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Strong-field effects of the one-dimensional hydrogen atom in momentum space
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The time evolution of the ground state of a one-dimensional hydrogen atom in the intense laser
pulse is studied directly in momentum space. A finite matrix representation of operators is developed
to solve nonperturbatively the time-dependent Schrodinger equation. We find that some numerical
limitations in coordinate space of above-threshold ionization (ATI) can be overcome, and clear
physical interpretations of the numerical data are possible. Both the ATI and harmonic-generation
spectra are obtained. The correlations between these two multiphoton phenomena are discussed.
PACS number(s): 32.80.Rm, 32.90.+a

I. INTRODUCTION

Since the experimental report of above-threshold-
ionization (ATI) phenomena [I], the study of the be-
havior of atoms under the irradiation of strong laser
fields has been a subject of intensive interest [2]. When
the laser-atom interaction term is comparable to nuclear
Coulombic attraction, the quantum-mechanical pertur-
bation method is no longer valid in the calculation of
rnultiphoton processes, and nonperturbative techniques
are then required. The problem of a real atom subjected
to strong laser fields is difficult, even for the case of a one-
electron atom [3]. A number of one-dimensional model
potentials have been employed to explore some insights
into the problem [4]. In many previous numerical works,
the coordinate space grids were usually adopted to in-
vestigate the multiphoton dynamics. Intuitively, when
the atomic electron is driven to ionize, its wave function
becomes spatially widely spread. Therefore the calcula-
tion in coordinate space requires either a large number
of grid points or a considerable size of basis set functions
to simulate the event. Though sometimes a filter func-
tion can be put near the grid boundary to model the
ionization mechanism and to avoid wave reHection from
the boundary [5], some dynamics of the ionized electron
is inevitably lost by filtering. However, the spreading of
a wave function in coordinate space does not necessarily
imply the spreading in the momentum space (p space). In
fact, the observed narrow ATI peaks in electron energies
suggest that the wave functions are highly localized in
p space and encourage such studies. For current super-
intense experimental laser sources, the atomic electron
can absorb several to several dozen photons before and
after ionization. The change in electron momentum is
mainly due to the absorption of photons. The spread-
ing of the photoelectron in p space is far more limited.
It would thus be instructive to study the problem in p
space directly. Motivated by this concept, we believe the
p-space approach to be of practical value. This approach
is generally not easy to implement on the differential-type
Schrodinger equation [6].

In this paper we present an alternative approach which

II. MOMENTUM-SPACE MATRIX APPROACH
FORMULATION

A. Model atom

Although recently a softened Coulomb potential has
been popular for studying the strong field problem [4], we
prefer the basic Coulomb potential model in our study

P' -1/x
Hp ———+ 00

ifx &0
if x&0.

This model ofFers the following appealing features.
(i) The one-dimensional Schrodinger equation corre-

sponding to Eq. (1) is closely related to the s-state radial
equation of a real hydrogen atom. If we write the eigen-
function of the three-dimensional hydrogen atom as

4„& (r, 8, $) =Y& (8, $)X„&(r)/r,

then y satisfies the following equation:

resolves most of the aforementioned difBculties. We ap-
proximate the observable by a finite-dimensional matrix
operator in p space. Then we proceed to solve the time-
dependent Schrodinger equation in matrix form. Since
matrix operations are fully vectorizable, the calculation
is very efBcient on a vector or parallel machine. We
find that both the bound-continuum and continuum-
continuum dipole transition matrix elements are straight-
forward to calculate. These matrix elements play impor-
tant roles in multiphoton processes. The spectra of ATI
and harmonic generation are obtained from the same cal-
culation. And the correlation between these two multi-
photon processes is explored. This point has rarely been
mentioned in previous calculations. By examining the
p-space wavefunction, we also gain considerable insight
into the nature of the ATI processes.

We describe our approach in the Sec. II. The results of
the one-dimensional hydrogen-atom ATI and harmonic
generation will be presented in Sec. III. This is followed

by a conclusion and suggestions for further investigations
in Sec. IV. Atomic units are used throughout.
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B. Finite matrix representation

Following Dirac [10], for the observable x we have

A A A 2x x x )

1
x —= I.

x

(4)

(5)

An operator corresponding to the observable is repre-
sented by an infinite-dimensional matrix. But in prac-
tical calculations, since the space we work with is only
finite dimensional, the identity equation (5) does not hold
manifestly:

(6)

. 1=~a — ): (~ll*lli) i —~).x
q=n+1

(7)

To be consistent with x 1/x = I in real calculations, we

make the following ansatz [11]:

(1)) (x)'g I

—
I

=6'k.
Ex],A,

(8)

With this understanding, it becomes straightforward to
compute matrix representations for various functionals
of x, once we define one representation thereof. For ex-
ample, if we diagonalize x into its eigenvalue matrix A

by

1 c)2)(' ( 1 l(l + 1))+i —-+
I x = Ex.

2 Br2 ( r r2 )
It reduces to Eq. (1) as l —+ 0 and its properties have
been thoroughly studied [7].

(ii) The model atom has been used successfully in
the study of microwave ionization of Rydberg hydrogen
atoms [8] and surface-state electrons in liquid helium [9].
It has proved itself to be a good model in those cases. The
extension of the one-dimensional hydrogenic model to
strong field problems of current interest appears worth-
while.

(iii) As we will show below, the Coulomb singularity
at the origin of coordinate space causes no difficulties in

our p-space approach.
(iv) The wave function y„~ in Eq. (3) vanishes at r = 0.

By symmetry, the p-space projection of this wave func-
tion must be an odd function, so that we only need to
consider the positive momentum components. This re-
duces the numerical efFort significantly.

C. Momentum-space method

The wave function g in momentum space is an n vector
representing the sampling of the projection (p~@). Ob-
servables are expressed as matrix operators on the vec-
tors. The momentum operator p is clearly a diagonal
matrix

pg = j&p 6'g (12)

where 6p = p~~„/N is determined from the maximum
momentum p „and number of grid points N in the cal-
culation. The operator xz is approximated by the second-
order derivative

4 . , ~k
A), = sin

h p~ 2N'

= sin(I,) . vrjk

0 =1,2, . . . , N —1

j =1,2, . . . , N —1.

(14)

(15)

Now we can calculate any dynamical variable which is a
function of x. For example, the matrix elements of x2

are in factored form:

N

( 2) ) g ~(k) ~(k) (16)

The choice of defining everything from a second deriva-
tive in Eq. (13) arises from the necessity of having only
positive eigenvalues, which, as we argued earlier, will re-
duce the required calculations.

We can then find the p-space finite-matrix represen-
tation of z and 1/x by the way described in Sec. IIB.
In our calculation, we use a maximum momentum value

p „=5.0 and N (number of grid points)= 1000. Diago-
nalization of Ho in p space gives 24 bound states and 976
discretized pseudocontinuum states. The accuracy of the
lowest five energy levels is within 1—3 %. To check the ap-
plicability of the discrete p-space computations for time-
dependent behavior, we calculate the transition dipole
matrix elements for bound-continuum and continuum-
continuum transitions. These matrix elements are im-

portant to multiphoton processes. Susskind and Jensen
[13]developed a p-space Sturmian basis method to obtain
the relevant matrix elements. The calculation presented
here is much simpler than theirs from the viewpoint of
numerical treatment.

x, =
z (6, ~+i —26 ~ + 6, ~ i).p'

The eigenfunctions (t)~ and eigenvalues Aq of this matrix
are analytically known to be [12]

stxs = w. ,

then

stxss~-s = I1

x

(9)

(10)

1. Hound-continuum dipole matrix elements

The dipole matrix elements from bound state ~n) to
continuum state ~p) are analytically known [13]. Numer-

ically, since
gives

= SA.-'St.
x

[x, Hp] =ip,
&nl[x, H()]lp) = i&nlplp),

(»)
(18)
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we obtain

E (nl&IP).s„—E„

tude of matrix elements may difFer from Ref. [13), but
the agreement in the Bnal structure is satisfactory [14].

D. Time evolution
We calculate the eigenfunctions In) and ]p) directly from
the diagonalization of Ho, and s„,E„are the correspond-
ing eigenenergies of states Ip) and ]n), respectively. In
Fig. 1(a) the calculated dipole matrix elements of In = 1)
to continuum states in the momentum range p = 0.0—5.0
are plotted, together with their exact counterpart. The
agreement is quite good.

8. Continuum-continuum dipole mat&+ elements

The continuum-continuum matrix elements are calcu-
lated numerically exactly in the same way as those of
bound-bound, bound-continuum transitions without any
extra efFort. We plot the matrix elements of continuum
states with p - 0.1 to p = 0.0—0.3 in Fig. 1(b). Due
to a difFerence in normalization convention, the magni-

1.0

(a)

0,8

We consider the one-dimensional hydrogen atom under
the influence of a strong laser pulse. For currently avail-
able laser source wavelengths (10z—10snm), the dipole ap-
proximation is adequate. We write the time-dependent
Schrodinger equation as

8& I'p2 1
i =

I

———+zE(t) Ig,Bt (2 x ) (2o)

where E(t) is the electric field amplitude of the laser light.
We model the electric Beld as a monochromatic wave adi-
abatically turned on and off:

. , (~ti
E(t) = F sin(cut) sin

&T) (21)

where T is the laser pulse duration and u is the laser fre-
quency. The system is initially prepared in the ground
state of Hp, and i and 1/z are in their truncated but
self-consistent momentum representation. The time-
dependent equation is integrated in momentum space by
a Runge-Kutta-Verner fifth- and sixth-order method to
the final time T.
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III. RESULTS

We calculate in this paper the response of the model
atom under the irradiation of laser pulses with wave-
length A = 248 nm and field strengths F~ = 0.025, 0.05,
0.1, and 0.2 a.u. (A peak field of 1 a.u. corresponds to a
laser intensity of 3.51 x 10is W/cmz). This light source
is currently available from the Kr-F laser system [15].

A. ATI

In Figs. 2(a)—2(d), we plot the projection of the evolved
wave function g(p, t = 20~), with 7. being the laser pe-
riod, onto the zero-field unperturbed eigenstates. We
define the energy Ethreshold aa

eo
A

0 40
II

C4
V

20

0
0.0 0.1 02

p ( a.u. )
0.3

FIG. l. (a) Bound-continuum dipole matrix elements
of state In = 1) to continuum state Ip). Solid curve,
p-space calculation; dot-dashed curve, analytic results.
(b) Continuum-continuum dipole matrix elements of state
Ip = 0.10126) to Ip), p = 0-5.0.

g2
Ethreshold = n~ + E0

4m~ (22)

where Ea is the calculated ground-state energy and n is
the smallest integer ensuring Eth„,h id & 0. The last
term is the pondermotive shift. An atomic electron oscil-
lates with the rapid driving field at this average energy.
The electron absorbs photons to overcome the ionization
potential and additionally stores an extra amount of en-
ergy to oscillate in the laser region. The pondermotive
energy will finally be released if the electron decelerates
out of the laser region adiabatically. This e6ect corre-
sponds to the long pulse regime where the laser pulse
duration is much longer than the time it takes for the
photoelectron to leave the focus region. In Figs. 2(a)—
2(d) we see the ATI structure at various field strengths.
The number of ATI peaks increases with higher field
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strengths. Also the lower-energy primary peaks in both
F = 0.025 and 0.05 a.u. have almost disappeared at
Fm = 0.1 and 0.2 a.u. , mainly due to the shift of threshold
energy Eth«shofri T. hese are features of the well-known
peak stUiiching and peak suppression effects of strong field
phenomena.

Recently, Reed and Burnett [4] analyzed the ATI peak
structure of a one-dimensional softened Coulomb atom
under the same laser profile. The satellite peaks asso-
ciated with ATI peaks as shown in Fig. 2(c) are inter-
preted as quantum interference of waves produced at the
rising and falling portions of the pulse. The formulas for
the positions of the maxima and minima of the satellite
peaks are given explicitly. Comparing the peaks from the
4huI and 5hIJ in Fig. 2(c), which have dominant satellite
peaks to their results, we obtain quantitative agreement
of maxima and minima positions with their formulas.

In Figs. 3(a)—3(d), we show the the time-evolved wave
functions at t = 20~ in p space. The threshold momen-
tum pthresholg is defined as

Pthreshold /2Ethreshold ~ (23)

The peaks to the right of pth«, hoid correspond directly

to the ATI spectrum. The background level is simply
due to the bound states, which have broadband p-space
dispersion [16]:

2=2 3

Imari(&) I

=
( z + (24)

where p„= g 2m—E„, and E„=—1/2nz is the bound-
state energy corresponding to state ln). This is a spe-
cial feature of the p-space calculation: the lower-energy
bound states of the Hamiltonian have a wider p-space
spread, with ever decreasing widths as one advances to
excited and continuum states. The latter are almost
b functions in p space. If we compare Fig. 2(c) with
Fig. 3(c), we notice that the bound peak in Fig. 2(c) (to
the left of the dashed line) is a broad spread to the left
of the dashed line in Fig. 3(c). The qualitative difference
between bound states and continuum states is apparent.
We can now see states more clearly once they are ion-
ized, which is a definite advantage if we hope to under-
stand processes between continuum states. Similarly, we
do not expect to waste excessive resolution on excited
bound-state dynamics, and for ATI problems we desire
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pIG. 2. ATI spectra. Peaks with electron energy to the right of the vertical dashed line are ATI peaks. Negative-energy
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just such a feature in order to model the scenario on a
computer without spending time on irrelevant dynamics.
In p space none of the coordinate limitations plagues us
any more, electrons do not leave the grid, and the reso-
lution becomes neither too large nor too small to resolve
the desired effects.

During the calculation, we find that the wave func-
tions at all studied field strengths are localized within

p & 5.0. This shows that the choice of p ~ = 5.0 is
reasonable and confirms the computational advantages
of the present p-space approach.

T
I(cu) oc e '(x(t))dt

0

,
2

(25)

In calculating (i(t)) Ehrenfest's theorem is used:

generation spectra using the acceleration form. The spec-
tra are obtained through

B. Harmonic generation
——

2

1
(26)

Recently it was pointed out that for a nonvanish-
ing final dipole moment function, the correct harmonic-
generation spectrum must be given from the dipole ac-
celeration function instead of length form itself [17].
In Figs. 4(a)—4(d), we plot the calculated harmonic-

The above calculations were carried out in p space.
The qualitative picture of harmonic-generation spec-
trum characteristics [18] is obtained for weak fields. At
stronger fields E =0.1 and 0.2 a.u. , the characteristics
are less clear. We have recently carried out a study of
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FIG. 3. Wave function after 20 laser periods, i.e., the end of the laser pulse. The features to the right of the vertical dashed
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(~(t)) = (4(t) l&l@(t)) (27)

In Fig. 5(a), the variation of (i(t)) with respect to time
at F~ =0.2 a.u. is shown. Since the driving field has been
removed, as shown in Eq. (26), its frequency spectrum
gives only the radiation from the charge itself. Incorpo-
rating the acceleration form, we obtain the results shown

the harmonic-generation spectrum for a real hydrogen
atom. We find that for higher field strength, more angu-
lar momentum components need to be included to obtain
convergent results. For F~ =0.1 a.u. , orbital angular
momenta up to / = 40 are included in the calcula-
tion. And only the odd harmonic orders appear due to
parity symmetry [19]. In the present one-dimensional
case, there is no parity symmetry. This results in the
appearence of even harmonic orders in addition to odd
harmonic orders [20].

For comparison, the length form of the dipole function
1S

in Figs. 4(a)—4(d). Figure 5(b) shows an example of the
time change of the length form (x(t)). We find that, after
57, (x(t)) increases rapidly along with a smaller fluctua-
tion at the laser driving frequency. The monotonic part
contributes a strong continuous radiation background
from bremsstrahlung. The background washes out the
harmonic-generation signals, which are relatively weaker.
This effect will be increasingly dominant for stronger
fields. In Figs. 6(a) and 6(b) we show the harmonic-
generation spectra generated from the length form of t e
dipole function at the lowest and highest field strengths
calculated.

Since we have calculated both the ATI and harmonic
spectra in this study, it would be interesting to consider
the correlation between these two multiphoton phenom-
ena. It was discussed by Eberly, Su, and Javanainen
[21] that the two spectra are closely related as long as
the initial-state population is dominant during the pro-
cess. In Fig. 7(a) we plot the survival probability of the
ground state as a function of time. We find that, or
both F =0.025 and F =0.05 cases, the ground-state
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survival populations are significant during the excitation
process. However, the ATI peaks for the I' =0.025
case are rather unpronounced, so we examine the case
of Ii~ =0.05 a.u. In Fig. 7(b), we overlay the corre-
sponding harmonic and ATI spectra for comparison. The
harmonic spectrum is scaled onto the perpendicular axis
for plotting convenience. The photon energies are above
the threshold shift; the resemblance in structure is clear.
The calculation supports the view of Eberly, Su, and Ja-
vanainen [21] on this point.

C. Numerical considerations

Most numerical schemes converge to the exact solu-
tions for large N. The aim is to find a method that
represents the physics accurately even for small N. If
we are interested in the dynamics of continuum states
of electrons, the p-space discretization provides a much
more accurate approximation to the continuum energy
eigenstates. We have shown that the ground state and

several bound states are accurately represented, which
permits us to capture efFects that occur during the early
stages of ionization. Admittedly the potential and dipole
driving terms are not represented to a high accuracy for
large 2:. But once the electron is ionized, the exact shape
of the potential or the driving force may not matter as
much, and we still capture the essential features of the
dipole time dependency and the Coloumb well, such that
the electron accurately continues to capture photons af-
ter ionization. The coincidence that the ground state has
an extent comparable to the most ionized ATI regimes
further encourages the study of strong-field problems in

y space.
Some work remains to be done to optimize integration

algorithms if two-dimensional simulations are to succeed.
Because the Schrodinger equation is known to be numer-
ically unconditionally unstable, simple leapfrog schemes
will not work. The full Hamiltonian matrix makes semi-
implicit integration costly, since a matrix inversion would
have to be performed at every time step. But the poten-
tial gain from the increased understanding of strong-field
processes sufficiently justifies further work at improving
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FIG. 6. Harmonic-generation spectra calculated from
(x(t)). (a) I' = 0.025 s.u. , (b) I' = 0.2 a.u.
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the current simple toy scheme, which already yields pow-
erful results.

IV. CONCLUSION

In this paper we presented a direct p space method to
study the ATI and harmonic-generation problems. The
general features of ATI structure are well reproduced.
Our other study [19] suggests that the angular momen-
tum components are increasingly important in harmonic-
generation processes at higher field strengths. The simu-

lation of harmonic generation accentuates the need for
the inclusion of angular momentum states. The one-
dimensional model should be applied with caution to the
harmonic-generation problem.

In the search of a more physical and predictive pic-
ture of strong-field continuum interactions, the p-space
approach promises to shed more light on the physics of
the underlying processes. It captures the ionized elec-

tron dynamics well, providing a valuable tool for numeri-
cally investigating time-dependent problems. The imple-
mentation of this method to ATI or harmonic-generation
processes of real three-dimensional systems is currently
under investigation to compare with the multiphoton ex-
periments on a real hydrogen atom [15,22]. Studies on
atomic stabilization in superintense fields and other in-

teresting topics will be reported later.
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