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We describe the effects of anisotropy caused by the crystal latticevilave superconductors using an
effective free-energy approach in which only one order parameted-thave order-parameter field, is used.
The Abrikosov parameteB, is calculated analytically for both static and moving vortex lattices. The analytic
expression provides an unambiguous determination of the vortex-lattice structure. We also calculate both direct
and Hall I-V curves as functions of the angle between the current and the crystal-lattice orientation. In
particular, we show that neat ., the fourfold symmetry of the crystal lattice causes asymmetric motions of
particles and holes, resulting in a nonvanishing Hall curfe$163-1828)07909-(

I. INTRODUCTION component -wave effective free energy that incorporates
the corrections due to thewave is sufficient,
It is widely believed that the major pairing channel in

layered hight. cuprates is thedz 2 pairing? The 1 ) ) 4 2 122
de-y2) pairing comes with fourfold symmetry, which has ferld]= Zmd|Hd| — agld|*+ Bld|*— nd* (IT;~TT5)*d.
been observed to change the vortex-lattice structfre. )

There are also indications that even though the major bulk . o

pairing mechanism is afi-wave nature, there is a small ad- The corresponding GL equation is

mixture of thes-wave pairs in the condensate. Several deri-

vations have been given, aiming to derive Ginzburg-Landau 2 _ 2 1712\2 24—

(GL) theory for the mixing ofd and s waves from micro- 2de ag|d=n(1ly=11) d+2pd*d=0, (3
scopic models that respect tiik,, symmetry of the Cu-O

plane®~® The free energy constructed thus tag, symme-  Where we have replaceg; by a more conventional notation
try and contains two fieldd ands,%1° 1/2my. The parametern= yf/a is due to the nonvanishing

of thes wave, representinD 4, symmetry. The contributions
to it might come not only fronms-d mixing, which always

— 2_ 2 4 4 2 2 *x 22
f= agls|”— aq|d|*+ B1|s|*+ Ba|d|*+ Bas|*|d|*+ B4(s* °d gives a positive , but also from other sources. In

+d*25%) + y | IIs|?+ y4|ITd| 2+ yv[s*(Hz—Hf)d YBa,Cu;0O; (YBCO), twinning might be an important con-
Y tribution to it. By simple dimensional analysis, one can eas-
+c.cl, (1) ily show that up to dimension fived* (I17—11%)%d is the

only term that breaks rotational symmetry down g, .
wherell=—iV —e*A is the covariant derivative angf is Because fourfold symmetry is primarily located inside the
the charge of the Cooper pdihroughout this paper we use core, the# term will be important neaH,. In the one-
the conventionc=#=1). Within a particular microscopic component approach, since only fourfold symmetry is re-
model there might be some relations between these coeffiained, in principle it applies to conventional superconduct-
cients, but since the ultimate microscopic theory is notors with fourfold symmetry as welf In this case, the origin
known as yet, all of them should be considered as phenonef the » term is nots-d mixing, and its effect on the vortex
enologically fixed parameters. lattice has been recently observédrhe one-field formula-

Using equations following from this free energy or moretion greatly reduces the number of parameténstead of
fundamental equation&ee the recent quasiclassical Eilen-nine as in the two-field approach, it has only four param-
berger equation treatment in Rej, @ne obtains a character- eterg, and thus is more analytically tractable.
istic four-lobe structure with four zeros for tisavave inside In the work by AFA, the one-field approach was used to
a single vortexX:*® Therefore the vortex core loses full rota- investigate the structure of the static vortex lattice in the
tional symmetry and only fourfol® ,, symmetry remains.  London approximation! Here we apply this formalism to

It was later pointed out by Affleck, Franz, and Arhin study two properties that depend the most on the core struc-
(AFA) that becauss is induced by gradients af [with the  ture, that is, the static and moving vortex-lattice structure and
approximated relatiors~ (- y, /as)(I15-117)d], a single thel-V curve for the flux flow neaH.,. The simplicity of
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the formulation allows us to obtain an analytic expression ofatomic lattice axis. The dynamical phase transition line as a
the Abrikosov parameteB, to leading order iny. Unlike  function of current and its orientation with respect to the
previous approaches, the numerical valuesgaf can be atomic lattice are quantitatively discussed in Sec. IV A.
evaluated to a very high precision and thus provide an un- In Sec. V, we derive the nonlinear conductivity. The re-
ambiguous way to determine the vortex-lattice structure. Theult is remarkably simple. In addition to the isotropic linear
degrees of freedom we include in the analysis conthiran  parts, there is an anisotropic direct current, cubic in the elec-
arbitrary rotation angle between the crystal lattice and the tric field E,

vortex lattice and(2) all the possible lattices, not only the

rectangular ones considered befdfeThe lattice is demon- agm3y°E?
strated to be body-centered rectangyl@r) with the most Adgii=—17' ——5 5 (1+cos 20)E, 4
general lattice included in the analysis. Moreover, the treat- aH

ment can be easily extended to moving flux lattices, which
as is well knowh* are more demanding, as far as calcula-
tional complexity is concerned. Our results indicate that
moving lattices are still the CR type. More importantly, a
nonvanishing Hall current arises nddg,. The Hall current
is due to the asymmetric motions of particles and holes
caused by the anisotropy of the crystal lattice. It is nonlineaiThe presence of the Hall current is argued to be entirely due
and can become large enough to be observed if theliedd to D,, symmetry In these expressiony is the order-
large. This is very different from the simpkewave case in  parameter relaxation rate. Both direct and HaW curves
which one has to introduce a complex relaxation time independ on the angle between the current and the crystal-
order to break the particle-hole symmetry. lattice orientation via the fourth harmonic only. The result
This paper is organized as follows. In Sec. Il, we showcontains only a cubic dependence of the currents on the elec-
that the single-vortex solution that is obtained in the onedric field, higher orders being canceled.
field approach is almost identical to the solutions obtained Finally in Sec. VI we conclude by briefly discussing pos-
earlier within the two-field approach. One still can define thesible experiments to observe the various above mentioned
“effective s-wave field by s=(—y,/ag)(II;-117)d and effects, as well as some generalizations.
observe the four-lobe structure; see Figs. 2 and 8ifands

and the Hall current is

, aamgy’E? -
Adjai=— 7 —H45|n 10 (EXz). (5)

0
A

components, respectively. Relations to earlier walikcrep- Il. SINGLE-VORTEX SOLUTION
ancies or common pointgre summarized in Appendix A.
The vortex lattice neaH, is studied in Sec. lll. The In this section we shall find an isolated vortex solution of

simplicity of the formulation allows for an analytic study of the one-component equation, E8), nearH.,. The opposite

all the possibilities, not considered before or considered uscase in which the magnetic field is close Iy, will be

ing uncontrollable approximations. We tabulate the latticeconsidered in the next section. We measure the order-

characteristics for differeng in Fig. 7. At a certain value of parameter field in units of the vacuum expectation value

7y there is a phase transition from rectangular to a more sym¥ o= v a4/28, and length in units of the coherence length

metric square lattice first noticédThe existence of a phase £4=1/y2myay. In strongly type-ll materials(when the

transition becomes obvious in our formulation in which theGinzburg-Landau parameteris very large, as is the case in

effective strength of the fourfold symmetry is proportional to high-T, superconductors, we can safely ignore the magnetic

the magnetic field, characterized by a dimensionless paranfield and the dimensionless GL equation becomes

eter ' =nymye*H. In low fields, the fourfold symmetry is

subdominant, and so the lattice is closer to a triangle lattice. (—V2—1)d—)\(V§—V§)2d+ |d|2d=0, (6)

In high fields, the fourfold symmetry dominates, and so the

lattice becomes square. We find that the transition occurs athere \=47mjay is the dimensionless small perturbative

7.=0.0235. parameter characterizing the anisotropy niday. Equation
The moving lattice solutions are derived in Sec. IV from (6) can be solved perturbatively in by setting d=d,

an appropriately generalized time-dependent Ginzburg+\d;+ - - -, wheredy=fo(r)e'? is the solution of the stan-

Landau equatiofTDGL), which in the one-field formalism, dard unperturbed GL equation. Then the first-order equation

only one additional parameter is introduced: the relaxatiorin \ is

time for thed field. They are not only needed for the non-

linear conductivity calculation, but are also interesting in (= V2—1)d;+(2|do|d;+djd})=(V;-V7)do. (7)

their own right, since they are, in principle, observable. Un-

like in the case of the purewave superconductor, the mov- The angular dependence df is easily observed to contain

ing (with arbitrary, not infinitesimal, velocitylattice solution ~ only three harmonice ¢, e*'¢, ande®?. This is con-

in this case cannot be obtained from the static one by &istent with fourfold symmetry which is built into the theory.

simple Galilean boost It is a nontrivial problem and we We therefore decompose; into a combination of these

were able to solve it perturbatively in. While thes-wave  three harmonics:

moving lattices are triangulaf,the orientation is determined _ _ _

by the direction of the crystal lattice as well as by the current diy(r,p)="F_3(r)e 3%+, (r)e?+f5(r)e®. (8

direction. The AbrikosovB8, now depends on the angle

between the electric fiel€ and an axis of the underlying The equation becomes
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g

FIG. 1. A single-vortex solution of the one-component GL
equation. The coefficient functiors,f _5,f5 are for the harmonics
el e 3¢ 54 respectivelyf;’s are given in units o ;= ay4/28,
andr is given in units of¢y. See Eqgs(9), (10), and(11).

> 1d 9 2
Satrar et fBRf et )=,
€)
@ 1d 25 2
atrar —+1|fs—f5(2fs+f_g)=—Js(r),
(10
> 1d 1 2
g2 rar pprt)fimsfefi=—d(n, A

with J;’s are defined by

2

(Vy

— VR fo(r)e'?1=e"dy(r) +e 34 5(r)+e5¢Jq(r).

As is well known, an analytic expression fdg does not
exist; however, there are a humber of known good approxi
mations. Using one of thef, fo(r)=r/\r’+ §U2 , the set of
linear equations is then solved numericalthie third equa-
tion decouples from the first twoThe results are shown in
Fig. 1. Thed-wave configuration is basically indistinguish-
able from that of the two-field formalism; we show the so-
lution for A=0.15 in Fig. 2.

Note also that within the same approximation and normal-

ization, the s component iss=\'(V;—VZ)d, with A’
=2y,My(aq/as)=N2y,my being another dimensionless
small parameter. It is easy to see tkahas the asymptotic
behaviors

) 1 .
s~re” ', r—0, s~r—2e+3"”, r—oo.

12

The s field is plotted in Fig. 3. The different winding

numbers in the near and far asymptotic regions give rise tc

four additional poles in the component in the intermediate
region. This confirms calculations in Ref. 9 even though
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FIG. 2. Thed field of a single vortex forp=0.15. Only the
absolute value of the field in units of ¥ is shown.(a) Contour
plot. (b) Three-dimensional plot.

Ill. VORTEX LATTICE NEAR H,

In this section we follow a generalization of Abrikosov’s
proceduré”*8to investigate the structure of the vortex lattice
nearH.,. One first ignores the nonlinear terms in the GL
equation and finds a set of the lowest-energy solutions
¥y (x,y) of the linearized equation. The vortex-lattice solu-

tion is constructed as a linear superposition

d(xy)=2 CoWic (xy) (13

in such a way that it is invariant under the corresponding
symmetry group of a given lattice structure. It is well known
that the free energy neét., is monotonic in Abrikosov’'s
parameterd,, defined byg,={|d|*)/{|d|?)?, so that mini-
mizing B4 equivalently minimizes the free energy.

A general lattice in two dimensior(®D) can be specified
by three parametess, b, and«, wherea andb are the two
[attice constants, while is the angle between the two primi-
tive lattice vectors(see Fig. 4 Flux quantization gives a
constraintHab sin a=®,, so that there are two free param-
eters. In thed-wave superconductors rotational symmetry is
broken; therefore the relative orientation of the vortex lattice

S

-5

some asymptotic analytic expressions used there to obtain FIG. 3. Thes field of a single vortex forp=0.15.(a) Contour
the numerical results disagree with ours. A comparison wittplot. (b) Three-dimensional plot. Note that there are four singulari-

Refs. 9 and 30 is presented in Appendix A.

ties on which thes field vanishes.
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[0,1,0] Here the dimensionless parameter is given by 7’
yro¥ o = ypmy|e* |H.For later convenience, we have defined an un-
o ° perturbed (conventional upper critical fields H°
o o =d,/(27E) =2myaqyl|e*|.
o} ~
o 0 x! In the Landau gaug@&=Hxy, they dependence is trivi-
o -5 o ally separated and we can wridéx,y) as expiky)#(x). The
o o E operatorsa anda’ then become
o 0 o x* [1,0,0]
1) [o]
o ¢ ~ 1/ d -
x a=—|—=<+X/, (17
° © o ° \/E dx
o [e]
I o 1) d -
o ~/3 al=— - —=+X ) (19
o 6 \/E dx
o —~
© wherex=(x—Xg)/ly is dimensionless Witlxozklﬁ. Using
FIG. 4. The coordinate system used in our calculations; thisStandard perturbation theory, we found the lowest eigenvalue
defines the angles, ¢, and®. to be
0
to the underlying lattice becomes important. Later we will H__ E_z , 2
= 7' +0(7n). 19
denotegp to be the angle betweenand one of the axes of the 2H 2

underlying lattice. In Abrikosov’s original papérhe had
assumedC,=C,,; and obtained the square lattice; later
Kleiner, Roth, and Autlé?f generalized the procedure to the
case where&C,=C,, . In this way all the rectangular body- Heo(T)=
centered lattices can be included in the analysis. In previous

work ond-wave superconductivitythe same formalism was where we have writteag asa’ (T,—T). Note that the rela-

used; however, it did not include the most general lattice. I, anglee does not affect in the lowest order. We ob-

this section we follow a more generalized formulation of h T f it the H(T bend
Ref. 18 to cover all possible lattice types. serve that around, for a positive the (T) curve enas

upwards, in agreement with the two-field resdif8 This ef-
fect has been reported in some experiments. However, since
the coefficientay= ' (T.—T) is only accurate to first order

We start from the one-component linearized GL equatiorin T.— T, one should be cautious about taking this too seri-
to find ¥ , ously.
Finally, the corresponding eigenfuncti@r(x) is

%)
ex —? s
where for later convenience we have moveg to the right-
hand side. It is important to note that in Ed.4) we have (21
assume_d tha; the c_oo_rdinate system and the un_derlying _m\i/\'/hereH4('>Z) is the fourth Hermit polynomial.
croscopic lattice coincide. Later it will be convenient to ori-
ent the coordinate systenx,f/) with the Abrikosov vortex
lattice rather the atomic crystal. In general, if the crystal is
rotated by an angle clockwise with respect to the coordi- Now we proceed to calculate Abrikosov'sBa
nate system, Eq14) becomes =(|d|*)/(|d|?)2. Here the angular brackets are defined as
(fY=(1/A) [?rf(r) with A being the total area of the system.
If the functionf(r) is periodic, it is sufficient to calculate the
average over one unit cell.
In the Landau gauge, a generic solution of the linearized
= aqd. (19 equation takes the form¥,(x,y) = exp(ky)y(x—kI%). Peri-
It is convenient to introduce dimensionless creation and anedicity in they direction(our lattice vector by assumption
nihilation operatorsa=iTl,l,/y2 anda’=—iTl_I,,/\2, i_s aligned With _this.axis; see Fig.) 4llows the following
where TI.=II,+ill, and the scaling parametet, MN€ar combinations:

=1/\|e*[H is the magnetic length. In terms afanda’, Eq.

This determines the upper critical field

2mda’
[(Te—T)+8ymia’(Tc—T)?], (20

Cl

A. Perturbative solution to the linearized GL equations

1
Z—deZd— (112 —113)2d= ayd, (14)

~ 1 \Y ehde
I#(X):(?) 1+ 7' 16 H4(x)

Y
B. Abrikosov parameter and optimal vortex-lattice structure

1 .
z—mdnzd— nlcos 2p(ITZ—T17) +sin 2p(IT, 11, +11,11,)]%d

(14) becomes dix,y)= > Ch¥y (X,y)
n=—ow
en 1 o H° .
aTa+§—n’(e+2""aT2+e Zleg?)? d(x,y)=57d(xy). 3 % 27 ( 2”'&)
= C i —— — . (22
16 2 nexp i a y |l x—n a (22
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If the second lattice constant isand it makes an angle
relative to they axis, the periodicity in th direction re-
quires thatd(x—b sin a,y+b cosa)=d(x,y) (up to a phase
One can achieve it by settiry sin a= p(ZWIa/a) andCpp
=C,exp(2mnbcosala), wherep is an integer. For simple

Bravais lattices, there is only one vortex in each unit cell.

Therefore, we can take=1. The area of the unit cell is then
ab sin a=d>0/H=27r|E|. As a result, allC,, can be fixed up to
an overall constant, to be fixed later,

nn—1)
2

b
anexp{ZTri a Ccos « (23
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It is convenient to use new rectilinear coordinates whose

axes coincide with the vortex-lattice directioffsg. 4). We
shall denote them a% andY. Their relations to the ola-y
coordinates arg=Y+ X cosa andx=—X sin a.

(|d|?) and(|d|*) are found by integratingd|?> and |d|*
over 0<X<b and O<Y<a. The details are relegated to
Appendix B. It will be convenient to introduce the complex
variable {=(b/a)expia)=p+ic. The unperturbed3, has
been shown to

o0

> exp(2mi{n?)

n=-—owo
1 2}

> ex;{Zwi g( n+

The above calculation can be straightforwardly extended t
include the perturbation of,. The relevant integral is

2

Ba= E[

+

2
] . (24

fob - dX g (Xx—nb sin @)y (X—m sin @)

X ho(Xx—n'sin @) go(Xx—m’sin a), (25

where s, is now given by Eq(21). The correction of3, in
the first order ofp’, after some algebra, is

/3,&=%£Re{ exp(dig)

2 exp(—2mi{*n’?)

x| D exp(2i ¢n?)(64m202n* — 48w an?+3)
n
1 li ! 1 26
t{n—ntgn'=n"+o]1. (26)

From the calculated Abrikosov paramejgg, one finds
the vortex structure by minimizing it with respect to
¢, p, and o. The minimization with respect to the angte

between the vortex lattice and the crystal axes is easily done

analytically. The general form g8, is

Bal@.p,0)=B(p,0) + n'[€"¢5(p, o) + & H¢6* (p,0)].

(27)
Obviously the minimum of3, is achieved whene=
—ard 8(p,o) /4= x/4. The minimum of B, is BA"(p,0)
=Ba(p.0) |7 p,0).

FIG. 5. The Abrikosov parametég, as a function of the lattice
parameters 4,0). There are three degenerate local minima. Ob-
lique lattices are on the linep=1/2 and p?>+o?=1. The two
points A andB are related by— 1/p and therefore represent the
same lattice. Poin€ represents the same rectangular lattice rotated
by 90°.

The further minimization of8Y"(p,o) is done numeri-
cally. In Fig. 5, we show a plot of8f"(p,0) for 7’
=0.0193. Due to the fact that the same vortex lattice might
be represented by several sets pfd), it is enough to con-
sider the region €&p<<1/2; see discussions in Ref. 18. For
every ', there are two degenerate minima. One ispat
=0.50=0.663, and is clearly a rectangular body-centered
lattice with «=53°. The corresponding is zero. Therefore

the vortex lattice coincides with the crystal axes, which was

also claimed in Ref. 9. The other minimum is @t 0.275

and 0=0.961 anda=74°, but with ¢ equal to 37°. This

corresponds to the previous lattice rotated#A2. To con-

clude, we observed rectangular body-centered lattices only.

The lowest-energy state is doubly degenerate. It is interesting

to note thatD,, symmetry is not completely broken in the

static vortex lattice: Rotations of and reflections are re-

tained. They’ dependence of and Y™ is plotted in Fig. 6

and Fig. 7. A phase transition occurs st=0.0235 where

the lattice goes continuously from rectangular to square.
Despite the fact that general oblique lattices were consid-

ered ford waves, our numerical analysis shows that they

have higher energy than the rectangular body centered ones.

20 T T T T

50 - /C
\ \ . \ \

45 .
0 0.005 0.01 0.015 002 0.025 0.03 0.035

n’

FIG. 6. The anglex as a function ofy’; the two branches
correspond to lattices related by a rotation of 90°. A continuous
transition from the rectangular lattice to the square lattice happens
at ,=0.235.
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1185 . . w , * The vortex-lattice velocity is perpendicular to both elec-
L8 1 tric and magnetic fieldéwvhich is assumed not to be tilted for
1175 . Square lattice 1 simplicity and taken to be in the-z direction: E=—v
117 - e 1 X B. For a general direction of the electric field the fourfold
1165 - ) , i symmetry of the system is complete{gxplicitly) broken,

B ora6r— o SC—— wiangular lattice except for several special directions, along the crystal axes

1155 A [1,0,0, [0,1,0] or along the diagonal lineg1,1,0] or
. [1,1,0]. Even for the simples-wave time-dependent GL
. equations the problem of finding the moving lattice solution

4 is nontrivial. However, there exists the “Galilean boost”

oblique lattice
1.15

1.145 -
1.14 -

1135 - ne 1 trick'® to solve the linearize@and sometimes even a nonlin-
i3 ‘ \ ‘ ; /L } ear problem for linear resporfSg problem. As we will see
0 0005 00m 0015002 0025 003 0035 ghortly, for thed-wave equations, even the linearized equa-
n tion does not seem to possess a boosted static solution.

) _ Technically the steps follow those of the static case. First
_ FIG. 7. The Abrikosov parametg8, as a function ofy’ for  ye find a complete set of solutions of the linearized equation
triangular, square, and optimal rectangular body-centered Iatt'ceflsing perturbation theory imy. Then we impose periodicity
respectively. At the transition poing., the rectangular lattice is ., itions to construct the vortex-lattice wave functions. It is
taken oyer.by the square lattice. Note thgtis proportional to the more convenient to perform the first step in the gauge
magnetic fieldH. aligned in the direction of the electric field, while for the
" , ) . second step it is preferable to use a gauge aligned in the
Intuitively in the symmetric case this is understandable begjrection of the vortex lattice. We will combine the two steps
cause the rectangular lattices are more symmetric. Althoug[]sing the gauge transformation. After the wave function is

for the S wave superconductors  this fact has beenfoyng, it is straightforward to apply the procedure described
established! for rotationally nonsymmetric superconductors in the previous section to minimize Abrikosoy, and find
this “argument” is not invalid. We are not aware of any ihe |attice structure.

mathematical investigations of this question. Moreover,
when the vortex lattice starts moving, rotational symmetry is ) .
further explicitly broken. As we will see in the next section, A Linearized TDGL equation and the dependence ofHc,
general oblique lattices nevertheless are not formed. on the electric field
To simplify the presentation, we first assume that the di-
rection of the electric field is special: along the crystalline
(or [1,0,0)) direction. In this case the vortices are moving in
In this section we generalize the above procedure to findhe negativey direction of the coordinate system. We will
the structure for a moving vortex lattice nedg,. For this  return to the general case afterwards. The perturbative solu-
purpose, we need a time-dependent equationifojt). The  tion to the linearized TDGL equation can be most easily
simplest scenario for the vortex lattice to move is that itconstructed in the Landau gauge. In this case, if we choose a
moves as a whole. In this case, thevave simply comoves time- andy-independent electric potentidh=—vHx, the
with the cores of thed wave so that its dynamics is com- variablest and y trivially separate fromx: d(x,y,t)
pletely determined by that of tritwave. Therefore, we shall = exp(ky)exp(—wt/y)i¥(x). As shown in Appendix C, after
assume that a time-dependent GL equation fordtield is ~ substitutingd(x,y,t) into the linearized TDGL equation, the
sufficient?? equation reduces to a one-dimensional Sdimger-type
equation with an anti-Hermitian dissipation term which
comes fromie* ® in Eq. (28). To compensate this term, we

IV. MOVING LATTICE SOLUTIONS

d 1
y —+ie*<b)d=—(2—1'[2—ad d+ n(I17—11%)%d allow o to have an imaginary parts= wg+iw, with o,=
Jt My —ikyv. Another effect of this anti-Hermitian dissipation
—2|d|2d, (2g) term is to shift the argumenk to x—igly with g

=ymyvly. The final solution is simply the shifteg/(x)

where® is the electric potential angl is the order-parameter 0gether with other factors
relaxation rate.

In principle y can be complex; its imaginary part repre- _
sents so-called particle-hole asymmetry in conventional su- d(x,y,t)=ex;{|k(y+ut)]ex;{ B
perconductors, resulting in nonvanishing Hall curréts’

1
— (x—klZ—igly)?
212

Such Hall currents do not depend on the orientation of the 1( 1 \Y 4 1

electric fieldE to the crystal lattice. In thd-wave supercon- (—2) A[l 772 Cn =

ductors, however, because of the anisotropy due to the crys- VL i n= v2'n!

tal lattice, particles and holes can move asymmetrically. As a

result, orientionally dependent Hall currents can arise. This < H i—kl —ig) (29)
is captured by thep term. To see this orientional depen- "y H ’

dence, we shall only consider repland concentrate on the
Hall current induced by they term. wherec, are given by Eq(C12) in Appendix C.
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This solution is restricted to the case when the direction ofibrium. There exists therefore a phase diagram in the space
the electric field is along the crystalline direction. When containing the current as an external paraméieth magni-
the electric field is in arbitrary direction, the solution is still tude and direction
given by Eq.(29) but with differentc,,. In this case.,
depend on the angle between the cryktad,( axis and the

electric field® = 6— ¢ (see Fig. 4; their explicit expressions
are given by Eq(C13). We would like to follow a procedure similar to that de-

From Eq.(C10), one deduces that in the simpler casescribed in Sec. Il B for the static case to construct a moving
when the electric field is parallel to one of the crystal axesVortex-lattice solution. It turns out not to be a straightforward

B. Construction of the moving vortex lattice

the new phase boundary equation follows, generalization. In earlier sections, we used the gauge free-
dom to make both the scalar and the vector potentials inde-
2 rm3 pendent ofy andt. This allows for separation of variables.

d(5m2y**  The fact thaty variable factored into the form exfy)
helped us implement the periodicity in tigedirection (with
— 12m, yzvzad+8a§), (30) di_screte value_s d.{). Howevgr, in ggner_al, the vortex lattice
will not be periodic along this special direction. To construct
where the second term is a perturbation. The entire temperahis general periodic solution, one has to solve a very com-
ture dependence is contained insidg=a’'(T.,—T). The plicated periodicity constraint equation for the coefficients

m
0 1 d
Heo=Hcot 7Hc= o (204— ,y2mdv2)+ o

phase transition line is therefore still quadraticTin Cy, wherek is now a continuous index.
) In the static vortex-lattice case, we used the gauge free-
Hea(T)=ho+hy(Tc=T) +hy(Tc—T)%, (3)  dom to align the vector potential to the vortex lattice. This

hoice allows us to solve the constraint equatiorCoreasily
ince we already had periodicity along thieaxis which is
built in. This reduced the problem to a discrete one. Further-
m2 more, only a fewk,,’s were coupled, and it turned out to be
hO:_d(_ 1+ 107m3y%2) y22, solvable, at least fop=1. This is not the case for the mov-
e* ing vortex lattice. In Sec. IV A, for the problem with electric
field and time dependence, we used the gauge freedom to
My align the vector potential with respect to the electric field in
h1=2a’—*(1—127/m3y2v2), (32 order to find the general solution of the perturbed Hamil-
€ tonian. Now, when we have to use this general solution to
construct the periodic solution we encounter the problem that
B ' we cannot use the gauge freedom to simultaneously simplify
hy=16a ’7e_*' bothproblems. Fortunately, in the unperturbedvfave case
a simple ansatz for the construction of moving vortex-lattice
Note that the curvature has not changed compared to th&olution exists. This works for the linearized TDGL equation
static case, but we have two new effects. First of all, thewith an arbitrary direction of the electric field We shall use
electric field(or, equivalently, electric currenteducesH.,;  this observation to guide us in obtaining the periodic solution
this is expected. Second, although the curvahyreloes not  for the moving vortex lattice in the presence of perturbation.
change compared with the static case, the slopgcquires a  The solution can be explicitly checked to satisfy the TDGL

but the coefficients have a nontrivial dependance on veIocityZ
v,

3

negative contribution proportional 2. equation an_d the perio_dicit_y constraints. _
In the general case of an arbitrary orientation of the elec- As mentioned earlier, in the previous subsection, we
tric field, only the coefficienh, gets modified: adopted a Landau gaudehich will be referred to later as

the gauge)t
2

m
hOZe_:{_1+[9+COS ‘@]ﬂmg’)’zvz}yzvz- (33) AI(Xr,yr,t):ergr, (I)'(X',y',t)zv-A'=—vHX'.

(34)
One sees that the shift ., due to the electric field actually
depends on the direction of the electric field relative to theHere, for later convenience we usé,y’ to represent the
crystal lattice. This result should be checked experimentallycoordinate in which the electric field is along tkeé direc-

In thes-wave caséor »=0) the boundary was found and tion, whilex,y is the coordinate in which the vortex lattice is
discussed in Ref. 14. There are a couple of peculiarities asligned to they direction (see Fig. 4 The relation isx’
sociated with it like the existence of a metastable normakx cosé+y sin § andy’ = —x sin #+y cosé. In this gauge,
state and the unstable superconducting state. The same apis very difficult to impose periodicity. Fortunately we can
plies to the present case. As far as we know, these peculiariransform our solution to a gauge in which the periodicity is
ties have not been directly observed in IGw-materials. It manifest and the standard procedure worksferred as
would be interesting to reconsider this question for high- gauge 1):*
materials. Note also that the phase transition is not the usual
one(second order which probably turns to weakly first order
due to fluctuations In the presence of flux flow the two A'(x,y,t)=H(x— v t))AH—y@in

. . . ’ 1 X 1
phases are stationary states rather than states in thermal equi- e*
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¢>“(x,y,t)=v~A“=uyH(x—uXt), (35) eigenfunctions in the gauge | found in the previous subsec-

. ) tion by
where v,= v sin f,uv,=—vcosé. The gauge transformation

between the two is determined by a phage,y,t) satisfy- ey Lo |
ing Vx=A'—A" and — g,y=®'— ®". One of the solutions e' W’,ﬁﬁf dk B, Wy, (38
is -
whereW,| is given by
— ymdv ’ ﬂ H ' 2__yr2
X X'+ 2S|n¢9cose[(y +out)c—x"“] 1/ 1\ )
e g .
WXy’ )= —( —) exr{ - —) exdik(y’ +ut)]
+H Siro[x’ (y' +ut)]. (36) VL 7l 2
In this gauge, thaunperturbedvortex lattice can be easily 1 _ )
formed using “boosted” solutions, xXexpg — 2|—2(X'—|9|H—k|H)2 . (39
H
1/4
Wl(x,y,t)= i i exdikn(y—ub)] where exptg%2) is a normalization factor. Note that the
AN " Y gauge transformation and hence the quantiBes are in

general time dependent. However, since we are looking for
boosted solutions so that the Abrikosov paramgtefwhich
3D isalso gauge invariants time independent, we do not need
to keep track of the time dependence here, and to simplify
with standard coefficient€,,: ‘If”=2nCn‘lfL'. After the  the calculation, we can sét0.
gauge transformation is performed, these elementary solu- The coefficient8, can be found by performing the over-
tions are linearly related to the unperturbed normalizedap integrals

X ex| ——1 (X—vt—k|2 2
2 X nH)

(K2+KDIE

Jaly 1 1 cos 6
L ,/ie'gsin Hex E sin 6

. (40)

Bok= f dx'dy’ [Wi* (x'.y",00® XY 0w (x,y,0)]=

k
+ik|a($+ymdv

The first-order correctionsO(%) to the wave function in two different gauges are also related by

e XsW!l = (L/27) [7 . dk By o¥L. &Pk can be read off from Eq(29); it turns out that after a lengthy calculation, the
correction to the wave function in gauge Il is amazingly simple:

77/

L (= 11 \" 1
Ng(X,YFG_ie*XZJ dk By W= —<—) exr(ikny)ex;{—m—z(x—knlﬁ)z
* H

\/E l?

H

4 gimé X _
XH]E:l cmWHm(m—kan—ige‘”’). (41)
An important observation is that the corrected moving lattice solutidn=& is
4 gime

1+7' Cn——
nmzzl M 2T

- - 1(H\Y 1
Vxy)= 2 ColWptown]= X cnﬁ(;) exmknwexp[— oz Xl )’

: (42

X Ho| o — kol —ige
m IH n'H g

wherek,=2mn/a, andC,,, being again given by Eq23), plied also in the flux flow casésee Ref. 14 This time,

are still invariant under vortex-lattice symmetries. however, the minimization of the Abrikosov paramefx

does not correspond to the minimization of energy, but rather

to the smallest deviation from the exact solution of the

TDGL equation. The “derivation” closely follows the static
The standard Abrikosov procedure to develop an approxiene. Using the expression for the vortex-lattice solution

mation for a small order parameter aroudd, can be ap- found in the previous subsection, the correction term in an

C. Structure and magnetization of the moving lattice
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expansion of the Abrikosov paramet@y in 7', A=B% lattice structure to some simple physical origin. It might be
+ 77',3/1, is that it is a consequence of using the Abrikosov approxima-
tion, and therefore beyond this approximation the lattices
L Jo N might not be rectangular. Note also that it was also surprising
BA:TRe{ > exp(—2mi*n )} that 8, was independent of the orientation of the electric

n’ field even in thes-wave calculatiort? As far as we know, the
orientation dependence of the electric field for the moving

X 2 exp(27i{n?)G(n) lattice has not been observed in either ldw-or high-T,
" type-1l superconductors.
1 1
+{n—n+ E,n’—>n’+§ . (43 V. NONLINEAR CONDUCTIVITY NEAR H,
_ ' . In this section we consider the dissipation in vortex cores
Here the functiorG(n) is defined by due to flux flow. As is well known, fourfold symmetry forces
4 > 24 ) the conductivity tensofo;; to be rotationally symmetric,
G(n)=e"¥(64m°c°n"—48mon"+3) namely, oij= 0 d;+o'e;;. Here o is the usual(Ohmig
. . . H B . . .
—8e?¢g2cos M (8man?—1), (44) conductivity,s" is the Hall conductivity, ang;; is the an-

tisymmetric tensor. Botlr ando™ can be calculated via the
where®=6— ¢ is the angle between the electric field and Kubo formula?* Wheny is real,o" is identically zero"® and
the crystal lattice. One immediately observes a surprisinghe correction tar is of order» (which is a small effegt So,
fact—the dependence on the an@leand velocityv is only  to see nonzero Hall current, we need to go beyond a linear
via the combinatiorgcos 2 whereg=ymgul, . It factors  response. Even in the simpiewave case, isotropy implies
out as that there is no particular direction perpendicular to Ehe
_ field so that there is no nonlinear Hall current. This was
,BA(zp,p,O')EBg(p,a')-l— 7'Rde**5(p,o) confirmed in Ref. 14. The situation changes when the crystal
5 2ig lattice is included. In this case, directions perpendicular to
+g7cos Be7¥5(p,0)]. (45) the E field are not all the same; the anisotropy of the crystal

For example, the resulting lattice fér= 7/4 and arbitranyg ~ lattice causes a nonvanishing nonlinear Hall currévatw-
will be the same as without an electric field at all. Also €Ver, the linear Hall current is still zejoThis simple picture
apparent complete breaking of rotational symmetry by thémp.lies that the leading Hall curredt,,; must have the form
general direction of the electric field is not felt k. In- 7 Sin 40 or » cos 4.
deed, the lattice for some arbitra®y andg? is the same as
for ®=0 andg?®’ =g?cos M. Fourfold symmetry has been
reduced, however. These results are nontrivial and can be To calculate the transport properties due to flux flow, we
checked experimentally. This degeneracy in velocity @d have to determine the normalization of the order parameter
in the determination of the vortex lattice may be a reflectionand the expression for the electric current to first ordey'in
of some dynamical symmetries which we have so far failed\Note that in previous sections we do not need the normaliza-
to see yet. ) tion because Abrikosov'8, is normalization independent.
We get thee ¢ harmonics in Eq(45) in addition to the  One can expand the order-parameter field as follows
fourth harmonic that appeared in the static case. The mini-
mization with respect tap still can be done analytically, _ , _ /
although the z%lgebraic equation in this case is quartic. For d=N2 Co(Wytn' oW =N(¥+ 7' 6W)
fixed ' andg“cos 2, the minimization with respect tp _ , ,
and o was performed numerically and we again obtain only =(No+ 7'Ny)(¥+ 7' 6W). (47)
rectangular body-centered lattices aligned to either crystaHereC,,¥,, and5¥,, have been calculated in the previous
line axis. The anglex turns out to be only weakly dependent section,N is the normalization andN, is the unperturbed
on the combinatiom?cos 2. For example, for positive;’ normalization of¥. The calculation is standard. We again
=0.015, we founda=aly_+1.0g°|cos M| (in degrees  expand it to first order iny’. The normalization is deter-
wherea|g=0=69.3°. The AbrikosoyB, is simply related to mined from the minimization of the free energy &$*d)

A. Condensate for the moving lattice

the slope of the magnetization curve, =ayq 28B4, Where(- - -} denotes the space average, apd
and B are coefficients of the GL equation. The Abrikosov
4 dM 1 46 parameterB, has its ownz' expansion calculated in Sec.
7T— = —’ . . .
dH  (2k2—1)B, VI C. Combining the two one obtains
as well as to other thermodynamic quantities. All of them N2= N2(1+ ,% _ 4 1
therefore exhibit a very simple dependence on the velacity 0 g No 2B B(Z\(‘I’* )
or, equivalently, on the curreit
The fact that the optimal lattice is rectangular body cen- , ,6'}\ 2RET* 5T)
tered is a bit mysterious. Rotational symmetry is completely X|1l-7n EJF W ) (48
A

broken by both the electric field and by the underlying crys-
tal lattice. It is not easy to attribute the advantage of thiswhich will be used to calculate the current.
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B. Direct and Hall currents and 5V determined in the previous subsection, one obtains

We will neglect pinning and consider the motion of a very the expansion o8 to the first order iny’,
large bundle. While there is a normal component of the con-

a~j IS
ductivity, here we will concentrate on the contribution of the F=lot 7' A, (50
supercurrent only. For a discussion of the relative contribuwhere
tion of the two see Ref. 14. As usual, the supercurrent is
given byJ= — 6F ¢/ SA with Fo (=/dr fg) being the to- ) o[ €
tal free energy. Since thg term in the free energy, E@2), Jo=No 2my (W) + (WITP™)]

contains four covariant derivatives, consequently the electric

current, in addition to the usual expression, contains addi-

tional terms. The leading order current is given B¥%

= (e*/2my)(d* (TId) + (I1d)* d), while the correction from

the » perturbation is and 6, contains both the correction t¢?and the correction
to the wave functionsV,

: (51)

e* ay 2RgV*ITV)
4:8mdﬁA (T*W)

3°(d) =e* px([(I2 = T2 d]* () + [TI(T12

1
A 2R V* 5V
_H,,z)d]*d+C.C.>_e* 77y//<[(1-[//2 5jl:_(%+ <ir*q,> >)
—TI2)d* (TTd) + [TT(TT2 - T2 d]* d+ c.c), "
AR SV*IIV¥
(49) o[ S « ) (52)
"”__ H "”__ H 4ﬁmd BA <‘P*\P>
where IIj = cosgll,+sin oIl [Ty =cos¢ll,—sin ¢Il, and
X"=cosgx+singy, y'=cosey—sinex (see Fig. 4 The expansion to first order iy’ of J° is J°(NW)
Substituting the condensat=N(V + 7' 6¥) with ¥ :Nng(\If)En’5j2 with &, being given by
|
5 e ag 1 215 . (AT =T W (I W) + [T (T2~ T2 W * ¥ +c.c)
127\ 2pmy 3 (V)
<[(H”2 H/IZ)d] (H”d)‘f‘[H”(H”z HrrZ)d]*d+CC> (53)
(¥*¥)

The total current is then given by=J2+J°=j,+ 5'(5j,+ 8j,). Note that although the total wave function is a linear
combination of¥ ,(Xx,y), after averaging over 2D space all the components decouple due to thig¥xfactors and the fact
that the current is quadratic M. We find that

—2RdV* 5V1) le*|ay 1 2 5 -
J= —5 |1~ 9% 1+ zcos B [+4g% (yvx2), (54)
(U w) B B 3
e* AR SV* 1TV e* 1 2 -
d d ) | |ad—o [94 1+ =cos D |—4g%—2{ (yvX2), (55)
4'Bmd ,BA (W*w) B Ba 3
e ag 1) ,] . 2REWHIIZ-TIZ IHW) . 2RgWH{IIy~ 1% I} W)
26mq g3 " (v*w) g (V)
|e*|ad 2
=\ 73 B {[g%(1+cos 49)+2](yvX z)—g?sin 40 (yv)}, (56)
A
|
where®= #— ¢ as before. Here we have used the fact that ,8 le*|ay 1
IT is Hermitian, and the curly brackets denote anticommuta- 5= =4 i+ =4 —ng(1+cos 40)(yvX2)
tion. Note that sincg carries the sign of* , combining with ,BA B

the e* in front of the expression for current gives a factor
|e*|, which ensures that theV relation is independent of

the sign of charge. Summing them up we got our final ex- 3 —9 2sin 40 (yv). (57)
pression A

|e lag 1
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From this, one obtains the simple results in E¢$.and(5) (4) Dynamic phase diagraniThe dynamical phase dia-
as advertised earlier. Note that all th&terms are canceled. gram, namely, the transition from the moving lattice to nor-
The Hall current is proportional tg sin 40. In fact, only the  mal (or moving liquid, should be complicated by pinning
fourth harmonics of the angle betweéhand the crystal effects. However, provided these could be overcome a num-
lattice orientation are retained. Furthermore, only the cubider of interesting effects could be observed. First, even ne-
power of E contributes; all the higher orders terms are can-glecting rotational symmetry breaking effects, there are a
celed. The Hall currendy,,, does not depend on the sign of number of peculiarities associated with the normal-
chargee*, and depending on the value @, it can be superconducting boundary noted by Thompson and Hu like
chargelike or holelike. This reflects its anisotropy origin.  the existence of a metastable normal state and the unstable
superconductive state. As far as we know, these peculiarities
have not been convincingly obseré@ih low-T, materials.

It would be interesting to reconsider this question for the

Instead of summarizing the resultshich has been done high-T. materials. _
in Sec. ), we briefly comment on the possibility of the ob-  In the s-wave case, however, the phase diagram cannot

servation of various phenomena quantitatively discussed idepend on the orientation of the current. We calculated this

this paper. orientation dependence on the angle between the atomic lat-
(1) Internal structure of a single anisotropic vorteil-  tice and the direction of current or electric field to first order

though direct observation of the order parameter using scarf 7 [see Egs(31), (32), and(33]. New effects include the

ning tunneling microscoy (STM) or the magnetic field change in slope dfi., as a function of temperature, not only

distribution 1° using electron holograpf¥ or other tech- in curvature.

nigues is possible, the detailed effects hotly debated by theo-

reticians (where the zeros of the field are located, small Nonlinear | -V curves and magnetization

d:isé?nocr:a zf.'zhmfgt'gmoebrﬁglygr?enc;shoavsigu?ég?:2?:%;?}h One should be able to measure currents in the same

pGinzburg—Landaupframewor.k adopted here might not be apgample oriented differently with respect to the atomic crystal.

licable cl 1o the vortex center where micr ic excit [\Iote that the effect can be seen in low-temperature aniso-

Eo(r:was eegt(r)jri Eecgmgseimcirt:nt Aen ea (;O(;SC%O%;E Celit_ropic superconductors, not necessarily in YBCO. The sim-

P ; > Important. app 9 plicity of the expressions for both direct and Hall currents,
ments of the microscopic theofyia Bogoliubov—de Gennes

. ; : Egs. (4) and (5), calls for some special ways to verify it
(ra]gggg:;\;along the lines of work in Refs. 27 andul be experimentally. The angular dependence of the magnetiza-

(2) Structure of the static and moving anisotropic vortextIon near the transition, given by Edgs3) and(46), might be
\ . . ~"large enough to be measurable.
lattice. The static vortex lattice has been observed by using There are number of limitations of our approach which

small angle neutron ;catter'r’hgnd tunngling spectroscoﬂy.. can be lifted by possible extensions. One of them is the as-
Although moving vortices have been directly observed us'.ngsumption of exact fourfold symmetry. Deviations from it in a
electron tomography’. to our knowledge the shape and ori- form of different coefficients of the gradient termsdimndy

entation of moving large bundles has not been observed Arections have already been studied recdhtlysing the

T oo o o S it e el ormafsm I iy appen t be smal ey can e
Ein an iust sliahtly distort or causé breakun of the cr gta asily added perturbatively. These effects of explicit break-
9 J ghtly P y ng are clearly quite different from those of the spontaneous

toeitr;‘g"g Ef‘;ﬁj&'}: ?Lct)rr]ee g?or:/ilgga::ltjx#ﬁgl%eriglnr'lglinognlsef(fee):((_: reaking of fourfold symmetry studied here. Our results for
b 9 ' he lattices are limited to fields close kb., only. It is pos-

t_hat we pr_edlct IS very s_ma_ll_, but the asymmetry in magne'sible, although more difficult, to extend them to lower mag-
tization might be quite significant.

We found that the transition point for the parametgr netic fields. Another interesting direction is the influence of

. : - anisotropy on vortex fluctuations in the lattice. We hope to
= ypmgle*|H is at 7,=0.0235. This transition between the addresspt%ese issues in the future P
rectangular and the square lattices might be seen in neutron’| . addition, the effective one-component approach allows

scattering experiments, since the square lattice has hlghgg to consider possibilities not apparent within the two-field
one. For example, the coefficient, in principle, can be

symmetry(number of spots is reduced to four at the transi-
tion). Note that by increasing the magnetic field the critical o 5iive despite the fact that within the two-field formalism
it should be positive. Twinning is expected to reduce the

7. can be exceeded without changing the sampjas(in-
dependent of the magnetic figld value of the parameter.
(3) Static transition to the normal phasés is well
known, in the presence of fluctuations, the second-order
phase transition from superconducting to normal state be-
comes a weakly first-order melting line into the vortex lig- The authors are very grateful to our colleagues here in
uid. This is the reason that the present study of the diagrariisinchu, C.C. Chi, Y.S. Guo, M.K. Wu, Vincent Yang, and
will be useless for BiSL,CaCuyOg, s which has a relatively S.Y. Hsu for encouragement and discussions, and to Profes-
large Ginzburg number. For YBCO and the low-temperaturesor C.R. Hu, Professor C.S. Ting, and Professor F.C. Zhang
superconductors, the curvature of the phase transition linfor discussions and correspondence. The work of B.R. was
can in principle provide an estimate gf{see Eq(20)], with  supported by NSC of R.O.C. Grant No. 86-2112-M009-
reservations mentioned in the end of Sec. Il A. 034T, of D.C. and C.L.W. Grant No. 86-2112-M009-034T

VI. CONCLUDING REMARKS
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and of C.-Y.M. Grant No. 86-2112-M007-006. Apparently this correction accounts for the 20% error cited
in Ref. 9.
APPENDIX A: COMPARISON OF THE TWO-FIELD The asymptotic form of the wave function was used to
AND THE ONE-FIELD RESULTS make a topological argument about poles in sheave. Due
FOR A SINGLE VORTEX to the different winding number of small and larger as-

ymptotics ofs(r, ¢), there must exist four poles in the inter-
mediate region. This was shown numerically in Ref. 9. Xu
et al,** however, performed a similar calculation, but did not

In the two-field formulation, the smaHl asymptotics of
the solution for thad-wave component of the isolated vortex

is given by get the poles. Our calculation, which is much simpler than
_ 3\ i the two-field one, confirms the former and shows clearly four
d(r,¢)=(dyr +dsr)e, (AD) poles on thex andy axes, independent of what kind of
where the subleading term coefficient is approximated-component wave function one chooses. We
suspect that the numerical simulation in Ref. 31 was not
e dl{ N ho | di sensitive enough to resolve these pdfes.
* 8e2" He(0)] g2’

. 2 4
neglecting terms proportional tohg/H(0)° The APPENDIX B: EVALUATION OF  ([d|*} AND (|d|*)
s-component asymptotics is In this appendix, we shall find|d|2) and(|d|*). The av-

erage of|d|? is found by integratingd|? over 0<X<b and
s(r,dp)=— —(1'[2 12)d(r)=— —(4d3re""’) 0<Y<a. The integration ovel’ enforces & function and
simplifies the double summation to
1) vy .
=+ | —=|dyre %, (A2)
Z(asfﬁ ' ()= 2 asina

absm

The expression, EqA2), is different from what was ob- b
tained in Ref. 9, Eq(22), but qualitatively the behavior is xf dX|y[(—X—nb)sin «]|?, (B1)
not affected. We also found that it does not follow from their 0
Eq. (19), because to the same order of approximation Ref. 9
had a nonvanishing term proportional@d¢. Nevertheless, wherea sin« is the Jacobian. The summation owvercon-
the concluding statement in Ref. 9 is basically correct. Folverts the integration domain into,>). We thus obtain
lowing the same argument leading to an estimate of the

maximal amplitude of(r) as in Ref. 9 we obtained |Col?
(0= pom: | a0l 2

s 1( y ) bsin

max v

do 4 asts) A similar manipulation or{|d|*) leads to

|
b —m?—m’'?+n?+n’?
4 = i ’ ' i —
(|d|*y= absman m%ym/ (@ sin @) Smy m nin ex;{2m _cosa 5

X Jobdxw*[(—x—mb)sin a]y*[(—X—=m'b)sin a]y[(—X—nb)sin a]y[(—X—n"b)sin «]

1 S s ) b —m?—m’?+n2+n’?
= bS”’] an’m’n,ym, m+m,‘n+n,eX Tl aCOSa 2
0
X f dx * (x—mb sin a) * (x—m’bsin &) y(x—nb sin &) y(x—n'b sin a). (B3)
—bsin a

Equation(B2) and (B3) are general expressions fojd|?)  The first-order term vanishes, because according tqE),
and(|d|*). We can specialize them to our perturbidield it is proportional to the inner product @f, and ;. Since we
solution, Eq.(21). It is easy to see that the correction to shall be interested only i®(#') corrections, we will drop

(|d|?) starts from7'2. We found that this second-order term.
The calculation of |d|*) is more involved even in zeroth
(Jd|?)= — 1+ §nrz)_ (B4) order!® Because of the presence of the Kroneckgthere
b sin « 2 are only three independent summations in E§3). We
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choose the summation variables to Ben+n’'=m+m’, . x |2
N=n-n’, andM=m-m’. Note that the new discrete vari- 2 p2+| k— — | |—iyve*Hx
ablesZ, M, and N are not completely independent since Mg Ih
they have to be either all even or all odd simultaneously. The
summation in Eq(B3) then becomes - 77(1—[)2/_1—[)%)2 W(X) = w(X).
> Om+m’ n+n’ = DRI Note that there is an anti-Hermitian dissipation term
m,m’,n,n’ everZ everM everN  oddZ oddv oddN . % . .
(B5) —iyve Hx. Co.mpletlng-the square, rearranging the equa-
tion, and choosingw, = — ik yv, one obtains
To zeroth order iny, the integrand in Eq(B3), after appro-
priate rearrangement, has a simple Gaussian form 1 d?
S| = 5+ 7 (x=Xe—igly)? | — (17— I15)? - ay
. 2 2 2 2md dX2 |4 y
2 sirfa X+Zb b? sirfal (M H
ex Ia E ex ||2—1 ?

. - 1
(K=7nV)—ayqt+ E'yzmv2

1
+ zvzmdvz] (x)= $(x)

} : (B6) = wri(X), (C2)

where the dimensionless quantity is defined by g
=sgne*) ymgvly and xo=kl%; for later convenience we
have absorbed the sign ef into the definition ofg. The
parametery should be adjusted.e., changing the tempera-

N 2

12

As before, the summation ovet in Eq. (B5) extends the
range of the integral ovex to (—,%), so that the Gaussian
integral becomes a common factor

. 2 sir? | ture) such that the lowest eigenvalug; becomes zero; oth-
J dXexp — 2| = \/E o (B7)  erwise one gets runaway solutions. This is nothing but the
oo 12 2sina H¢, condition generalized to include an arbitrary electric

field. The operatork defined in Eq.(C2) is simply K

Pulling out this factor, we obtain -
=I1%/2my with x=(x—Xxg)/l shifted by an imaginary

7y b M) 2 amount—ig, and so we can write it as
(|d|*yo= >bsina > ex 2mi— cosa| —| = ) s )
vy R=exp(g 1up,K exp(—glypy)- (C3)
+(E)2 _ b? sinfa (M)2+ ﬂ 2} (B8) The perturbation theory to EGC2) is most conveniently
2 12 2 2 performed on the shifteg field defined by
> b M2 [N|2 P(X)=exp(glup) ¥(X) = (X —ig). (Ca
+oddM,N exp 2 a cosa _(? +(§ } The transformed Hamiltonian is
b? sirfal (M|% [N\? H=exp —glyp,)(K— nV)exp(glup,).
s a(? +(E) ]) ) R-alup R sDemghd.
I Going to the creation and annihilation opera#r and a

Using the variabley= (b/a) €= p+io introduced in Sec. representation, EqC2) becomes
[l B, the expression reduces to E@4). Similar calculations

apply to the correction term as well. ata E_ A AT [Ty - d
a'a+t 577 V(a,a') |y(x)= o wRrt ay
APPENDIX C: THE PERTURBATIVE SOLUTION 1
-TO TI-|E LINEARIZED T_DGI__ E(?UATION | _ Eyzmdvz)E(X)Ef’J(X).
The linearized TDGL equation is simply E®8) without
the B term, (CH
Here
J . 1 2_172)2
0 E+|e*<1> d=— Hﬂz—ad d+ n(I15 - I15) “d.
d -~ n ar oA | oA -
(CY V(a,aT)=ex;{ —i %(a*—a) (a™?+a?)?

We shall work in the Landau gauge and choose the electric

potential to be time ang independent® = —vHX. In this .9 o~ oA
gauge, the variables and y trivially separate from X ex 'E(a —a)|. (C6)
x: d(x,y,t)=exp(ky)exp(— wt/v)¥{X), where w can have

an imaginary partw= wgr+iw,. The equation then reduces The “potential energy”’can be further simplified using the
to a one-dimensional “Schdinger-type” equation identities
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9 - - - g ., - A 9 The solution in thex representation is the shiftefi(x) to-
exg —i—=(a'—a)|aexgi—=(a'—a)|=a+i—, gether with other factors; see E@9).
V2 I V2 ] V2 The above solution is restricted to the case when the di-

(C7) rection of the electric field is along the crystalliredirec-

tion. Now we generalize the calculation to an arbitrary direc-
~t N T T tion of the electric field. The calculation is just a little bit
a'expi—=(a'—a)|=a'+i—. - S .

\/5 \/5 more complicated. It still will be convenient to choose a
i i (C8) coordinate system in which the direction of the electric field
and that of thex axis coincide. The perturbed Hamiltonian
then becomes

9 ars
ex;{ |\/§(a a)

It is helpful to note that the state resulting from the action of
the shifting operator of0) is a coherent state,

i) cex — il (aT-4)
V2 V2
The correction to the eigenvalug (used later to find the

phase transition boundaryo the first ordery is then easily
found:

(e—ZiG‘)éTZ

V(é,é*)zexp{—i%(é*—é)

v

. g ., -
+e2932)2exn | —(aft—a
) F{ \/5( )

|0). (C9)

The corrected solution has the same form as (E4.1),
with the coefficientsc,, which now depend on the angle

1
=-—7'(g*—29%+2). (C10
¢ 7 g 0= 06— ¢ (see Fig. 4, as follows:

To the first order iny, the perturbed ground state is given b : .
er ° o 6=~ V2ig(1+e4%)g?~2],

4 2

, 2
~ 7 ~r . 9 ~. . 9
P=]0)+ >, —|n)(n| aT+|—) +la+i—]| | |0 2 _
> n=1 N >< \/E \/E > C2=—\/7—(1+3e4'®)92,
4
=|0)+7' > ciln), (C1Y) 43, V6
n=1 C :_ige—4|® c :_e—4|®.
3 3 ’ 4 2
where (C13
c=—2\2ig(g?—1), c,=—22¢% The corresponding eigenvalue becomes
443 V6 11
Cs=—3-10, Ca= . (C12 £=5-7'|5(1+cos M)g'-2g°+2|.  (C14
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