 X 3, respectively; T,:’ (j = 1,2) are nodal values of T - ’ given in Eq. ( 11). 

Let f= If,, m,, f,, m2>, f, = if,, mf, .f,,m:l, 
M,, 

where J;. = {fij, Ljr f,>, mj = {m,p m2p m3,,19 and my = 
m$, mlj} (j = 1, 2), denote the internal nodal force vectors corresponding to the variation of the explicit 

and implicit nodal parameters, Sq and Sqe, respectively. Using the contragradient law [18] and Eq. (12) the 

relation between f and f,, may be given by 

f=Ti& (13) 

The global nodal parameters for the system of equations corresponding to the element local nodes j ( j = 1, 2) 

should be consistent with the element explicit nodal parameters. Thus, they are chosen to be U,,, the Xi 

(i = 1, 2, 3) components of the translation vectors ZJ, at node j (j = 1,2) and qj, the X, (i = 1, 2,3) components 

of the rotation vectors q. at nodes j (j = 1,2). Here, the values of q. are reset to zero at current configuration. 

Thus, Sqj, the variation of qj, represent infinitesimal rotations about the Xi axes [ 161, and the generalized nodal 

forces corresponding to SqY are the conventional moments about the X, axes. The generalized nodal forces 

corresponding to SU,,, the variation of U,, are the forces in the X! directions. 

2.5. Kinematics of beam element 

The deformations of the beam element are described in the current element coordinate system. From the 

kinematic assumptions made in this paper, the deformations of the beam element may be determined by the 

displacements of the centroid axis of the beam element, orientation of the cross section (element cross section 

coordinates), and the out-of-plane warping of the cross section. Let Q (Fig. 1) be an arbitrary point in the beam 
element, and P be the point corresponding to Q on the centroid axis. The position vector of point Q in the 
undeformed and deformed configurations may be expressed as 

rO =.xe, fye, +ze, (14) 

and 

r = X, (s)e, + u(s>e, + w(s>e, + d,,,e’I + ye”, + 4 (15) 
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where x,(s), u(s) and w(s) are the x1, x2 and x j coordinates of point P, respectively, s is the arc length of the 
deformed centroid axis measured from node 1 to point P. The relationship among x,(s), u(s), W(S) and s may be 
given as 

I 
s 

x,(s)= u,, + cos 8, ds 
0 

(16) 

where u,, is the displacement of node 1 in the x, direction, and cos 13, is defined in Eq. (7). Note that due to the 
definition of the element coordinate system, the value of u 1 1 is equal to zero. However, the variation of u, , is 
not zero. Making use of Eq. (16), one obtains 

2& 

cos en d{ 

(17) 

e = x,(S) - x,(O) = L - U] 1 + u*2 (18) 

and 

+1+$ (19) 

in which S and 8 are the current arc length and chord length of the centroid axis of the beam element, 
respectively, and L is the chord length of the undeformed beam axis. 

Here, the lateral deflections of the centroid axis u(s) and W(S) are assumed to be the Hermitian polynomials of 
s, and the rotation about the centroid axis 19~ (s) (Eq. (3)) is assumed to be linear polynomials of s. u(s), w(s) and 
13,(s) may be expressed by 

where uZj and u3, (j = 1,2) are nodal values of u and w at nodes j, respectively, and el, (i = 1,2,3, j = 1,2) are 
nodal values of @ at nodes j. Note that, due to the definition of the element coordinates, the values of u2j and LQ~ 
(j = 1,2) are zero. However, their variations are not zero. N, (i = l-6) are shape functions and are given by 

N, = $ Cl- 5>2(2 + 51, N~=~~1-52)(1-5), 
Nj = $ (1 + 02(2 - 0, N,=;(-1+&2)(1+&, 

&=&l-C), Ne=;(l+&. 

The axial displacements of the centroid axis may be determined from the lateral deflections 
extension of the centroid axis using Eq. (16). 

(21) 

and the unit 

If X, y and z in Eq. (14) are regarded as the Lagrangian coordinates, the Green strain E, !, q2 and E,~ are 
given by [19] 

811 = + (r:r,, - 1) 

Using the chain rule 

r,X = r,(l + co) 

for differentiation, tx in Eq. (22) may be expressed as 

(23) 
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(24) 

where &(, is the unit extension of the centroid axis. Making use of the assumption of uniform unit extension, one 

may rewrite Eq. (24) as 

S 
&,)=x- 1 . 

Substituting Eqs. (5)-( IO), (15), (23), (25) into Eq. (22), c,, , q2 and E,~ can be calculated. 6, , , E,* and F,~ 
are given in [ 161 and are not repeated here. 

2.6. Element nodal force vector 

The element nodal force vectorf, (Eq. (13)) corresponding to the implicit nodal parameters are obtained from 

the virtual work principle in the current element coordinates. It should be mentioned again that the element 

coordinate system is a local coordinate system not a moving coordinate system. Thus, a standard procedure is 

used here for the derivation of f,. For convenience, the implicit nodal parameters are divided into four 

generalized nodal displacement vectors ui (i = a, 6, c, d), where 

II, = {U,,? u12] (26) 

and uh, uC and ud are defined in Eq. (20). 
The generalized force vectors corresponding to 6u,, the variation of ui (i = a, b, c, d) are 

f, = {A7 mf,, .fk 4J 
JI =f.h19m5,~.tL~mZNJ 
f, = hP, 3 mPJ . 

The virtual work principle requires that 

%A, + WJ, + W.& + wlfd 

= 
I 

(all SC,, + 2u,,, 6s,, + 2a,, 8QdV 
V 

(27) 

where V is the volume of the undeformed beam, gi, = EC,, , CT,~ = 2Gs, *, and u,~ = AGE,,, where E is the 

Young’s modulus and G is shear modulus. 

If the element size is chosen small enough, the values of the nodal parameters (displacements and rotation 
parameters) of the element defined in the current element coordinate system may always be much smaller than 

unity. Thus, the higher-order terms of nodal parameters in the element internal nodal forces may be neglected. 

However, in order to include the nonlinear coupling among the bending, twisting, and stretching deformations, 

the terms up to the second order of nodal parameters are retained in element internal nodal forces by consistent 
linearization of Eq. (28). The nodal force vectors J; (i = a, b, c, d) are given in [ 161 and not repeated here. 

2.7. Element tangent stiffness matrices 

The element tangent stiffness matrix corresponding to the explicit nodal parameters (referred to as explicit 
tangent stiffness matrix) may be obtained by differentiating the element nodal force vector f in Eq. ( 13) with 
respect to explicit nodal parameters. Using Eqs. (12) and (13), we obtain 

where k, = dfo/ aq, is the tangent stiffness matrix corresponding to implicit nodal parameters (referred to as 
implicit tangent stiffness matrix), and H is a unsymmetrical matrix and is given by 
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1 

in which 0 is a 

(30) 

0 0 0 0 0 1 H, 

zero matrix of order 3 X 3 and 

0 0 
m31 --m,j 

1 
O TrnYi 

0 1 (31) 

1 0 
-- m,i 2 

Using the direct stiffness method, the implicit tangent stiffness matrix k, may be assembled by the 

submatrices 

k,=$ 
I 

(32) 

where J; (i = a, b, c, d) are defined in Eq. (27) and ui (i = a, b, c, d) are defined in Eqs. (20) and (26). k,, are 

given in [ 161, and are not repeated here. It is noted that the element tangent stiffness matrix k in Eq. (29) is 

unsymmetrical. This observation is consistent with that of Simo and Vu-Quoc [20] and Crisfield [21] who 

adopted different formulation. However, numerical experiments of the present authors have shown that for 

conservative problems the tangent stiffness matrix of the structure become symmetrical at equilibrium 

configuration. This observation is again consistent with the theory of Simo and Vu-Quot. 

Note that because only the terms up to the second order of nodal parameters are retained in f,, only the terms 

up to the first order of nodal parameters are retained in the element stiffness matrix given in Eq. (29). Thus the 

element stiffness matrix in Eq. (29) may be rewritten symbolically as 

k=k,+k, (33) 

where k, comprises all zeroth order terms of nodal parameters in k and k, comprises all first-order terms of 
nodal parameters in k. k, is the linear stiffness matrix of elementary beam element, and k, is the geometrical 

stiffness matrix. 

Note that the element coordinate system is only a local coordinate system not a moving or rotating coordinate 

system here. Thus, the element tangent stiffness matrix referred to the global coordinate system is obtained by 

using the standard coordinate transformation and may be expressed by 

kc = T,,kT;, (34) 

TGE=[; j- AiE A!,l (35) 

where 0 is a zero matrix of order 3 X 3 and A,, is defined in Eq. (1). 

2.8. Load stifness matrix 

Different ways for generating configuration dependent moment were proposed in the literature [5,6]. Here, for 
simplicity, only the conservative moments generated by conservative force or forces (with fixed directions) are 
considered, and two possible ways for generating conservative moment are employed. In this study, a set of load 

base coordinates Xp (i = 1,2,3) associated with each configuration dependent moment are constructed at the 
current configuration. The mechanism for generating configuration dependent moment is described in this 
coordinates, and the corresponding external load and load stiffness matrix [22] are defined in terms of this 
coordinates. Unless stated otherwise, all vectors and matrices in this section are referred to this coordinates. 
Note that this coordinate system is just a local coordinate system constructed at the current configuration, not a 
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moving coordinate system. Thus, it is regarded as a fixed coordinated system in the derivation of the load 

stiffness matrix. 

The first way for generating configuration dependent moment may be described as follows. 

Consider a sphere of radius R which centroid is rigidly connected with the structure at node 0 as shown in 

Fig. 3. Two strings wound around a great circle of the sphere are acted upon by forces of magnitude I? Thus, the 
strings are always tangent to the sphere. The great circle and the forces are on the same plane at the undeformed 

configuration of the structure. However, the great circle and the forces are generally not on the same plane when 

the structure is deformed. The origin of the load base coordinate system is chosen to be located at the node 0. 
The Xr axis is chosen to coincide with the normal of the plane of the great circle, and the Xc and Xp axes lie in 

the plane of the great circle. 

Let A denote the contact point of the force P and the great circle. Because P is tangent to the sphere, P is 

perpendicular to the line OA. Let eA denote unit vector in the direction of line OA. eA may be expressed by 

e,, = ~/@‘a)“’ (36) 

a=e,PXn’ = (0, (3, - .e*> (37) 

where e,’ = {6,, kY2, CT} is th e unit vector in the direction of P, and 12’ is the unit normal of the plane of the great 

circle. Note that np coincides with ef = (1, 0, 0}, the unit vector associated with the XT axis. 

The external moment vector at node 0 generated by the above mentioned mechanism may be expressed by 

M=Me, Xe,P (38) 

where M = 2RP is the magnitude of the moment. 

The moment in Eq. (38) is rotation dependent. When an incremental rotation vector Avp = {Acp,, Ap2, A& 

passing through node 0 is applied to the sphere, the unit normal of the plane of the great circle, rzp has an 

incremental change AnP. If the magnitude of A4pp is small enough, AnP may be expressed as 

An’ = Aqp X np = (0, APT, -Ap2}. (39) 

Note that Aqp is not applied to the load base coordinates here. The incremental moment corresponding to A+D’ 

may be expressed by 

hM=MAe,., Xeg (40) 

where 

Ae, = a Xe; 

Aa=eiXAnP 

Fig. 3. Mechanism for generating configuration dependent moment. 

(41) 

(42) 
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Using the tangent stiffness approach, the relation between the incremental moment AM and the corresponding 
load stiffness matrix k, may be expressed as 

AM=k,&op. 

From Eqs. (36), (37), and (39)-(43), one obtains 

k, = M( e; + e:)-“*kpa + M( e; + e;)-3’2kph 

(43) 

(44) 

where 

0 4 f3 - e, e2 
kpa= 0 

[ 

eze3 e; + e; (45) 

0 -e;-e; - e2 e3 1 
I 

0 -e, e3( e; + e;) e, e2e,< e; + e:) 
k,, = 0 e:e2e3 -e;e; (46) 

0 efeg -efe2e3 1 
Three special cases shown in Fig. 4 are considered here. Following [5], they are referred to as quasitangential 

(QT) moments of the first and second type, and semitangential (ST) moment. The load stiffness matrices 
corresponding to QT and ST moment at the configurations shown in Fig. 4 may be obtained from Eqs. 
(44)-(46) and given by 

0 0 0 
k,QT’=MO 0 0 

[ 1 0 -1 0 

0 0 0 

k,QT’=M [ 0 0 1 0 0 0 1 
k;‘+ [ 0 0 0 0 0 1 

0 -1 0 
1 

(47) 

(48) 

(49) 

The second way for generating configuration dependent moment may be described as follows. 
Consider a rigid arm of length R which end is rigidly connected with the structure at node 0 as shown in Fig. 

5. The other end of the rigid arm is acted upon by a conservative force (with a fixed direction) of magnitude P. 
The origin of the load base coordinates Xt (i = 1,2,3) is chosen to be located at the node 0. The XT axis is 
chosen to coincide with the axis of the rtgtd arm, and the XI and X: axes are perpendicular to the rigid arm. 

XT 
P 

L R I Rigid arm 

0 x: 

Xl 

Fig. 4. Quasitangential (QT) moment and semitangential (ST) moment. 

Fig. 5. Mechanism for generating configuration dependent moment by an off-axis load. 
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The external moment vector at node 0 generated by the above mentioned mechanism may be expressed by 

M=RPtPXei (50) 

where eg = {8,, eze,, &JJ} is the unit vector in the direction of P and tP is the unit vector in the axial direction of 

the rigid arm. Note that tP coincides with ep = { 1, 0, 0}, the unit vector associated with the XT axis. 

The moment in Eq. (50) is rotation dependent. When an incremental rotation vector Aqp = {Acp,, Apz2, APT} 

passing through node 0 is applied to the rigid arm, the unit vector tP has an incremental change At’. If the 
magnitude of App is small enough, At’ may be expressed as 

At’ = Aqpp x tP = (0, Ap,, -a~~}. (51) 

Note thut App is not applied to the load base coordinates here. The incremental moment corresponding to A+cJ’ 

may be expressed by 

AM = M At’ X e,’ 

= RPIG Av~ + 4 A4ov -4 A4pzv -4 44. 

From Eqs. (43) and (52), the corresponding load stiffness matrix may be expressed as 0 
k,=RP [ 0 

4 4 
-8, 

0 0 

0 1 . 
-fi 

(52) 

(53) 

The load stiffness matrix referred to the global coordinate system is obtained by using the standard coordinate 

transformation and may be expressed by 

k,” = A GPkpA ;, (54) 

where A,, is the transformation matrix given in Eq. ( 1). 

3. Consistent linear buckling analysis 

3.1. Assumptions 

Four assumptions are made in the present buckling analysis and given as follows: 

(1) The external loading is proportional to one loading parameter. 

(2) The prebuckling displacements and rotations of the structure and the corresponding deformations and 

rigid body rotations of the beam element are linearly proportional to the external loading. 

(3) The prebuckling rotations of the structure are rotations about axes with the same fixed direction or small 

rotations. 

(4) The effect of the prebuckling displacements on the transformation matrix for coordinate transformation 
may be ignored. 

3.2. Criterion of the buckling state 

Here, the zero value of the tangent stiffness matrix determinant is used as the criterion of the buckling state. 
Let K,(A) denote the tangent stiffness matrix of the structure corresponding to the loading parameter h. The 
criterion of the buckling state may be expressed as 

D(A) = det(K,( A)( = 0 . 

The minimum root of Eq. (55) is the buckling load. 

(55) 
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3.3. Determination of the tangent st@ness matrix of the structure 

The tangent stiffness matrix of the structure corresponding to A is assembled by the element stiffness matrices 

and load stiffness matrices corresponding to A using direct stiffness method. The element tangent stiffness 

matrix corresponding to A may be determined as follows. 

A linear analysis for A = 1 is carried out first. Let uf = {uyj, ut,, &,,> and 44 = {+t,, 4ijy +ijI (j = 1,2) 
(referred to the initial element coordinates) denote displacement and rotation vectors of an element at node j, 

which are extracted from the linear solution for A = 1, and then transformed from the global coordinates to the 

initial element coordinates. The rotation vector corresponding to rotation about axis with fixed direction or small 

rotation may be regarded as true vector. Thus, making use of assumptions (2) and (3), the rigid body rotation 

vector of the element +” and the vectors of the deformational rotation parameters 4 at nodes j (j = 1,2) 

corresponding to uf and 4f (j = 1,2) may be determined by 

q = 4” - cp” (57) 

where L is the initial length of the beam element. The unit extension of the centroid axis of the beam element 

may be determined by 

1 
&” =,(u’;, - uk,). (58) 

Making use of assumption (2), and Eqs. (56)-(58), the element tangent stiffness matrix given in Eq. (33) 

corresponding to loading parameter A referred to the current element coordinates can be calculated and written 
in the form 

k = k, + Nzyf (59) 

where kyf IS the geometric stiffness matrix corresponding to A = 1. 

The current element coordinates corresponding to loading parameter A can be obtained by the application of 

the rotation vector A4R to the initial element coordinates. The current load base coordinates corresponding to 

loading parameter A can be obtained by the application of the rotation vector A4: to the initial load base 
coordinates, where 4: is the rotation vector at the origin of the load base coordinates, which is extracted from 

the linear solution for A = 1. However, making use of assumption (4), the initial transformation matrices A,, 
and A,, constructed at the undeformed structure are used in Eqs. (34) and (54), respectively, for different 

values of loading parameter A. Thus, the tangent stiffness matrix of the structure is also a linear function of the 

loading parameter A, and may be written in the form 

KT = K, + AK:’ (60) 

where K, is the linear stiffness matrix of the structure, and Kf”’ is the geometric stiffness matrix of the structure 
corresponding to A = 1. 

3.4. Calculation of the buckling load 

From Eq. (60), we know that Eq. (55) is equivalent to the generalized eigenvalue problem 

K,Q = -,U(:"'Q 

where Q is the eigenvector. The minimum eigenvalue of Eq. (61) is the buckling load and the corresponding 
eigenvalue is the buckling mode. Here, the inverse power method [23] is use to find the buckling load and 
buckling mode. 
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4. Numerical studies 

EXAMPLE 4.1: Cantilever beam subjected to end force. The example considered here is a cantilever beam 

subjected to a lateral end force P as shown in Fig. 6. The Xp (i = 1,2, 3) axes of the global coordinate system 

shown in Fig. 6 coincide with xf axes, the axes of the element cross section coordinate system in the 

undeformed beam. The geometry and material properties are: length L = 1 m, cross sectional area A = 3 X 

lop5 m, moment of inertia about .xi axis Z, = 1.25 X lop9 m4, moment of inertia about $ axis I, = lo-’ m4, 

torsional constant J = lo-” m4, Young’s modulus E = 1.0 X 10’ N/m*, and shear modulus G = 5 X lO’N/m*. 
The classical buckling load for this example is P,, = (4.013/Lz)dv = 0.10033 N [3]. 

The buckling loads of the present study together with the results of [6] and [ 121 are given in Table 1. Very 

good agreement among all these solutions is observed. 

EXAMPLE 4.2: Cantilever beam subjected to end moment. The example considered here is a cantilever beam 

subjected to end moment M. The quasitangential and semitangential moments are considered. The corresponding 

load base coordinates are shown in Fig. 7. The geometry and material properties of the beam are identical with 

those of Example 1. The classical buckling moment is quoted in [3] as 

The buckling loads of the present study together with the finite element results of [6] and [ 121, and analytical 

solution of [3] are given in Table 2. The results of the present study, [6], and [12] are obtained using ten 

elements. Very good agreement among all these solutions is observed. 

EXAMPLE 3: Cantilever angle subjected to a horizontal end force. The example of the end cross section as 

shown in Fig. 8. Here P( +) and P(-) denote forces directed along positive and negative Xp axis, respectively. 

The geometry and material properties are: L = 240 mm, b = 0.6 mm, h = 30 mm, Young’s modulus E = 
71240 N/mm*, and shear modulus G = 27191 N/mm’. 

The buckling loads of the present study obtained by using 20 elements for P(+) and P(-) are 1.0880 N and 

0.6804 N, respectively. The results of the present study are identical with those results given by Argyris et al. [7] 

using 20 elements. 

8 
P jzq L 

----_-.-_-_ x: 

Fig. 6. Cantilever beam subjected to lateral load. 

Fig. 7. Cantilever beam subjected to end moment. 

Table 1 
Critical load of cantilever beam subiected to end force 

Number of 

elements 

2 

4 

6 

10 

Critical loads P_(N) 

Present Argyris [6] Saleeb (121 

0.10317 0.10725 1 0.1414 

0.10061 0.101857 0.1083 

0.10043 0.101002 0.1037 

0.10036 0.100536 0.1016 



272 K.M. Hsiao et al. I Comput. Methods Appl. Mech. Engrg. 156 (1998) 259-276 

Table 2 

Critical load of cantilever beam subiected to end moment 

Critical moments M,, (N . cm) 

Present 

Argyris [7] 

Saleeb [ 121 

Theory [3] 

QTl and QT2 ST 

3.929 7.868 

3.93103 7.88632 

3.9348 7.9170 

3.927 7.854 

L-=7l ----_-_____ 
e-J 

XS v i 
Sect. e-e i L 

XX 

41 

i 
P(+) _1__l 

XZ h 

4t.- 

b 

Fig. 8. Cantilever angle subjected to a horizontal end force. 

Fig. 9. Cantilever angle subjected to end moment. 

EXAMPLE 4: Cantilever angle subjected to end moment. The example considered here is a cantilever angle 
subjected to end moment M. The quasitangential and semitangential moments are considered. The corresponding 
load base coordinates are shown in Fig. 9. The geometry and material properties of the beam are identical with 
those of Example 1. 

The buckling moments of the present study together with the results of [6] and [ 121 are given in Table 3. Very 
good agreement among all these solutions is observed. 

Table 3 

Critical moments for cantilever angle with end bending moment 

Type of 

moment 

Number of 

elements 

Critical moments M,,(N . cm) 

Present Argyris 161 Saleeb [12] 

QTl 8 0.4934 0.4935 0.4936 

12 0.4935 0.4935 0.4935 

20 0.4935 0.4935 0.4935 
QT2 8 3.445 3.453 3.467 

12 3.439 3.442 3.448 
20 3.435 3.437 3.439 

ST 8 0.98655 0.98699 0.9878 

12 0.98679 0.98698 0.9873 

20 0.98691 0.98698 0.987 1 
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Sect. e-e 

Sect. e-e 

x”z 

x: 4 h 

--II-- 
b 

Fig. 10. Cantilever angle subjected to end torsion. 

Fig. 11, Simply supported angle frame subjected to uniform moment. 

EXAMPLE 5: Cantilever angle subjected to end torsion. The example considered here is a cantilever angle 

subjected to end torsion T. The quasitangential and semitangential moments are considered. The corresponding 
load base coordinates are shown in Fig. 10. Two cases of cross section are considered: (1) b = 0.6 mm, 

h = 10 mm, (2) b = 10 mm, h = 0.6 mm. The rest geometry and material properties of the angle are: L = 

240 mm, Young’s modulus E = 71240 N/mm’, and shear modulus G = 27191 N/mm’. 

The present results obtained by using 80 elements are shown in Table 4 together with the results of [lo]. As 

can be seen, the discrepancy between these two results are remarked for case (1) is observed. Note that the 

prebuckling displacements for this example is quite large. Thus a nonlinear buckling analysis [6,24,25] may be 

required for reliable solutions. 

EXAMPLE 6: Simply supported angle frame subjected to uniform moment. The example considered here is a 

simply supported angle frame subjected to uniform moment M as shown in Fig. 11. Here, M( +) and M(-) 

denote moments about positive and negative Xr axis, respectively. The ends of the beam are free to rotate about 

XF axis, but rotation about X$ and Xf axes are prevented. The translation of end point A is restrained, and end 

points B is free to move in the direction of Xp axis. Because of the rotational boundary conditions used here, the 

ways of generating end moments are rendered irrelevant here. The material properties are identical 

with those of Example 3. The theoretical results is M,, E&GJ= 622.21 N* mm [3], which is 
independent of the angle (p shown in Fig. 11. 

Table 4 

Critical moment for cantilever with end torsion 

Type of 

moment 

QT1 
QT2 
ST 

Critical moment T,, (N . mm) 

bXh=0.6mmXlOmm 

Present Yang [IO] 

262.2 833 

271.1 729 

274.6 1444 

bXh=lOmmX0.6mm 

Present Yang [IO] 

56.6 60.6 

103.1 106.1 

112.4 110.4 
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The buckling moment of the present 
N * mm, respectively, for M( + / -) and 

using 20 elements. 
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study and results given by [6] and [12] are 624.76, 624.17, and 627.37 

M(- / +) and different values of angle q. All these results are obtained 

EXAMPLE 7: Simply supported beam subjected to a central concentrated load. The example considered here is 

a simply supported beam subjected to a concentrated load P at the middle as shown in Fig. 12. Here, three cases 

are considered for the application point of P: (1 j upper face, (2) centroid and (3) lower face. The ends of the 

beam are free to rotate about Xz and Xy axes, but rotation about Xy axis is restrained. The translation is 

restrained at end point A, and is free only in the direction of Xp axis at points B. The geometry and material 

XF, 

Sect. e-e 

Fig. 12. Simply supported beam subjected to a central concentrated load. 

Table 5 

Critical loads for simply supported beam with central concentrated load 

Load applied at 

Upper face 

L (m) P,,(N) p,,, IP,, a 

I 2460.03 0.998 

2 740.37 1.396 

3 529.85 1.083 

4 354.51 1.025 

5 248.57 1.007 

Centroid 1 8382.96 1.000 

2 2095.74 1.000 

3 931.44 1 DO0 

4 523.94 1 BOO 

5 335.32 1.000 

Lower face 1 19225.96 0.888 

2 3451.12 1.013 

3 1333.03 1.029 

4 693.36 1.028 

5 422.06 1.025 

a PCLB = Critical load of the present study. 
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properties are: L = 1, 2, 3, 4, 5 m, b = 0.06 m, h = 0.1 5m, t = 0.002 m, Young’s modulus E = 2.04 X 10’ ’ 
N/m*, and shear modulus G = 7.9 X 10” N/m*. The classical buckling moment is quoted in [3] as 

P,, = 
0.5 h for upper face 

for centroid 
for upper face 

The present results obtained by using 40 elements are shown in Table 5 together with the analytical solution 

of [3]. As can be seen, when the load is applied at the centroid, the results of the present study are identical with 

those results given in [3]. When the load is applied at the upper face, the maximum discrepancy (39.6%) 

between these two results occurs at L = 2m. 

5. Conclusions 

This paper has proposed a consistent linear buckling analysis of three-dimensional elastic Euler beams by 

using consistent second-order linearization of the fully geometrically nonlinear beam theory. The beam element 

proposed in 1161 for nonlinear analysis is modified and employed here. All coupling among bending. twisting 

and stretching deformations for beam element is exactly considered by consistent linearization of the fully 

geometrically nonlinear beam theory. Based on the assumptions that the prebuckling displacements and rotations 

are linearly proportional to the external loading, the prebuckling rotations of the structure are fixed axis rotations 

or small rotations, and the effect of the prebuckling displacement on transformation matrix for the coordination 

can be ignored, a generalized eigenvalue problem is obtained for linear buckling analysis. An inverse power 

method for the solution of the generalized eigenvalue problem is used to find the buckling load and buckling 

mode. Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method. 

The agreement between the results of the present study and those given in the literature is very good for most 

examples. However, for some cases with large prebuckling displacements, the discrepancy between the results 

of the present study and classical solutions given in the literature is not small. Thus when the prebuckling 

displacements are not negligible, a nonlinear buckling analysis may be required for reliable solutions. 
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