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The Efficient Memory-Based VLSI 
Array Designs For DFT and DCT 

Jiun-In Guo, Chi-Min Liu, and Chein-Wei Jen 

Abstract-In this paper, the efficient memory-based VLSI 
arrays and the accompanied new design approach for the dis- 
crete Fourier transform (DFT) and discrete cosine transform 
(DCT) are presented. The DFT and DCT are formulated as 
cyclic convolution forms and mapped into linear arrays which 
characterize small numbers of 1 / 0  channels and low 1 / 0  
bandwidth. Since the multipliers consume much hardware area, 
the presented designs utilize small ROM’s and adders to imple- 
ment the multiplications, which is based on good data arrange- 
ments exploiting the number properties of the transform ker- 
nels. Moreover, the ROM size can be reduced effectively by 
arranging the data in our designs appropriately. Typically, to 
perform l -D N-point DIT and DCT, the arrays need N X 2’- 
words of ROM only. Compared to the conventional distributed 
arithmetic architectures which should require N X 2 N  words of 
ROM, much memory can be saved if N is greater than L,  which 
occurs in most D F I  applications. To summarize, the presented 
arrays outperform others in the architectural topology (local 
and regular connection), computing speeds, hardware complex- 
ity, the number of I / 0 channels, and I / 0 bandwidth. They 
take the advantages of both systolic arrays and the memory- 
based architectures. 

I. INTRODUCTION 

E DISCRETE Fourier transform (DFT) and dis- T” crete cosine transform (DCT) are the key functions 
widely used in many significant image and signal process- 
ing applications. Because of the high computational com- 
plexity, the derivations of efficient algorithms suitable for 
VLSI are inevitable in many real-time applications. In the 
literatures, a variety of algorithms have been proposed for 
computing the D I T  and DCT. Since each algorithm has 
its own specific property and application field, not all the 
algorithms are well suited for VLSI implementation. The 
efficiency of an algorithm to be implemented in VLSI is 
based more on the degree of the communication complex- 
ity required among arithmetic elements rather than on 
the number of computations. Hence, the fact having been 
observed by many researchers [1]-[8] is that fast Fourier 
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transform (FFT) like algorithms which have been used 
extensively for their low numbers of multiplications are 
not well suited for VLSI implementation. 

Systolic arrays [l], [2] can meet the increasing require- 
ments of processing speeds and be well suited for VLSI 
implementation. They attain high processing speeds 
through parallel and pipeline processing, and make the 
VLSI implementation feasible through modularity, struc- 
tural regularity, and local interconnection. We refer to the 
paper in [3] for the motivations of systolic array architec- 
tures over others. When systolic arrays are used as the 
design vehicle, the speeds and implementation benefits 
are able to be pronounced only if a large number of 
low-cost processing elements (PE’s) can be implemented 
in a VLSI chip. In the existing systolic arrays for DFT and 
DCT, multipliers are the fundamental computing ele- 
ments in PE’s. Since multipliers should consume a large 
silicon area, the limited chip size should put a severe 
limitation to the allowable number of PE’s. Passively, such 
arrays [2]-[6], [8]-[141 should wait for the advent of VLSI 
technology such as wafer-scale integration to make their 
benefits visible. Constructively, systolic arrays and the 
encapsulated algorithms should be developed to simplify 
the structure and complexity of PE’s. Based on this point, 
this paper presents a new approach to design the VLSI 
arrays for DFT and DCT. Since this approach derives 
algorithms based on the data permutations introduced in 
[8], [14], the designed arrays possess better performance in 
the computing parallelism, computational complexity, and 
1 / 0  cost than the designs in [2]-[5], [9]-[ll] do as analyzed 
in [81, 1141. Also, this approach considers the efficiency of 
hardware implementation and provides an efficient way to 
replace multipliers by small ROM’s such that the de- 
signed arrays can attain high computing speeds at the 
expense of a small silicon area. 

Owing to the regular and compact structure of ROM’s, 
the methods to replace multipliers by ROM’s have been 
studied by numerous researchers (see the references in 
[161). Among them, distributed arithmetic (DA) has been 
successfully applied to implement a 16 x 16 DCT in a 
single chip [20l and widely adopted for commercial prod- 
ucts [211-[29]. DA is a technique that computes the multi- 
plications involved in an inner-product by a series of 
memory access and accumulation operations. If the vector 
length and the wordlength of input data are assumed to 
be N and L,  respectively. DA typically performs an 
inner-product by a ROM with size equal to 2N words in L 
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steps in a bit-serial manner. When applying DA to DCT 
or DFT, the combination of bit-serial and bit-parallel 
operations renders the implemented chip requiring a large 
amount of shift registers or buffers [201-[29]. Also these 
architectures [191-[291 suffer from the imbalance between 
the wordlength L and the vector length N. Based on total 
ROM size of N X 2N words, the number of operation 
steps required to perform a l -D N-point DCT or DFT is 
determined by the larger value of N and L. In this paper, 
a new technique is presented to efficiently replace the 
multipliers by ROM’s for DFT and DCT. This technique 
leads to an architecture which attains structural regularity 
and modularity among PE‘s like systolic arrays. The oper- 
ations of PE’s are performed simply by ROM’s and adders, 
which is like the style of DA. The total ROM size and the 
number of operation steps for the presented architectures 
to perform l-D N-point DCT and DFT are about N X 2 L  
words and N, respectively. If N is greater than L,  which 
occurs in most DFT problems, the presented designs shall 
require lower hardware cost in ROM’s than the DA 
architectures do. Moreover, the presented architectures 
operate in a bit-par allel manner which is different from 
that of the DA architectures. Thus, they are free from the 
large amount of shift registers or buffers. To sum up, the 
new approach presented in this paper can be used to 
design the VLSI architectures f or the DFT and DCT, 
which can take the advantages of both systolic arrays and 
t he architectures based on memory. 

For the purpose of showing the essentials of this 
approach concretely, the characteristics of the approach 
are discussed in the following. In the first place, to attain 
high computing parallelism, low computational complex- 
ity, and the attractive feature of linear arrays that the 
1/0 bandwidth as well as the number of 1/0 channels 
can be kept independent of the array length, the DFT and 
DCT are formulated as cyclic convolution forms [SI, [14]. 
That is, the structure of Galois Field is utilized to permute 
the input and output data such that the DFT and DCT 
are formulated as cyclic convolution forms and mapped 
into linear arrays. Hence the designed arrays possess 
outstanding performance in the computing parallelism, 
computational complexity, the number of 1 / 0  channels 
and 1/0 bandwidth. As has been discussed in [151, the 
high 1/0 bandwidth required for most systolic arrays 
would limit the computing speeds. Therefore, reducing 
the high 1/0 bandwidth is capable of enhancing the 
computing speeds at the same time. Secondly, we modify 
the cyclic convolution forms in order to replace multipli- 
ers by ROM’s efficiently. Fig. 1 illustrates the motivation 
of this modification. If a multiplier with two time-variant 
operands a and b is directly replaced by a ROM as shown 
in Fig. l(a), the required ROM size equals to 22L words 
which are too large to be practical in hardware realiza- 
tions, where L is the input data wordlength. Based on the 
modified forms, one of the operands in the multiplier can 
be fixed. Therefore, one multiplier can be replaced by 2 L  
words of ROM as shown in Fig. l(b). Moreover, as has 
been discussed in 1201, a technique named partial sums 

a b  a fixed value address 

Multiplier Multiplier 

C C C 

replaced by 1 
address 

C 

replaced by 1 
address 

$1 2L words 

+ 
C 

replaced by 1 
address 

c 

Fig. 1. (a) Direct replacement of multipliers by ROM’s. (b) Replace- 
ment of multipliers with one fixed operand by ROM’s. (c) Partitioning 
ROM’s by using partial sums technique. 

can be used to reduce the memory size in DA architec- 
tures. This technique can also be applied to the presented 
designs to reduce the ROM size from 2L words to 2(L/2+1) 
words as shown in Fig. l(c). After using these two tech- 
niques illustrated in Fig. l(b) and (c), a multiplier can be 
efficiently replaced by ROM’s with size equal to 2(L/2+ ‘1 
words and an adder. Furthermore, owing to the small 
ROM size, short ROM access time can be attained to 
benefit the computing speeds. Considering for example 
the computation of a 17-point DFT of real inputs, only 
about 1K words of ROM are needed if the input 
wordlength is 8 bits. The rest of this paper is organized as 
follows. Section I1 presents the new systolic algorithm for 
l-D DFT and DCT. Section I11 illustrates the hardware 
realizations of the presented algorithm. Section IV gives a 
conclusion. 

11. ALGORITHM DERIVATION AND ANALYSIS 

A. The Deriuation for Cyclic Convolution 

i = 0,1;*-, N - 1) can be generally expressed as 
The l -D DFT and DCT of the input sequence { y ( i ) ,  

N -  1 . .  

Y ( k ) =  C y ( i )  x H ( i , k ) ;  k = O , l ; . * , N - 1  (1) 
i=O 

where ( Y ( k ) ,  k = 0, l;.., N - 11 is the output sequence 
and {H( i ,  k), i, k = 0, l, . . . ,  N - 11 denotes the kernels of 
transforms. Generalizing from our previous approaches 
[SI, [14], we can formulate (1) as 

N -  1 

i = O  

k = 1;**, N - 1 (2b) 
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where 

N -  1 
T ( g k )  = x(g’) x h ( g ’ + k ) ;  

i =  1 

k = l;.., N 

{cos (& x g k ) ;  for 1-D DCT 

1; for l -D  DFT 
mk) = 

I ( -  1)” x cos (G x g”’); for l-D DCT 
q g ‘ + k )  = 

X g i + k ) ;  for l -D  DFT 

and the sequence { x ( i ) ,  i = 0, l;.., N - 1) is defined as 

x ( N  - 1) = y ( N  - 1) 

y ( i )  - x ( i  + 1); for l -DDCT 
x(i) = 

i = 0, l;.., N - 2. 

The value of rn is determined by the following equation 

g’ Xg‘  =gi+‘ + rn x N ;  i ,  k = 1,2,.. . ,  N - 1 (2d) 

where “gi” denotes the result of “g‘ modulo N operation” 
for short and “g” is a primitive element. The details of 
the derivation from (1) to (2) for the DFT and DCT can 
be found in Appendix A and Appendix B, respectively. 
From (2~1, we know that the sequence { T ( k ) ,  k = l;.., 
N - 1) is the cyclic convolution of the sequence { x ( i ) ,  i = 

l,..., N - 1) and the kernels {h (g”k) ,  i ,  k = l;.., N - 1). 
To illustrate the difference between (1) and (2) clearly, 
the matrix representations of 5-point DFT based on (1) 
and (2) are individually shown in the following 
- - - - 

1 1 1  

w’2 W1h 

1 1 1  

where “W” and “g” are assumed to be exp ( - j 2 ~ / 5 )  and 
2, respectively. Note that the elements in the matrix of 
(3b) have the same value in the same diagonal line exclu- 
sive the 1’s in the first row and the first column while 
those of (3a) do not possess similar phenomenon. If (3a) is 
directly realized by using the linear arrays similar to that 

in [91, each PE should have one input channel to receive a 
kernel value, W‘, at each time step. Totally, the number 
of W“s to be transmitted to the arrays is N 2 .  Such arrays 
require large numbers of 1/0 channels and high 1 / 0  
bandwidth. On the other hand, if the special phenomenon 
of W”s in the matrix of (3b) is efficiently utilized, the 
W”s can be transmitted to the arrays only through one 
input channel at the array boundary and the number of 
W”s to be transmitted to the arrays is only N .  Hence, the 
number of 1/0 channels and the 1/0 bandwidth are 
reduced by a factor N .  Moreover, (3b) should induce high 
computing parallelism and low computational complexity 
as analyzed in [8]. In the following subsection, we shall 
further modify the algorithm so that the multipliers in the 
arrays can be replaced by ROM’s efficiently. 

B. The Deriuation for EfJicient ROM Substitution 
Fig. 1 illustrates the basic motivation for the further 

derivation of (2). As shown in Fig. l(a), if a multiplier with 
two time-variant operands a and b is replaced by a ROM, 
the required ROM size equals to 22L words, where L is 
the input wordlength. If one of the operands i n .  the 
multiplier is fixed, then the multiplier can be replaced by 
a ROM with size equal to 2L words as shown in Fig. l(b). 
Since the ROM is used to perform multiplications, it can 
be further replaced by two small ROM’s and an adder as 
shown in Fig. l(c). The size of each ROM equals to 2L/2 
words and the total size of the ROM’s equals to 2L /2+1  
words. This partition scheme is similar to the partial sums 
technique used in [20]. As can be noted, the partition 
scheme induces an additional adder although the memory 
size is reduced. Further partitions of the ROM’s are 
possible but the trade-off lies in the cost between memory 
and adders. It has been analyzed based on an implemen- 
tation technology that the number of times to partition a 
ROM with 8-bit addresses is one [20]. In the rest of this 
section, (2) is further modified such that the multipliers 
used in an array can be replaced by ROM’s based on the 
method illustrated in Fig. l(b). Then, we shall partition 
the ROM’s based on the method illustrated in Fig. l(c). It 
is arbitrarily assumed in this paper that the number of 
times to partition the ROM’s is one. 

Considering (3b), the sequence { x ( i ) ,  i = 0, l;.., N - 1) 
is time-variant. The W”s are transmitted from the PE at 
the array boundary through the internal PE’s for proper 
computations. Hence, the two operands of multipliers in 
the PE’s are both time-variant. As illustrated in Fig. l(a), 
such multipliers cannot be replaced by ROM’s efficiently. 
In order to efficiently replace multipliers by ROM’s, (2c) 
can be reformulated as 

N -  1 

7 y g q  = h ( g ’ )  x x(g’-”; k = l , . . . ,  N - 1 (4) 
i =  1 

based on the commutative property of cyclic convolution. 
To illustrate that (4) benefits the efficient ROM substitu- 
tion, the matrix representation of 5-point DFT based on 

I 
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(4) can be expressed as 

4 3 )  4 1 )  4 2 )  x(4) 

where “W” and “g” are assumed to be exp ( - j 2 ~ / 5 )  and 
2, respectively. It is noted from (5) that the input data 
x(i)’s are transmitted among PE’s and are time-variant, 
but the ( N  - 1) W“s are respectively allocated to ( N  - 1) 
PE’s and are time-invariant. Hence, one operand in a 
multiplier is fixed and the multipliers used to implement 
the multiplications in ( 5 )  can be replaced by ROM’s and 
adders based on the methods illustrated in Fig. l(b) and 
(c). In the following section, the architectures that realize 
the DFT and DCT based on this algorithm are presented. 

cost function of hardware complexity and the time delay 
are respectively about 272 and 14t where t is the gate 
delay time. If a complex multiplication is implemented by 
two multipliers as shown in Fig. 3(b), the cost function of 
hardware complexity and the time delay are about 1920 
and 32t, respectively. 

To help analyze the activity of the array shown in Fig. 2, 
the presented algorithm for 5-point DFT can be expressed 
as the recursive form 

y;  = 0; k = 1;.. 94 (7a) 

y;  =y;-’ + W2‘ x ~ ( 2 ’ - ~ ) ;  i ,  k = 1;..,4 

Y(2k) = x ( 0 )  + y ; ;  k = 1;**,4 
( 7c) 

25 = zk-’ + x( i> ;  i = 1,. .- ,4 111. ARRAY REALIZA~ONS 
( 7 4  A. The Hardware Architecture .for 1-D 5-Point DFT 

Based on the presented algorithm, the 1-D 5-point DFT 
of the input sequence {x(i), i = 0, l;.., N - 1} can be 
formulated as 

4 

Y(O) = C x ( i )  
i = O  

Y(2k) =x(O) + T(2k) ;  k = 1;**,4 (6b) 
4 

T(2k)  = W2‘ X X ( ~ ’ - ~ ) ;  k = 1,-. . ,4 ( 6 ~ )  

where “W” and “g” are assumed to be e x p ( - j 2 ~ / 5 )  and 
2, respectively. Fig. 2 shows the memory-based systolic 
array for 5-point DFT where consecutive DFT calcula- 
tions are assumed. The first input and output data bun- 
dles are denoted as xl(i)  and Yl(k), the second input 
and output data bundles are denoted as x2(i) and Y2(k), 
and so on. The time instants for the input and output data 
bundles are indicated in the same row of each data. 
Analyzing the array shown in Fig. 2, the input data are 
piped in from the left-most PE while the output data 
are drained out from the right-most PE. Hence, the 1/0 
channels are all located at the boundary PE’s which 
makes the 1 /0  cost independent of the array length N .  
The ( N  - 1) twiddle factors, W”s are stored in ( N  - 1) 
PE’s, respectively. As a result, each multiplier in the PE’s 
can be efficiently replaced by two small ROM’s and an 
adder as illustrated in Fig. l(b) and (c). Fig. 2(b) and (c) 
illustrate the functions and structures of the PE’s in the 
array. Fig. 2(d) illustrates the permutation stage of 
the array which performs the permutations and order 
arrangements of the input data. A RAM buffer and an 
address generation unit are used to implement the data 
permutations. To illustrate the advantages of the ROM 
substitution, the analysis model presented in [30] is used 
to analyze the hardware and time complexity. If a complex 
multiplication is implemented by ROM’s with size equal 
to 25 words and two 8-bit adders as shown in Fig. 3(a), the 

i =  1 

20” = x(0) ( 7e) 

Y(0) =2;. ( 7f) 
Fig. 4 depicts the activity of the array shown in Fig. 2 at 
successive six clocks from t = 8 to t = 13, where ypb 
denotes the iterated result yL in (7) of the pth data 
bundle. The right-most PE has a 2-bit control link named 
“Tag2” and all the PE’s have the 1-bit control links 
named “Tagl.” Link “Tagl” is used to indicate the PE’s 
to select the appropriate input data, and link “Tag2” is 
used to indicate the right-most PE to perform the correct 
operations. Based on the control scheme named “Tug 
control” [18], the data in the local registers of each PE can 
be controlled from the input channels at the extreme ends 
of a linear array. The hardware overheads paid for this 
control scheme in each PE are about a 1-bit link and one 
multiplexer. The time overhead is ( N  - l)Tqcle, where 
Tqcle is the cycle time of the array. However, the time 
overhead can be skipped by overlapping the computation 
time of two consecutive DFT calculations. As depicted in 
Fig. 2, there is no extra time between the data bundle 
xl(i)’s and the data bundle x2(i)’s, or between the data 
bundle Yl(k)’s and the data bundle Y2(k)’s. In other 
words, this control scheme should give overhead to the 
latency time instead of the average computation time for 
a DFT problem. The latency time is defined as the con- 
sumption time from the input of the first datum to the 
output of the final datum for a DFT calculation. The 
average computation time is defined as the minimum 
execution time between the first datum of the current 
data bundle and the first datum of the next data bundle 
for consecutive DFT calculations. This phenomenon can 
also be checked from the array activity shown in Fig. 4. 
From t = 8 to t = 13, the array calculates the first DFT 
problem by using xl(i)’s and simultaneously fetches 
x2(i)’s for the second DFT problem. It is such a concur- 
rent computing style that favors the average computation 
time of the presented DFT array. 

1 
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t = 1 9  1 
t = l 8  1 
t = 1 7  1 
t = 1 6  1 
t = 1 5  0 
t = 1 4  0 
t = 1 3  0 
t = 1 2  0 
t = l l  1 
t = 1 0  1 
t = 9  1 
t = 8  1 

t = 1 3  
t = 1 4  
t = 1 5  
t = 1 6  
t = 1 7  
t = 1 8  
t = 1 9  
t = 2 0  
t=21  
t = 2 2  
t = 2 3  
t = 2 4  

xl 'c-xl:xTc-QTagl'c-Tagl;  
If Tag14 then y' c- y + xl * k 
else y c- y +  x2 ' k  

Tagl 

n Tag1 = 1 then 
if Tag2 = O0 then 
Y20 <- 0; y2 c- x3 + Xin; 

Y20 C- 0; y2 <- y2 + Xin; 

Y20 e- y2: p' c- y2 + Xin: 

elseif Tag2 = 01 then 

else 

end 

xinc-xl; 

YlO xin<-Q 
Y20 

else 

end 

Tagl Y l o < - y l  +Xn:  

(b) 

l=x) 
1=19 
1=18 
1=16 
1=15 

1=4 1=8 1=12 

Tagl T a g l '  

YlO 
Y20 

Tag 1 

xin D 
x2 

x3 

Y2 Y2' 
Tag2 

x3 

Tag2 

Tag2 

(C) 
x4(4) t=16 
x4(3) 1=15 
x4(2) 1=14 
x4(1) 1=13 
X3(4) 1=12 
X3(3) t=11 
x3(2) t=10 

0 0 0 0 1 1 1 1 0 0 0 0  

1 4  1s k12 
t t t  

YlO 

Y20 

Fig. 2. (a) The memory-based systolic array for 5-point DFT where xi( ) and E( ) denote the 1/0 values of the ith 
problem. (b) The functions of the PE's used in the array. (c) The architectures of the PE's used in the array where L is the 
wordlength. (d) The structure of the permutation stage where AGU denotes address generation unit. 

Due to the modularity of the presented array, it is very 
easy to extend the 5-point DFT array to the long length 
one based on the same topology. It is noted from Fig. 2 
that the overall hardware cost of the DFT array is linearly 
proportional to N ,  and the number of 1/0 channels is 
independent of N .  If N becomes large enough to induce 
unacceptable hardware cost, the efficient partition 
techniques which have been investigated in our previous 
paper [8] can be used to realize the presented array with a 
reasonable number of PE's. 

Including the cost of permutation stage, the overall 
hardware cost of the designed array for N-point DFT 
consists of ( N  - 1) X 2 L / 2 + '  words of ROM, 2 N  adders, 
N + 5 multiplexers, one RAM module with size equal to 
2 N  - 2 words, an address generation unit, and 2 N  - 2 
shift registers, where the number of ROM partition time 
is assumed to be one. It is seen that the hardware cost of 
the presented array is only proportional to N.  However, 
the architectures using DA approach should require N X 
2 N / 2 + 1  words of ROM, 2 N  adders, and 2 N  shift registers 

I 



~ 

728 IEEE T R A N S A m I O N S  O N  CIRCUITS AND SYSTEMS-II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 39, NO. 10, OCTOBER 1992 

real input x 8 

multiplier ReWl 

real input X+ 

multiplier W Y I  

(b) 

Fig. 3. (a) The complex multiplication Y = X*W’ which is imple- 
mented by ROM‘s and adders. (b) The complex multiplication Y = X*W‘  
which is implemented by two multipliers, where Re[Z] and Im[Z] 
denote the real part and imaginary part of Z, respectively. 

im[ w’] 

1=0 

t=9 

t=10 

t= l l  

t=12 

t=13 

1113) 

a z o )  
0 

1 

I IfL 

Fig. 4. The systolic array in Fig. 2 at six successive time instants. 

for computing an N-point transform, where the number 
of ROM partition time is also assumed to be one. It is 
noted that the hardware cost of the architectures using 
DA approach increases exponentially as N increases. 

Therefore, the presented approach requires less hardware 
cost than the DA approach does when of N > L,  which 
occurs in most DFT applications. In the following, the 
analysis model presented in [30] is used to evaluate the 
cost of the designed arrays. A cost function derived in [301 
is adopted for objective cost evaluation. According to this 
model, the cost function of the permutation stage over 
that of the whole DFT array is about (37N + 73)/(336N 
+ 135). As N becomes large, the cost of the permutation 
stage is about 11% of the overall cost of 
the N-point DFT array, where the wordlength is assumed 
to be 8 bits. This percentage is not affected by the values 
of N .  

To sum up, the designed array has several distinctive 
features. In the first place, the input data and the com- 
puted results are piped in and drained out from the 1/0 
channels at the extreme ends of a linear array. Hence, low 
1 / 0  bandwidth and a small number of 1 / 0  channels can 
be achieved. Secondly, all the multiplications are effi- 
ciently realized by ROM’s and adders to attain the bene- 
fits in hardware realization and computing speeds. Thirdly, 
the presented architecture takes the advantages of systolic 
arrays such as locality, modularity, pipelinability, and par- 
allelism among PE’s. Also, it utilizes the memory-based 
implementation to attain low hardware cost and high 
computing speeds inside PE‘s. 

B. The Hardware Architecture for I-D 7-Point DCT 
Based on the presented algorithm, 

DCT can be formulated as 

6 

Y ( 0 )  = CY(i) 

Y ( 3 9  = ( 2  x T ( 3 9  + X(O)} cos 

i = O  

the l - D  7-point 

7T 
- x 3x1; 
14 

k = 1,2;.*,6 ( 8 ~ )  

where 

X , $ ( i )  = ( - 1 y  X X ’ ( i )  

and x’( i )  is defined as 

~ ( 3 ’ ) ;  if i > o i ~ ’ ( 6  + i); if i 2 0 
x ’ ( i )  = 

The value of m used above is determined by the following 
equation 

3’ + m x 7 = 3lPk x 3 k ;  i, k = 1,2,...,6 (9) 

where ‘‘31’’ denotes the result of “31 modulo 7” operation 
for short. For the purpose of showing the presented 
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algorithm clearly, (8c) can be written in a matrix-vector 
form as 

- - 

- - { 4 3 )  - x(4)) ( 4 2 )  - 4 5 ) )  {x(6 - 4 1 ) )  
( 4 6 )  + 4 1 ) )  ( x ( 3 )  + x(4)) ( 4 2  + 4 5 ) )  
( 4 2 )  + 4 5 ) )  + 4 1 ) )  { 4 3  + x(4)) 
~ 3 )  + X(4)i w )  + ~ ( 5 ) )  I X ( ~  + ~ ( 1 ) )  
( 4 6 )  - 4 1 ) )  - { 4 3 )  - 4 4 ) )  I 4 2  - 4 5 ) )  
I 4 2 1  - 4 5 ) )  

- 

I 4 6 1  - 4 1 ) )  - { -43)  - 4 4 ) )  - 

where “a” denotes ~ / 7 .  Using the symmetry property of 
the cosine kernels [141, (10) can be written as 

- - 
cos (2a) 
cos (6a) 
cos (4a) 
cos (5a) 
cos ( l a )  
cos (3a) 

- - 

- - 
cos (2a) 
cos (6a) 
cos (4a) 

-cos(2a) . 
- cos (6a) 
- cos (4a) - 2 
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1=4 
1=3 
1=2 
1=1 
1=0 
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1=13 

Tagl 

X1' 
X2 
X 3  
X 4 '  
X5 
X6 
Y1' 
Tag2 

x5 
x6 

Tag2 <- Tag2; 
Xl'<-Xl; 
d' <- x2; 
x3' <- x3  
x4' <- x4; 
XS <- x5; 
x6 <- x6; 

y l '<-y l  +z 'C;  

lfTagl=00lhenpl <-x l ;  
elseif T a g 1 4  then p l  <- e; 
else p l  <- x3; end 
n Tagl 
elseif Tag141 then p2 <- x5; 
else p2 <- x6; end 
If Tag24 then z <- p1; 
else z <- p2; end 

then p2 <- x4; 

If T a g =  11 ttwn 
YIO <- (*I +xi) * D Y2o<-y2; y2 <- 0; 

~f ~ ~ g 2  1 then elseif Tag3 = 01 then 
y20 <- 0; y2 <-y2+2xim; Y l O  xn<-x1; 

~ 2 0  else xin <- x4; elsel Tag3 = 10 then 

end Y20 <- 0; y2 <- y2; 
TagP else Y2o <- 0; y2 <- xi +2xin; 

end 

(b) 

x2 
x3 
x4 

x6 x6' 
x5' Y l '  

MUX Tagl 
Tag2 

0 ~ 4 x 5 ~ 6  

MY2 
x1 

Tag3 

2yl xi 

YlO 

Fig. 5. (a) The memory-based systolic array for 7-point DCT with symmetry property, where a = ~ / 7 ,  xi( ) and Yi( ) 
denote the 1 / 0  values of the ith problem. (b) The functions of PE's used in the array. (c) The architectures of the PE's used 
in the array where L is the word-length. (d) The structure of the permutation stage where AGU denotes address generation 
unit. (e) The structure of the add/sub stage. 
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;:: 

Fig. S. (Continued) 

be reduced as most as possible. In addition, scaling the 
Y(0) component can be done by table look-up. Totally, 
besides a pipelined multiplier, the designed array requires 
only N x 2 ( L / 2 + 1 )  words of ROM to compute an N-point 
DCT in ( N  - 1) cycles. 

Similar to the D I T  array, the cost of the preprocessing 
stages as well as the overall cost of the DCT array are 
both linearly proportional to N .  This fact reveals that the 
percentage of the cost occupied by the preprocessing 
stages over the overall cost of the DCT array is finite and 
not affected by the values of N .  Moreover, all the features 
of the DFT array are also possessed in the DCT array, 
which include high computing speeds, low hardware cost, 
low hardware complexity of PE’s, a small number of 1/0 
channels and low 1/0 bandwidth. As a whole, the pre- 
sented D l T  and DCT arrays not only provide good per- 
formance in the hardware complexity of PE’s, 1 /0  cost, 
and throughput rate, but also possess the feasible V U 1  
structures inside and among PE’s. 

IV. CONCLUSION 
The efficient memory-based VLSI array designs for the 

DFT and DCT have been presented. A new design 
approach for the designed arrays has also been presented 

in this paper. This approach has been shown to provide 
the method to derive systolic algorithms for linear arrays 
and give an efficient technique to replace multipliers by 
ROM’s. Two linear systolic arrays have been designed for 
the DFT and DCT individually. The designed arrays have 
been shown to have good performance in the architec- 
tural topology (local and regular connection), cornput- 
ing speeds, hardware complexity, the number of 1 / 0  
channels, and 1/0 bandwidth. 

In a few words, the presented approach formulates the 
DFT and DCT as cyclic convolutions, maps the convolu- 
tions into VLSI arrays, and considers the issue of efficient 
hardware implementation such as using small ROM’s for 
multipliers. This approach can also be applied to other 
applications. For example, the transform kernels of the 
discrete sine transform (DST) have similar properties to 
those of the DCT [lo]. Besides, the kernels of the discrete 
Hartley transform (DHT) and the DFT have similar forms 
to each other. Therefore, based on the presented ap- 
proach, the DST and DHT can also be formulated as 
cyclic convolutions, mapped into V U 1  arrays, and imple- 
mented by using small ROM’s instead of multipliers. If 
long length DFT and DHT are considered, the efficient 
partition techniques which have been discussed in our 

I 
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previous paper [8] can be used to effectively reduce the 
hardware cost in the designed arrays. 

A restriction for the presented approach is that the 
transform length N should be prime. This restriction 
should not put a severe limitation for the DFT because a 
non-prime length input sequence can be appended by 
zeros to attain prime length. The appending operation 
affects the energy of the output sequence but gives no 
influence to the shape of it. The restriction of prime 
length give a more severe limitation to the DCT. How- 
ever, we may utilize some application properties to avoid 
this restriction. For example, DCT is most widely used in 
image coding. One problem facing the DCT coding is the 
blocking effect [311. The overlap method is one of the 
remedies for this problem [31]. We may utilize the overlap 
method to append pixels from non-prime length to attain 
prime length, and hence avoid the restriction of prime 
length by solving the blocking effect. 

APPENDIX A 
The 1-D N-point DIT of an input sequence {y(i>, 

i = O,..., N - 1) is defined as 

Introducing the sequence x ( i )  is to unify the representa- 
tions for D I T  and DCT. Thus (A5) shows the cyclic 
convolution representation of (Al).  

APPENDIX B 
The 1-D N-point DCT is defined as 

N -  1 

Y( k )  = C y (  i) COS 
i = O  

k = 0, l;.., N - 1 ( B l )  

where { y ( i ) ,  i = 0, l;.., N - l }  is the input sequence and 
{Y(k), k = 0, l;.., N - l }  is the output sequence. It can 
be shown that the DCT defined in (Bl)  can be formulated 
as 

Y(k) = {2T(k)  + ~ ( 0 ) )  COS [:;I, - * k = O , l ; . . , N -  1 

(B2) 

where 

N- 1 
N -  1 

Y(k) = y ( i )  x W i k ;  k = 0,1;-., N - 1 ( A l )  
T (  k )  = ~ ( i )  COS [ - :k]; k = 0, l , . . . ,  N - 1 (B3) 

i=  1 
i = O  

where “W” is assumed to be exp ( -j277/N). To formulate 
(Al)  as a cyclic convolution [17], the periodic property of 
“ W N  = 1” and the 1/0 data permutations based on the 
structure of Galois Field are utilized. 

If N is a prime number, there exists some number “g,” 
not necessarily unique, such that there is a one-to-one 
mapping from the integers {i, i = 1,2;--, N - l }  to the 
integers { j ,  j = 1,2;.., N - l }  given by 

and x ( i )  is another sequence defined as 

X ( N  - 1) = y (  - 1)  

x ( i )  = y ( i )  - x ( i  + 1); i = 0 , 1 ; . . , N  - 2. (B4) 

Similarly, if N is a prime number, the mapping relation- 
ship defined in (A2) can also be applied to reformulate 
(B2) and (B3). Therefore, (B2) and (B3) can be written 
with i and k as powers of the primitive element “g.” j = ghodulo N .  (A2) 
Because i and k take on the value zero which is not a 
power of “g,” the zero frequency component must be 
treated specially, i.e., 

In the following, “g”’ denotes the result of “g‘ modulo N 
operation” for short. The DFT in (Al )  will be rewritten 
with i and k as the powers of a primitive element “R.” 
Because i and k take on the value zero which is no; a N- 1 
power of “g,” the zero frequency component must be Y(0)  = y ( i )  
treated specifically, i.e., i = O  

N -  1 

(A3) Y ( k )  = {2T(k)  + ~ ( 0 ) )  COS ; k = l;.., N - 1 

(B6) 

Y(0) = c Y ( i )  
1 = O  

N -  1 

Y(k) = y ( O )  + ~ ( i )  X W i k ;  k = l;.., N - 1. 
i= 1 where 

(‘44) N -  1 

T (  k )  = C ~ ( i )  COS [ - yk]; k = l ; . . ,N - 1 (B7) 

To replace i and k by “g”’ and “gk” ,  (B7) can be finally 

1 = l  
To replace i, k by “gl”, “gk”  and introduce a sequence 
x ( i )  which equals the input sequence y ( i )  for i = 

0, l,..., N - 1, (A41 is rewritten as 
N -  1 written as [14] 

N -  1 Y ( g k )  = x ( O )  + X ( g ‘ )  X Wg’+k;  k = l;.., N - 1. 
T ( g k )  = x(g’) X CL; k = 1,2;**, N - 1 (B8) 1 = 1  

( A 9  1 = 1  
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where 

and “m” is an integer determined by the following equa- 
tion: 

g’ x g k  = g i + k  + m x N ;  k = 1,2;**, N - 1. (B9) 
Now (B5), (B6), and (B8) are the computational equations 
for 1-D DCT, and (B8) is the primary one among them. It 
is seen that (B8) is a cyclic convolution representation 
[141. 
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