IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 4, APRIL 1998 335

Byzantine Agreement in the Presence of Mixed
Faults on Processors and Links

Hin-Sing Siu, Yeh-Hao Chin, Senior Member, IEEE Computer Society, and
Wei-Pang Yang, Senior Member, IEEE Computer Society

Abstract—In early stage, the Byzantine agreement (BA) problem was studied with single faults on processors in either a fully
connected network or a nonfully connected network. Subsequently, the single fault assumption was extended to mixed faults (also
referred to as hybrid fault model) on processors. For the case of both processor and link failures, the problem has been examined in
a fully connected network with a single faulty type, namely an arbitrary fault. To release the limitations of a fully connected network
and a single faulty type, the problem is reconsidered in a general network. The processors and links in such a network can both be
subjected to different types of fault simultaneously. The proposed protocol uses the minimum number of message exchanges and
can tolerate the maximum number of allowable faulty components to make each fault-free processor reach an agreement.

Index Terms—Byzantine agreement, fault-tolerant distributed system, hybrid fault model, general network, synchronization.

1 INTRODUCTION

EACHING agreement in the presence of faults is one of the

most important problems in designing a fault-tolerant
distributed system. Achieving such a goal is called the Byzan-
tine Agreement (BA) problem [13], [18], and the goal of the BA
is to make the fault-free processors reach a common agree-
ment, even if certain components (both processors and links)
fail. The common agreement of fault-free processors should be
free from the influence of the faulty components. With the
common agreement, some applications can then be achieved.
Some examples are data processing in a distributed database
system [17], or the clock synchronization problem [4].

In practice, most of the network topologies may not be
fully connected. Processors and links can both be subjected
to different types of failures simultaneously, also referred to
as the hybrid fault model [14], [16], [24]. A fault-free proces-
sor does not know which component in the network is
faulty. We call such a network model a general network.
However, none of the existing protocols is designed for
solving the BA problem in a general network [2], [3], [5],
[6], [7], [9], [13], [14], [16], [24], [27]. Table 1 summarizes the
assumptions of the relevant BA protocols.

As indicated in Table 1, the two broad classes of proces-
sor faults, namely arbitrary and dormant, are termed by
Meyer and Pradhan [16]. An arbitrary fault can exhibit ar-
bitrary (including malicious) behavior, while a dormant
fault reflects the case when faults consists merely of omis-
sion of messages or delay in sending or relaying messages.

* H.-S. Siu is with the Department of Industrial Engineering and Manage-
ment, MingChi Institute of Technology, Taipei, Taiwan 24306, Republic of
China. E-mail: hssiu@ccsun.mit.edu.tw.

* Y.-H. Chin is with the Department of Computer Science, National Tsing
Hua University, Hsinchu, Taiwan 30043, Republic of China.

* W.-P. Yang is with the Deparment of Computer and Information Science,
National Chiao Tung University, Hsinchu, Taiwan 30050, Republic of China.

Manuscript received 12 Mar. 1996.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 100152.

In the arbitrary-resilient BA protocols [9], [13], all faults are
treated as arbitrary faults, even though some faults may be
subjected to dormant faults, such as crash or fail-stop
faults. This treatment ignores that the faulty behaviors of
dormant faults is better than that of arbitrary faults. When a
dormant fault exhibits its faulty behavior, it can be detected
and ignored by all fault-free processors. Thus, the arbitrary-
resilient BA protocols cannot tolerate the maximum num-
ber of faults if the dormant faults maybe existed. On the
other hand, the protocols proposed by Christian et al. [7]
for dormant faults cannot cope with the arbitrary faults.
These observations motivate the study of the BA problem
under a hybrid fault model [14], [16], [24]. The goal of [14],
[16], [24] is to maximize the number of allowable faulty
processors when hybrid fault model is considered.

In a fully connected network with reliable communication
links, Lincoln and Rushby [14] proposed the OMH protocol
for solving the BA problem under a hybrid fault model. This
protocol is the corrected version of Thambidurai and Park’s
Z protocol [24]. Both protocols assume that the number of
processors subjected to arbitrary faults must be known prior
to the execution of the protocols. However, this requirement
violates the general assumption of the BA problem[that a
fault-free processor does not know which component is
faulty [14]. Moreover, Shin and Ramanathan [21] found that
it is impractical to run diagnostics to detect all arbitrary faults
in a network. Furthermore, Meyer and Pradhan [16] also in-
dicated that this kind of protocol is unable to reach an
agreement among processors when the number of arbitrary
faults is overestimated (or underestimated).

Meyer and Pradhan [16] proposed two protocols, MIXED
and MIXED-SUM, for solving the BA problem with hybrid fault
model on processors. They are designed for any network to-
pology. The MIXED protocol, similar to the OMH protocol, still
requires that the number of arbitrary faults must be known
prior to the execution of the protocol, while the goal of the
MIXED-SUM protocol is to remove such a limitation. They stated

1045-9219/98/$10.00 © 1998 IEEE

336 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 4, APRIL 1998

TABLE 1
THE DIFFERENT ASSUMPTIONS AMONG THE PREVIOUS WORKS OF THE BA PROBLEM
Assumptions Network Topology Processor Faults Link Faults
Previous Works Fully Nonfully | Broadcast* || arbitrary | dormant | hybrid || arbitrary | hybrid
Connected | Connected
Lamport et al. [13] v v
Dolev [9] v v
Christian et al. [7] v v v
Thambidurai and Park [24] v v
Meyer and Pradhan [16] v v
Lincoln and Rushby [14] v v
Babaoglu and Drummond [3] v v v
Yan and Chin [26] v v
Yan et al. [27] v v v

* This network model is not discussed in the paper.

that their protocol can tolerate any fault in a system, provided
n>3P + P, and ¢ > 2P, + P,, where is the total number of

processors, ¢ is the system connectivity, P, is the number of

arbitrary faults, and P, is the number of dormant faults. Under
a hybrid fault model, these are the optimal constraints on fail-
ures for the BA problem. However, the bound on the number
of allowable faulty processors, namely n > 3P, + P,, for the

. . 1 .
MIXED-SUM protocol is overestimated. The main reason of the

overestimation is that the traditional majority vote is used by
MIXED-SUM for handling the hybrid fault model. In order to
reach the optimal bound on number of faults, therefore, a new
voting method should be proposed for solving the BA problem
under a hybrid fault model.

Most of the earlier work for the BA problem is designed
for handling the processor failures only [7], [9], [13], [14],
[16], [24], as indicated in Table 1. In practice, however, a
link can also fail [16], [19], [20], [26], [27]. Martin [15] found
that links throughout the world occasionally failed. There-
fore, many algorithms have been proposed to diagnose the
link failures [1], [20]. For example, in the Common Channel
Signaling (CCS) network, based on Signaling System No. 7
(557), protocol has a dedicated algorithm to monitor the
error of communication links [20]. Traditionally, such a link
fault was treated as a processor fault [24]. The treatment
ignores the fact that the processor connected with the
faulty link is fault-free (i.e., called innocent processor [27]);
hence, an innocent processor does not involve an agree-
ment under the treatment. Such a treatment contradicts
the definition of the BA problem that requires all fault-
free processors to reach an agreement. From this stand-
point, a link failure should be treated differently from the
case of a processor failure.

Similar to the discussion of processor faults, the type of
link failures can also be classified with respect to the be-
havior of the failure into two disjoint sets: dormant and arbi-
trary fault. The content of a message may be dropped, but is
not contaminated by the dormant faulty link. On the other
hand, an arbitrary faulty link may exhibit unrestrained be-
haviors. Although several protocols have been proposed for

1. We found that the correct constraint on number of processors required
isn>|(n-1/3]+2P, +P, [22].

solving the BA problem with the assumption on link failures
(link failures only [26] or both processor and link failures
[27]), these protocols consider fully connected networks
with arbitrary faults only. Hence, when these protocols are
applied to Fig. 1, an agreement still cannot be reached
among the fault-free processors.

The BA problem is reexamined in a general network. The
proposed protocol can solve the BA problem with the fol-
lowing assumptions:

1) Each fault-free processor does not require prior in-
formation of the system’s faulty status.

2) The network topology is not necessarily fully connected.

3) Both processors and links are subjected to mixed faults
in the network.

The protocol designed for solving the BA problem in a
general network is called a generalized protocol for the BA
problem (GPBA). GPBA uses the minimum number of mes-
sage exchanges to make each fault-free processor reach a
common agreement. The number of tolerable faulty com-
ponents of GPBA is greater than that of the existing proto-
cols when the general network is considered.

2 THE DEFINITIONS AND CONDITIONS FOR AN
AGREEMENT

The BA problem is considered in a synchronous network. In
such a network, the bounds on the processing and commu-
nication delays of fault-free components are finite [10], [23],
[25]. Therefore, a processor executing the proposed protocol
will have received correct messages from all other fault-free
processors at a predictable point in time. In contrast,
Fischer et al. [12] found that agreement in an asynchronous
network is impossible even if only one processor has failed,
and the failure is a crash failure. Therefore, a synchronous
network is assumed. The parameters in a synchronous
network are assumed as follows:

* N: The set of all processors, the processor’s identifier
is unique, and n = IN1.

e S: The source,and S O N.

» V:The set of all possible values.

* v, The initial value of S to be broadcast to all other
processors, and v, V.

SIU ET AL.: BYZANTINE AGREEMENT IN THE PRESENCE OF MIXED FAULTS ON PROCESSORS AND LINKS 337

: tault-free processor
- dormant [aully processor
: arbitrary faulty processor

: fault-free link

1| @e@0C

: arbitrary faulty link

Fig. 1. A network with mixed faults on both processors and links (n=9
and ¢ = 6).

 ¢: The connectivity of the underlying network. Due to
the Menger theorem [8], at least ¢ disjoint paths exist
between any pairs of processors S and R if the con-
nectivity of the network is c. For any two paths, the
only common components are S and R.

* P, The number of processors subjected to the arbi-
trary fault.

* P The number of processors subjected to the dor-
mant fault.

* L, The number of links subjected to the arbitrary fault.

* L; The number of links subjected to the dormant
fault.

e [, A RA; These values are used to remove the influ-
ence of a faulty processor that does not send its mes-
sages; the formal descriptions of these values will be
presented in Section 3, and 0, A, and RA; O V, where
1<i<|(m-1)/3]

Let processor S be the source and v, be the initial value of

S to be broadcast to all other processors. The goal of GPBA
is to make each fault-free processor agree on a common
value broadcast by the source. After the execution of GPBA,
the common value of the fault-free processors shall be the
value defined in the following conditions:

1) Agreement: All fault-free processors agree on the same

common value v, and

2) Validity: If the source is fault-free, then the common

value v should be the initial value v, of the source, i.e.,
v =0,

In a general network, a processor does not know the
faulty status of another component, each processor requires ¢
+ 1 rounds to exchange the messages for reaching an agree-
ment [13], where f= |_(n - 1)/3J. Fischer et al. [11] also

pointed out that the ¢ + 1 rounds are the minimum number
of message exchange rounds required to have an agreement
when the network’s faulty status is unknown. Therefore,
the minimum number of rounds required by GPBA is t + 1.

Essentially, the fault tolerance capabilities of a network
depend on the total number of processors and the network
topology (connectivity) [9]. For example, every faulty com-
ponent can prevent the fault-free processors from achieving
an agreement if the network topology is a bus. To general-
ize, the complete characterizations of constraints on failures
for every network are discussed below. The Byzantine
agreement can be achieved in a network if:

1) n>3P + P, and
2) c>2P, +P,+2(L,+L,).

The first constraint specifies the number of processors
required. After the influences of the dormant faulty proces-
sors are removed, an agreement can be reached if
n— P, > 3P, namely n > 3P, + P,, as stated in [16]. On the
other hand, the second constraint specifies the required
connectivity. In each message exchange round, every proc-
essor sends its message to other processors. In order to de-
cide whether a processor has sent out its message, the total
number of link failures must be less than half of
c—2P, —P,, namely c>2P, +P,+2(L,+L,;). Otherwise,
such a goal cannot be reached. Thus, the conditions for
achieving an agreement in a general network can be proven
(due to the limited space, the proofs of the lemmas and
theorems in the paper are omitted).

THEOREM 1. For any network, a protocol for the BA problem does
existif n > 3P, + P, and ¢ > 2P, + P, +2(L, + L,).

From the above observation, the types of link failures
can be treated as a single failure type. For ease of discus-
sion, we still use the classification of link failures. By Theo-
rem 1, the maximum number allowable of faulty compo-
nents by GPBA is P, +P,+L,+L, if n>3P +P, and
c>2P +P,+2(L,+L,), as stated in Theorem 1. When the
number of processors and the connectivity is two or less,
there is no problem reaching an agreement [13]; hence,
n>2 and c > 2 are assumed.

3 BAsic CONCEPT AND APPROACHES

Ina general network, a processor can be played as a sender,
receiver, or relay, depending on the flow of a message. A
message sent from a sender to a receiver may be passed
through some intermedium (relay processors and links). The
message may be contaminated by either the sender (dor-
mant or arbitrary fault), some intermedium, or both. In or-
der to solve the BA problem in such a network model,
GPBA therefore should completely remove the influence
caused by these faulty components. In order to reduce the
number of message exchange rounds required, as stated in
[14], [16], [24], [27], GPBA removes the influence caused by
a faulty intermedium first, then removes the influence
caused by a dormant faulty sender and, finally, removes the
influence caused by an arbitrary faulty sender.

GPBA is based on the oral message model [13]. There are
two phases in GPBA: the message exchange phase and the
decision making phase. The message exchange phase con-
sists of |_(n - 1)/3J +1 rounds to collect the messages and

the decision making phase computes the common value
for an agreement, as shown in Fig. 2. GPBA combines the
following approaches to solve the BA problem in a gen-
eral network:

* The fault-tolerant virtual channel (FTVC) protocol:
At the start of the kth round of message exchange, say
t. , each sender uses FTVC to broadcast its messages to
all receivers, as shown in Fig. 2. The goal of FITVC is to
remove the influence caused by a faulty intermedium.

338 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 4, APRIL 1998

. The messages under the influence of taulty senders (both dormant and arbitrary faults) and intermedium
. The messages under the influence of faulty senders (both dormant and arbitrary taults)

[: The messages under the influence of arbitrary faulty senders
D : The messages free from the effect of a faulty components

1‘17 f‘I F l+ r)
B]
KLV Absent 2

role Ve

Absent
e

Fig. 2. The basic approaches of GPBA.

+—1 Tyt i+

1
2
3

SV S

.
VOTE

! 7 t

G —] — |

Absent
FIVE
rule |

-
|

i~
-t

Message Fxchange Phase | Decision Meking Phase

First level Second level Third level

val(S) val(S4)

O O O 545 val(S4AB)

S SA4 ——0S4AC val(SAC)

F——OS4D val(S4AD)

——OQ s4E val(SAE)

O S4F val(SAI")

——OS4G val(SAG)

val(SB) L —Q g4 val(SAH)

O QSsSB4 val(SB4)

SB ——OsSpC val(SBC)

——QSBD vallSBD)

——OQsBr val(SBE)

——OsB/” val(SBF)

——QOSBG val(SBG)

——OSBH val(ShH)
val(SH)

O O SHA val(SHA)

SH ——Q SHB val(SHB)

——OQ SHC val(SHC)

——QSHD valSHD)

——O SHE ~val(SHE)

——O sHr val(SHF)

——OSHG valSHG)

Fig. 3. An example of an IG-tree for the network model shown in Fig. 1.

That means FTVC provides a reliable communication
mechanism in a general network so that the mes-
sage passing in such a network is similar to that in
a fully connected network with fault-free commu-
nication links. Each receiver collects all of the
senders” messages that are free from the influences
of a faulty intermedium when FTVC is applied, say
7, as shown in Fig. 2.

* The absent rule: The absent rule is applied at the
end of the kth round, namely rk+ , to remove the in-
fluence of the dormant faulty sender, as shown in
Fig. 2. Obviously, if a sender has a dormant fault,
all fault-free receivers can detect such a fault (no
message was received from it) during the entire
message exchange phase or at some message ex-
change rounds. Once a faulty sender is detected, a
fault-free receiver will ignore the messages re-
ceived from it in every subsequent message ex-
change round.

* The voting function VOTE: When the number of
rounds reaches |_(n -1/ 3J + 1, the number of received

messages collected is enough to remove the influence of
an arbitrary faulty sender and to make each fault-free

processor able to reach an agreement through a voting
scheme VOTE taken in the decision making phase, as
shown in Fig. 2.

As for the data structure used to collect the messages,
each fault-free processor maintains a tree structure, called
the Information Gathering tree (1G-tree) [5], of level ¢ + 1, for
collecting the received messages. Fig. 3 illustrates the
structure of an IG-tree for the network shown in Fig. 2.
After the first message exchange round, each fault-free
receiver stores the message received from the source,
denoted as val(S), at the root S of its IG-tree. In the sec-
ond round, each sender broadcasts the root’s value of its
IG-tree to all receivers. If sender B sends a message
val(S) to receiver A, A will store the message received
from B, denoted as val(SB), at vertex SB of its IG-tree.
The vertex SB is said to correspond to the sender B. Note
that each level of an IG-tree contains a round of received
messages and each vertex is labeled by a nonrepeating
sequence of processor identifiers. Because the label of an
IG-tree is nonrepeating, the root (labeled by the source)
has n — 1 children and a vertex at the tth level has n — ¢
leaves, as shown in Fig. 3. No repeating processor iden-
tifier can avoid the recursive influences made by a faulty
processor.

SIU ET AL.: BYZANTINE AGREEMENT IN THE PRESENCE OF MIXED FAULTS ON PROCESSORS AND LINKS 339

| —————— FIVQ ————————— |
The root of
the IG-tree
val(S y~1
LA
MAT S

V=1 >

Do —

7 : no message received
0 : false message

(@)
Tirst level Second level

val (§)=1

O—T O s val (54 1

N (O 5B val (5B)71
— 50 val (5¢ =1
—O SDval (S -1
——O sE val (51)1
——— 51 val (SF)1
O 5G val (86 ¢
———O 5H val (8H 0

(©
First level Sceond level Third level
val (§)=1 val (Sehy=1
O O ™ Q $41 val (S4B)=1
q SA SAC val (840 =1
) SAD val (S:A1) =1
SAE val{ SAR) =1
SAF val{ S:1k)=1
SAG vl (SAGH— #
vl (S = Sebdf val { $e11h =0
_0__OSBA val (SBA)=1
SB —O8BC val(SBC) 1
——Q 5B val (SBD) =1
——OQSRFE val (SBE)=1
F——OSRF val (SBF) =1
——OSBG val (88 = #
wl(SC=1 L QsprvacsBE ©
F—O——T 0584 val($CA)=1
SC ——Q5Ci val (SCE) =

——QSCD val (SCD) -1
F—0Q8CH val (5CE) 1
F——0Q SCF val (8C1)=1
) ——05CG val (SCG) = 4
wl(SD-1 L Qecmvalisom =0
O T 0504 vl (SDA=1
SD F——OSDE valiSDR) 1
——Q80C val (8D =1
O SDE val (SDE)=1
F——0Q5DF val (SDF =1

weSEy 1 L S prvalispA -0
——O———T—05E4 val(SE4)=1
SF O 5EB val (SEB) -1
L SSEC vl (SRO=1
O SED val (SED = 1
O SEF vl (SEF) =1
SEG val (SEG) = 4

val (SFy=1 L—OSEH val(SEH) ©
F—O———T—OQsFd vl =1
fval —C SF val(SFif)=1

——Q SFC val (SHC)=1
Q) SFD val (SFI) -1
O SFE val(SFE)=1
. ——QSFG vil (SFG) —
val(SGh= e QS sp1i va(spin =0
—O——1—0 5G4 val (SGA) = BF B‘Zl
SG ———Q SGB val (SGB)= &4
QO SGC val(SGO) B4
——O SGDval(SGD) &)
——O SGF val(SGE) = &%)
O SGF vl (SGI) = =¥,
vad(SH 0 L & SGHval(SGH =0
_O——o SHA val (SHA)=0
SH ——0O $1113 val (SHE)=0
——0O SHC val (SHO) ¢
——=0 SHD vl (SHD)=C
0 SHE vl (SHF) ©
0 5118 val (SHF)=0
——O81G valiSHG) #

()

The root of The root of
the IG-tree the [G-tree
val(S)-1 val(S)=1
o —» O
S Absent S
rule
(b)
Tirst level Second level
val (§)=1
O—— 54 val (54)=I

s Q87 vl (sB)-1
—O 5¢ val (5031
—O 86 val (5D =1
F—CO se val (SE -1
——-C 5F val (5F)=1
F—Q 3¢ val (551
L—— O s val (5170

(d)

VOTEof VOTEof VOTE of
1-st level 2-nd level 3-rd level

O —

N

— 1 ‘TOQAB val (845} 71
val (S4) 1 1 Q540 vl (5400 =

o3 QS0 val (S0 = 1
O+ 1<TO¢AEM(MD 1
S4 I<TO¢Arvdu.sm 1

y 54
24

" 1 Q SBC val (SBO) -1
vaiSH= L 1 —=-OsEp waisei-1
O~ 1<—LJLOSBEw1@BE) 1
SB S —Q S8 vl (SBF) =1
ﬁ'—cLovBuwnwm A
ru—h-i—O.summ(amb 0

val (SCY=1
fo) el
SC)
($CO= ;4
| 0+~——Q SCH val (SCH) =
il ‘70SDA val(8D = 1
wi(Sm=1 | 1 '—0 SDB vl (SDB 1

s 120 SDC vl (spoy -1
fopucl 1‘—10 SDE val (SDF) =1

¢
—O8DGvaliSDG # valiS)=1 <D 14— Q8DF va(spr=1

,;«—OADnnl(wm #
Lo <—OSDHWMSDH 0
1~ Q8Ed val sty =

cd

el (SEY=1 145 QSIE \al(bbﬂr—l
s - H*OSEC vl (SEC)— |
O« 1 «=—0SED w(sepy 1
Sk 1 Q) SEF vl (SEF1 =1

,4<—O SEG vil (SEG) =~
L o« O SEH vl (SEIN=0
1 «~<L—OSFA val(srd)=1
1 <—CLO SFB val (SFR)=1

val { SF)=1 1L QSFC vl (1Y =1
3 1 <_r_LOafD val (SED) =1
G <L QSFL va (SFm =1
f[cl QPG val (SFG) ;‘?

0L _QSFH val (SFH) =

W1<—Om4 val (SG4) = gl
) _ |2l Q6B val(SGR) = B4
il (5G)= A ,34. T sGe wl(SGO = R
O | ;g,,],_fowu val (SGDy = &)

S SGE val (SGL) = &)
S g“ T 8M,pmlrSGFy =1
L 0« QO SGH val (SGH =0
0 <O SHA val (81l = c
SHE il (SHB
val (STF=0 ()TO - x r
< (yq—LLOAHD val (SHTH -0
8[0 «—<L—Q SHE vl (SI[R =0

o«—‘-LO SHF val (SHIY =0
| it QSHC val (SHG) = #

cl: the 1-th conidtion of VOTE Is satistied.

®

Fig. 4. GPBA solves the BA problem in the network model shown in Fig. 1: (a) The source uses FTVC to broadcast its value, (b) applying the ab-
sent rule, (c) the second round IG-tree, (d) after the absent rule is applied, (e) after the message exchange phase, (f) applying the VOTE.

Fig. 4 shows an example of GPBA used by a fault-free
processor, say A, in the network shown in Fig. 1 (the execu-
tion in the other fault-free processors is similar). Suppose
that the dormant faulty processor G does not send any
messages during the entire execution of the protocol. In the

first round of message exchange, the source S uses FTVC to
send ¢ (= 6) copies of its initial value “1” to each receiver.
Each fault-free receiver can receive the message “1” sent by
S after the majority function MA]J is applied to the c re-
ceived messages, and store the message into the root of its

340 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 4, APRIL 1998

IG-tree, as shown in Fig. 4a. To remove the influence of a
dormant faulty sender, each fault-free receiver then applies
the absent rule to the root of its IG-tree as shown in Fig. 4b.
Since the source is not in dormant fault, the value stored at
the root in each fault-free receiver is unchanged after the
absent rule is applied. Figs. 4c and 4d show the second
round of message exchange. Using FTVC to exchange the
messages, each fault-free receiver stores the messages re-
ceived from all senders into the second level of its IG-tree,
as shown in Fig. 4c. Note that the value stored at vertex SG
in the IG-tree of each fault-free receiver is 0. That means a
fault-free receiver does not receive any messages from G
and uses the value O to represent the message of G. After
the absent rule is applied, each fault-free receiver will use
the value A to replace the messages received from G as
shown in Fig. 4d. Value A will then be relayed to all processors

as value RA; and value RA; will be relayed to all processors as

value RA;,;, where 1 < j <t (the meanings of value A and RA,
are discussed in Section 3.2). When the number of rounds
reaches three (= |_(n - 1)/3J +1= |_(9 - 1)/3J +1), the messages
are collected by each fault-free processor as shown in Fig. 4e.
Finally, each fault-free processor applies the function VOTE
onto its IG-tree for computing the common value for an
agreement as shown in Fig. 4f. Note that the value A (exclud-
ing the last round) is not counted during the time the VOTE is
taken. The common value “1” can be reached among the fault-
free processors after VOTE is applied.

The detailed descriptions of the above steps for remov-
ing the influence caused by the multiple faulty components
are presented as follows.

3.1 Step 1: Removing the Influence of a Faulty
Intermedium

The function of FTVC is to remove the influence caused
by the faulty intermedium between any pairs of proces-
sors. We first consider the case of a single sender S and a
single receiver R. S uses FTVC to send its message m to R.
Solving this case successfully will enable us to solve the
general case in which every sender sends its message to
every receiver.

Due to the Menger theorem [8], at least ¢ disjoint paths
exist between S and R if the connectivity of the network is
c. Hence, S is able to send ¢ copies of its messages through ¢
disjoint paths to R. The ¢ disjoint paths between S and R
can be predefined, as stated in [9], [16], and the paths infor-
mation is distributed onto the relay processors between S
and R. The detailed description of the paths information is
presented in Appendix A. According to the paths informa-
tion, a relay processor receives the message (R, S, m) from
the predefined immediate predecessor and sends the mes-
sage to the predefined immediate successor. Since the net-
work is synchronous, the predefined immediate successor
P of S should have the message sent by S after the prede-
fined time interval [12]; otherwise, it knows that either S,
the link Lsp, or both are faulty. When P receives no message
from S, it will relay the symbol O (& ¢ V) to its immediate
successor along the predefined disjoint path between S and
R to reflect the faulty status. These are the concepts of the
transferring rules obeyed by each relay processor. The goal

of the transferring rules is to make the receiver obtain the
correct message sent, directly or indirectly, by the sender.
The formal definition of the transferring rules is presented
in Appendix B. The properties of path information and
transfer rules can be found in current network path com-
ponents such as ATM-based networks.

By the definition of the transferring rules, normally, R
receives only one S’s message from a path between S and R.
If more than one message is received from a path in a mes-
sage exchange round, then all messages received from the
path are discarded. This method can handle the case of the
faulty components to fake the messages of predecesors.
Therefore, R receives at most ¢ messages sent by S. An
arbitrary faulty intermedium between S and R can influ-
ence, at most, one message of these ¢ messages sent by S,
and a dormant faulty intermedium between S and R can
drop, at most, one message of these c messages sent by S. In
the worst case, R will receive ¢ — P, — L, copies of messages
sent by S. By applying the majority vote MAJ to these mes-
sages, R can determine the message sent by S if the con-
straint on connectivity, namely c¢>2P +P,+2(L, +L,),
holds. MA]J has three possible outcomes:

e Case 1: m, if S is fault-free.
» Case 2: 0, if S does not send the message to R.
» Case 3: Arbitrary value, if S has an arbitrary fault.

In Case 1, R can receive the message m sent by the fault-
free sender S when MA]J is applied to the receiver mes-
sages. If S does not send the message to R (Case 2), R will
use [J as the message sent by S because the major number
of ¢ — P, — L, copies of messages is [. The third outcome of
MA] implies that the received message is not only contami-
nated by the faulty intermedium, but also is contaminated
by the arbitrary faulty sender. FTVC is unable to remove
the influence of such a case; hence such an outcome of MA]J
shall be an arbitrary value.

In [9], [16], the alternative approaches are proposed to
remove the influence caused by a faulty intermedium in a
nonfully connected network. The approach of [9] assumes
that a faulty processor is only subjected to arbitrary faults
and a link is fault-free. This approach is inappropriate for
hybrid fault model on both processors and links. In [16],
an approach for handling hybrid fault model only on
processors is proposed. When a receiver cannot determine
whether the sender did send a message (regular message)
to it, it will send the inquiry messages to the sender and
will wait for the denial messages from the sender to verify
the status of the sender. Hence, the length of time occu-
pied by each round of this approach is three times than
that of FTVC, which only requires the time for regular
message passing.

3.2 Step 2: Removing the Influence of a Dormant
Faulty Sender

The second step of GPBA is to remove the influence of a
dormant faulty sender. Each fault-free sender should send
its messages to all receivers in each round of the message
exchange phase. As mentioned in Section 3.1, a receiver can
therefore detect that a sender is faulty if no message is re-
ceived from the sender (the output of MAJ of FTVC is [0).

SIU ET AL.: BYZANTINE AGREEMENT IN THE PRESENCE OF MIXED FAULTS ON PROCESSORS AND LINKS 341

In the first round, the source should broadcast its initial value
v, to all receivers; therefore, a fault-free receiver R can always
detect that the source is faulty if no message is received from
it. In order to satisfy the Agreement condition of the BA prob-
lem [13]0 agreement should be reached by every fault-free
processor even if no message was sent from the source—R
will select the default value, say 0, to replace the source’s
message if no message is received from the source.

In each subsequent round, these n —1 receivers (except
the source) should exchange the message received from the
source to compute a common value. A fault-free receiver R
can detect that a sender S is faulty if no message was re-
ceived from S. If R receives no message from S at the rth
round, all messages received from S (directly) at the rth
round and the subsequent rounds will be replaced by value
A, and this value will be relayed to all processors as value
RA;. In each subsequent round, the value RA; will be relayed
to all processors as value RA;,; (A ¢ Vand Ui, RA; ¢ V).

Semantically, the value A is represented as an absentee
vote, while sender S is treated as an absentee. Hence, the
voting ticket of S is ignored during the decision-making
phase. Value RA; will be interpreted as the ith time an absent
vote reported. R will report to all processors that S is an ab-
sentee; thus, S has no influence on the others when the
voting function VOTE is taken in decision-making phase.
The approach can be formalized as follows:

Absent rule:
(AR1) When R receives no message directly from S in the
rth round, then

1) if r = 1 (the first round), P will select the default value to
replace the incoming message from S (the source); or

2) if r # 1, all messages received from S at the rth round
and any subsequent rounds will be replaced by value
A, and this value will be relayed to all processors (ex-

cept the transmitter) as value RA;.

(AR2) When R receives the value RA;, it will relay the value
RA;,; to all processors (if any).

3.3 Step 3: Removing the Influence of an Arbitrary
Faulty Sender

After the message exchange phase, the messages collected
in a fault-free receiver’s IG-tree are free from the influence
of the faulty intermedium and the dormant faulty sender.
However, the messages are still contaminated by the arbi-
trary faulty senders. In order to reach an agreement, such
an influence shall also be removed in the decision making
phase. As mentioned in Section 1, the traditional majority
vote is inappropriate in a general network. As a result, we
propose a new voting scheme VOTE to remove the influ-
ence of the arbitrary faulty senders.

By the constraint on the number of processors required,
namely n > 3P, + P,, if the network eliminates one arbitrary
faulty sender, then it can tolerate three more dormant faulty
senders because 3(P, - 1) + (P, + 3) = 3P, + P;, where P, 2 1.
This phenomenon can be used by VOTE to remove the influ-
ence of an arbitrary faulty sender. The basic concept of VOTE
is as follows: Let P be a fault-free processor and o be a vertex
at the ith level of P’s IG-tree, 1<i<t. If P detects that

3#(t—i+1)+[(n—1)mod 3] children of o have value A, it

will use the original value stored at g, namely val(0), as the
output of VOTE for removing the influence of the arbitrary
faulty sender as in the above discussion; otherwise, it will use
the majority value of children of ¢ as the output of VOTE.

VOTE is always correct if vertex o corresponds to a fault-
free or a dormant faulty sender, since each fault-free receiver
has the same message sent by the sender. On the other hand,
if vertex 0 corresponds to an arbitrary faulty sender Q, the
output of VOTE may be contaminated by Q after our ap-
proach is applied (Q cooperates with other arbitrary faulty
senders to prevent the fault-free processors from achieving a
common value). However, the influence of Q can still be re-
moved at the upper level voting if n > 3P, + P,. Therefore,
the fault-free processors can reach an agreement through the
concept of democratic voting, as shown in Theorem 3. Appen-
dix C presents the formal definition of VOTE.

4 ANALYSIS AND EvaLuAaTION OF GPBA

GPBA uses the approaches stated in Section 3 to remove the
multiply faulty components, and these approaches can be
presented as the following primitives:

* FTVC_SEND(m, Q): Send the message m to processor
Q by using the FTVC protocol.

» FTVC_RECEIVE(m, Q): Receive the message m from
processor Q by using the FTVC protocol.

* ABSENT_RULE(r): Apply the absent rule to the rth
level of the IG-tree.

* VOTE (s): Apply the function VOTE to vertex s.

For completeness, some additional primitives should be
presented as follows:

e CREATE(0Q, v): Create the vertex 0Q, and set val(cQ)
=0.

* FOLD(r, m): Fold the rth level of the IG-tree to the
message M.

» UNFOLD(m, r): According the structure of the rth level
of the IG-tree, unfold the message.

* OUTPUT(v): Output the value v.

Using the above primitives, the formal procedure of
GPBA can be stated as follows.

Protocol GPBA (for each processor P)
begin
/* Message Exchange Phase * /
/* The first round */
ifP=S /*thesource S*/
for QO N -{S} do
FTVC_SEND(v,, Q);
else
begin
FTVC_RECEIVE(v,, S);
CREATE(S, vy);
ABSENT_RULE(1)
end;
/*round 2 to round ¢ + 1 */
forr=2tot+1do
begin
FOLD(r - 1, m);

342 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 4, APRIL 1998

for Q LIN—-{S} do
FTVC_SEND(m, Q);
for Q LIN—-{S} do
begin
FTVC_RECEIVE(m, Q);
UNFOLD(m, r);
foroOmdo
begin
v = val(o);
CREATE(cQ, v)
end
end;
ABSENT_RULE(r)
end;
/* Decision Making Phase */
VOTE(S);
Output(val(S))
end.

4.1 Correctness

The goal of GPBA is to make each fault-free processor
reach a common value for an agreement; hence, the cor-
rectness of GPBA can be proven from the fact that the
common value of each fault-free processor satisfies the
conditions of Agreement and Validity. To reach an agree-
ment in a general network, each fault-free processor
should be insulated from the influence of all faulty com-
ponents. The basic concept of proving the correctness of
GPBA is as follows: By using FTVC, GPBA first removes
the influence of a faulty intermedium. Then, it makes
each fault-free processor reach an agreement after the
influence of the faulty sender is removed (both arbitrary
and dormant faults).

To prove the correctness of FTVC, the output of MAJ
should be proven to be free from the influence of a faulty
intermedium. Hence, we shall prove that a fault-free re-
ceiver can receive the message sent by a fault-free sender or
can detect that the sender did not send a message to it.

LEMMA 1. Using FTVC, a fault-free receiver R can receive the
message m sent by a fault-free sender S if ¢ > 2P, + P, +
Z(La + Ld)

LEMMA 2. Using FTVC, a fault-free receiver R can detect that the
sender S does not send a message to it if ¢ > 2P, + Py +
2(L, + Ly).

THEOREM 2. FTVC does remove the influence of a faulty inter-
medium in a general network if ¢ > 2P, + P, +2(L, + L,).

Then, we prove that GPBA makes each fault-free proc-
essor reach an agreement. Since GPBA is based on the oral
message model, some concepts and terminologies used by
[5] are used here. A vertex o is called common [5] if the
value stored at 0 of each fault-free processor’s 1G-tree is
identical. In other words, a common value for an agree-
ment can be reached if the root of each fault-free proces-
sor’s IG-tree is common. If every root-to-leaf of an IG-tree
contains a common vertex, then the collection of the
common vertices forms a common frontier [5]. To prove an
agreement can be reached by GPBA, we define the consis-
tent vertex as follows.

Vertex o (= oi) at a fault-free receiver’s IG-tree is a con-
sistent vertex if sender i is fault-free or in dormant fault. By
the behavior of i, all fault-free receivers receive the identical
message sent by i. Although a receiver does not know
which vertex is consistent, the consistent vertices do exist
since some senders in the network are fault-free or dormant
faulty.

The following lemma proves that all consistent vertices
of an IG-tree are common:

LEMMA 3. All consistent vertices are common after VOTE is
applied to an 1G-tree if n > 3P, + P;.

LEMMA 4: The common frontier does exist in the IG-tree.

By the frontier lemma of [5], the root of the fault-free
processor’s IG-tree is common if the common frontier exists
on each fault-free processor’s IG-tree. The following theo-
rems prove that an agreement can be reached among each
fault-free processor.

THEOREM 3. The root of a fault-free processor’s IG-tree is commion.
THEOREM 4. GPBA does solve the BA problem with mixed faults
ifn>3P,+Pyand ¢ > 2P, + P, +2(L, + L;).

4.2 Complexity
The complexity of GPBA is defined in terms of

1) the number of rounds required,
2) the number of messages required, and
3) the number of faulty components allowed.

In this subsection, we prove that GPBA is optimal. It uses
the minimum number of rounds and messages to tolerate
the maximum number of faulty components.

THEOREM 5. GPBA requires t+1 rounds and O(cn+tcn2)

messages for solving the BA problem in a general net-
work if n > 3P, + P, and ¢ > 2P, + P, +2(L, + L,), where

t=|(n-1)/3].

THEOREM 6. GPBA solves the BA problem in a general network
by using the minimum number of rounds and messages.

THEOREM 7. The total number of allowable faulty components by
GPBA, namely P, + P, + L, + L, is maximum if n > 3P,
+Pyand c > 2P, + P, +2(L, +L,).

5 CONCLUSION

GPBA is a protocol for solving the BA problem in a general
network. We have shown the conditions for an agreement in a
general network, namely the number of processors required
and the connectivity required. Since GPBA is based on general
assumptions, the protocols designed for handling the proces-
sor failures only or link failures only are the special cases of
GPBA, as summarized in Tables 2 and 3. As for the assump-
tions on both processor and link failures, Yan et al.’s protocol
[27] is also a special case of GPBA because their protocol con-
siders arbitrary faults only, as indicated in Table 4.

When only link failures are considered, the constraint on
failures by GPBA is ¢ > 2L, + L;, as shown in Table 3. The
number of allowable faulty links of this bound is greater than
that of the original bound on GPBA, namely ¢ > 2(L, +L,).

SIU ET AL.: BYZANTINE AGREEMENT IN THE PRESENCE OF MIXED FAULTS ON PROCESSORS AND LINKS 343

TABLE 2
THE CONSTRAINTS ON FAILURES FOR VARIOUS PROTOCOLS ON PROCESSOR FAULTS
Assumption arbitrary fault dormant fault hybrid fault
Result fully nonfully fully nonfully fully nonfully
connected | connected | connected | connected connected connected
Protocol network network network network network network
Lamport et al. [14] n>3P, N.A. n>3Py N.A. n>3(Py+ Py N.A.
Dolev [9] n>3P, n>3P, n>3Py n> 3P, n>3(Py+ Py n>3(P,+ P,)
c>2P, c>2Py c>2(Py+ Py)
Christian et al. [7] n>3P, N.A. n> Py N.A. n>3(Py+ Py) N.A.
Thambidurai and Park [24] n>3P, N.A. n> Py N.A. n>3P,+ Py* N.A.
Lincoln and Rushby [15] n>3P, N.A. n> Py N.A. n>3P,+ Py* N.A.
Meyer and Pradhan [17] n>3P, n>3P, n> Py n> Py n> |_(n _ 1)/3J n> |_(n _ 1)/3J
> >
€>2Pa ¢>Pa +2P,+ Py +2P,+ Py
c>2P,+ Py
GPBA n>3P, n>3pP, n>PpPy n> Py n>3P,+ Py n>3P,+ Py
c>2P, c>Py c>2P,+ Py
N.A.: Not Applicable
* The number of arbitrary faulty processors must be known.
TABLE 3
THE CONSTRAINTS ON FAILURES FOR VARIOUS PROTOCOLS ON LINK FAILURES
Assumptions arbitrary fault hybrid fault
Results fully nonfully fully nonfully
connected connected connected connected
Protocol network network network network
Yan and Chin [26] c>2l, N.A. c>2(La+ Ly N.A.
GPBA c>2l, c>2l, c>2l,+ Ly c>2l,+ Ly
TABLE 4
THE CONSTRAINTS ON FAILURES FOR VARIOUS PROTOCOLS ON BOTH PROCESSOR AND LINK FAILURES
Assumptions arbitrary fault hybrid fault
Results fully nonfully fully nonfully
connected connected connected connected
Protocol network network network network
Yan et al. [27] n>3P, N.A. n>3(P,+ Pp) N.A.
c>2P,+ L, c>2(Py+ Pyt
La + Ld)
GPBA n> 3P, n> 3P, n>3P4+ Py n>3P4+ Py
C>2P+ L, | €>2P,+ Ly | c>2P,+ Py+ C>2P,+ Py +
2(La+ Ly 2(La+ Ly

According to FTVC, in the worst case, a fault-free processor
has ¢ — L, copies of messages sent by a sender. Therefore, the
influence of faulty links can be removed by using FTVC if
c—L, >2L, namely ¢ > 2L, +L,. Since the processors are
fault-free, by the condition c3 of VOTE, an agreement can be
reached among the processors.

From the previous discussion, we can present the following
results:

3) GPBA is designed for solving the BA problem with
the most general assumptions; all others failure types
can be treated as the special cases as shown in Tables 2,
3,and 4.

4) The FTVC protocol can remove the influence of a
faulty intermedium. The protocol can be used in other
problems of distributed systems, such as clock syn-
chronization and replicated file system [3], to provide

liabl. icati hanism.
1) Solving the BA problem in a general network, GPBA a refiable commuttication mechanism

is optimal in terms of the number of rounds required,
the number of messages required, and the number of
faulty components allowable, as proven in Theorems 6
and 7.

2) GPBA does not require the faulty status of the system
prior to the execution of the protocol.

By using the absent rule, a fault-free receiver can detect the
faulty status of a sender. Thus, GPBA has the capability of fault
detection. Basically, the fault detection can handle the dormant
faults only and the result of fault detection is local [3] (the fault
detection result is inconsistent among all fault-free processors).
Our future work consists of combining GPBA with the fault
detection for all types of failures ina general network.

344 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 4, APRIL 1998

APPENDIX

A Paths Information

The paths information of each sender and receiver pair is
distributed onto the replay processors between sender and
receiver. Each relay processor P maintains a tuple (receiver,
sender, predecessor, successor) path information such that the
path <predecessor, P, successor> is a subpath of the path from
the sender to the receiver. The sender and receiver also need
the ¢ neighbors along a prescribed set of processor-disjoint
paths. The sender will send ¢ copies of the message for-
matted (receiver, sender, message) through the c predefined
paths to the receiver at each time of message passing.

B The Transferring Rules

The transferring rules obeyed by a relay processor P are
defined in the following;:

R1: According to the paths information described above, P
only relays a message to its predefined immediate
successor if P receives it from its predefined immedi-
ate predecessor.

R2: Let P be a predefined immediate successor of the sender S.
After the time T, + T, if P does not receive a message
from S, then P will relay the symbol O to its predefined
immediate successor, where T, is the starting time of the
kth round of the message exchange phase, and T, is the
upper bound on communication time between S and P.

Semantically, R1 indicates that a fault-free relay processor
only receives a message from the predefined immediate
predecessor and only sends a message to the predefined im-
mediate successor. R2 is proposed to help R to determine the
status of S. At the time T, after the starting time of the kth
round, namely T, + T, the predefined immediate successor
P of S should have the message sent by S; otherwise, it
knows that either S, the link Lgp, or both have failed. When
P receives no message from S, it will relay the symbol O to its
predefined immediate successor to reflect the faulty status.

C VOTE

VOTE only counts the non-A values (excluding the last level
of the IG-tree). For all vertex g at the ith level of an IG-tree,
the output of VOTE depends on the following conditions:

c1: val(0), if 0 is a leaf; or

c2:val(o),if 1Si<tand chasatleast3* (t—i+ 1) +[(n—1)
mod 3] children, each of which has value A; or

c3:v,if1<i<t, chasnomorethan3*(t—i+1)+[(n—-1)
mod 3] children, each of which has value A, v is the
most common value of VOTE applied to children of
0, and v # RA; or

c4:Aif1<i<t, chasnomorethan3* (t—-i+1)+[(n—-1)
mod 3] children, each of which has value A, and RA,;
is the most common value of VOTE applied to chil-
dren of o; or

c5: RA 4, if 1<i<t, 0 has no more than 3 * (t —i + 1) + [(n —
1) mod 3] children, each of which has value A, and

RA; is the most common value of VOTE applied to
children of g, where j # 1; or

c6: the default value, if no majority value of children of o
exists.

Conditions c1, ¢3, ¢5, and c6 are similar to the traditional
majority vote. The other two conditions are used to handle
the case of mixed faults. Semantically, condition c4 is used
to report the existence of an absentee. When the major
number of processors reports that an absentee exists, VOTE
returns the value A, an absentee’s vote, to represent such an
event. As mentioned in Section 3.3, VOTE uses val(0) as the
output if the condition of c2 is satisfied.

REFERENCES

[1] J.C. Adams and K.V.S. Ramarao, “Distributed Diagnosis of Byz-
antine Processors and Links,” Proc. Symp. Distributed Computing
Systems, pp. 562-569, 1989.

[2] O. Babaoglu, “On the Reliability of Consensus-Based Fault-
Tolerant Distributed Computing Systems,” ACM Trans. Computer
Systems, vol. 5, no. 2, pp. 394-416, Nov. 1987.

[3] O. Babaoglu and R. Drummond, “Street of Byzantium: Network
Architectures for Fast Reliable Broadcasts,” IEEE Trans. Software
Eng., vol. 11, no. 6, pp. 546-554, June 1985.

[4] M. Barborak, M. Malek, and A. Dahbura, “The Consensus Prob-
lem in Fault-Tolerant Computing,” ACM Computing Surveys, vol. 25,
no. 2, pp. 171-220, June 1993.

[5] A. Bar-Noy, D. Dolev, C. Dwork, and R. Strong, “Shifting Gears:
Changing Algorithms on the Fly to Expedite Byzantine Agree-
ment,” Proc. Symp. Principle of Distributed Computing, pp. 42-51,
1987.

[6] P. Berman and J.A. Garay, “Cloture Votes: n/4-Resilient Distrib-
uted Consensus in t + 1 Rounds,” Math. Systems Theory, vol. 26,
no. 1, pp. 3-19, 1993.

[7] E Christian, H. Aghili, and H.R. Strong, “Atomic Broadcase: From
Simple Message Diffusion to Byzantine Agreement,” Proc. Symp.
Fault-Tolerant Computing, pp. 200-205, Ann Arbor, Mich., 1985.

[8] N. Deo, GRAPH THEORY with Applications to Engineering and
Computer Science. Englewood Cliffs, N.J.: Prentice Hall, 1974.

[9] D. Dolev, “The Byzantine Generals Strike Again,”]. Algorithms,
vol. 3, no. 1, pp. 14-30, 1982.

[10] D. Dolev, N. Lynch, S. Pinter, E. Stark, and W. Weihl, “Reaching
Approximate Agreement in the Presence of Faults,”]. ACM, vol. 33,
no. 3, pp. 499-516, July 1986.

[11] M. Fischer and N. Lynch, “A Lower Bound for the Assure Inter-
active Consistency,” Information Processing Letters, vol. 14, no. 4,
pp- 183-186, June 1982.

[12] M. Fischer, M. Paterson, and N. Lynch, “Impossibility of Distrib-
uted Consensus with One Faulty Process,”]. ACM, vol. 32, no. 4,
pp- 374-382, Apr. 1985.

[13] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals
Problem,” ACM Trans. Programming Language Systems, vol. 4, no. 3,
pp- 382-401, July 1982.

[14] P. Lincoln and J. Rushby, “A Formally Verified Algorithm for
Interactive Consistency Under a Hybrid Fault Model,” Proc. Symp.
Fault-Tolerant Computing, pp. 402-411, Toulouse, France, 1993.

[15] J. Martin, Telecommunications and the Computer, third ed.
Englewood Cliffs, N.J.: Prentice Hall, 1990.

[16] EJ. Meyer and D.K. Pradhan, “Consensus with Dual Failure
Modes,” IEEE Trans. Parallel and Distributed Systems, vol. 2, no. 2,
pp- 214-222, Apr. 1991.

[17] H.G. Molina, E. Pittelli and S. Davidson, “Applications of Byzan-
tine Agreement in Database Systems,” ACM Trans. Database Sys-
tems, vol. 11, no. 1, pp. 27-47, Mar. 1986.

[18] M. Pease, R. Shostak, and L. Lamport, “Reaching Agreement in
Presence of Faults,”]. ACM, vol. 27, no. 2, pp. 228-234, Apr. 1980.

[19] A. Pelc, “Reliable Communication in Networks with Byzantine
Link Failures,” NETWORKS, vol. 22, no. 5, pp. 441-459, Aug. 1992.

[20] V. Ramaswami, and J.L. Wang, “Analysis of the Link Error Moni-
toring Protocols in the Common Channel Signaling Network,”
IEEE/ACM Trans. Networking, vol. 1, no. 1, pp. 31-47, Feb. 1993.

[21] K. Shin and P. Ramanathan, “Diagnosis of Processors with Byz-
antine Faults in Distributed Computing Systems,” Proc. Symp.
Fault-Tolerant Computing, pp. 55-60, 1987.

SIU ET AL.: BYZANTINE AGREEMENT IN THE PRESENCE OF MIXED FAULTS ON PROCESSORS AND LINKS 345

[22] H.S. Siu, Y.H. Chin, and W.P. Yang, “A Note on Consensus on
Dual Failure Modes,” IEEE Trans. Parallel and Distributed Systems,
vol. 7, no. 3, pp. 225-230, Mar. 1996.

[23] N. Suri, M.M. Hugue, and C.]J. Walter, “Synchronization Issues in
Real-Time Systems,” Proc. IEEE, vol. 82, no. 1, pp. 41-53, Jan. 1994.

[24] P. Thambidurai and Y.-K. Park, “Interactive Consistency with
Multiple Failure Modes,” Proc. Symp. Reliable Distributed Systems,
pp- 93-100, Columbus, Ohio, Oct. 1988.

[25]]J. Turek and D. Shasha, “The Many Faces of Consensus in Dis-
tributed Systems,” Computer, vol. 25, no. 6, pp. 8-17, June 1992.

[26] K.Q. Yan and Y.H. Chin, “An Optimal Solution for Consensus
Problem in an Unreliable Communication System,” Proc. Int'l
Conf. Parallel Processing, pp. 388-391, University Park, Pa., Aug.
1988.

[27] K.Q. Yan, Y.H. Chin, and S.C. Wang, “Optimal Agreement Proto-
col in Byzantine Faulty Processors and Faulty Links,” IEEE Trans.
Knowledge and Data Eng., vol. 4, no. 3, pp. 266-280, June 1992.

Hin-Sing Siu received the BM degree from Fu-
Jen University, and the MS and PhD degrees in
computer and information science from National
Chiao-Tung University. Currently, he is an asso-
ciate professor with the Department of Industrial
Engineering and Management, MingChi Institute
of Technology, Taipei, Taiwan. His research in-
terests include fault tolerant distributed systems,
computer networking, and database manage-
ment systems.

Yeh-Hao Chin (S'69-M'72-SM'95) received the
BSEE degree from National Taiwan University, and
the MS and PhD degrees in electrical engineering
from the University of Texas at Austin in 1970 and
1972, respectively. He has been a member of the
faculty at Northwestern University, Cleveland State
University, and National Chiao-Tung University. He
has also worked for the Control Data Corporation,
Sunnyvale, California, and AT&T Bell Laboratories,
Holmdel, New Jersey. Currently, he is a professor
with the Institute of Computer Sciences, National
Tsing-Hua University, Hsinchu, Taiwan. His research interests include
database management systems, operation systems, design and analysis
of algorithms, software engineering, and VLSI design. He is a senior
member of the IEEE Computer Society.

Wei-Pang Yang received the BS degree in
mathematics from National Taiwan Normal Uni-
versity in 1974, and the MS and PhD degrees
from National Chiao-Tung University in 1979 and
1984, respectively, both in computer engineering.
Since August 1979, he has been on the faculty of
the Department of Computer Science and Infor-
mation Engineering at National Chiao-Tung Uni-
versity, Hsinchu, Taiwan. In the academic year
1985-1986, he was awarded the National Post-
doctoral Research Fellowship and was a visiting
scholar at Harvard University. From 1986 to 1987, he was the director
of the Computer Center of National Chiao-Tung University. In August
1988, he joined the Department of Computer and Information Science
at National Chiao-Tung University, and acted as the head of the de-
partment for one year. Then, he went to IBM Almaden Research Center
in San Jose, California, for another a year as a visiting scientist. From
1990 to 1992, he was the head of the Department of Computer and
Information Science again. His research interests include database
theory, database security, object-oriented database, image database,
and Chinese database retrieval systems.

Dr. Yang is a senior member of the IEEE Computer Society and a
member of the ACM. He was the winner of the 1988 and 1992 AceR
Long Term Award for Outstanding MS Thesis Supervision, the 1993
AceR Long Term Award for Outstanding PhD Dissertation Supervision,
and the winner of the 1990 Outstanding Paper Award of the Computer
Society of the Republic of China. He also received the Outstanding
Research Award of National Science Council of the Republic of China.

