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Static and dynamical anisotropy effects in the mixed state ofd-wave superconductors
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We describe the effects of anisotropy caused by the crystal lattice ind-wave superconductors using an
effective free-energy approach in which only one order parameter, thed-wave order-parameter field, is used.
The Abrikosov parameterbA is calculated analytically for both static and moving vortex lattices. The analytic
expression provides an unambiguous determination of the vortex-lattice structure. We also calculate both direct
and Hall I -V curves as functions of the angle between the current and the crystal-lattice orientation. In
particular, we show that nearHc2 the fourfold symmetry of the crystal lattice causes asymmetric motions of
particles and holes, resulting in a nonvanishing Hall current.@S0163-1829~98!07909-0#
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I. INTRODUCTION

It is widely believed that the major pairing channel
layered high-Tc cuprates is thed(x22y2) pairing.1 The
d(x22y2) pairing comes with fourfold symmetry, which ha
been observed to change the vortex-lattice structure2–4

There are also indications that even though the major b
pairing mechanism is ofd-wave nature, there is a small ad
mixture of thes-wave pairs in the condensate. Several de
vations have been given, aiming to derive Ginzburg-Land
~GL! theory for the mixing ofd and s waves from micro-
scopic models that respect theD4h symmetry of the Cu-O
plane.5–8 The free energy constructed thus hasD4h symme-
try and contains two fieldsd ands,9,10

f 5asusu22adudu21b1usu41b2udu41b3usu2udu21b4~s* 2d2

1d* 2s2!1gsuPsu21gduPdu21gv@s* ~Py
22Px

2!d

1c.c.#, ~1!

whereP[2 i“2e* A is the covariant derivative ande* is
the charge of the Cooper pair~throughout this paper we us
the conventionc5\51). Within a particular microscopic
model there might be some relations between these co
cients, but since the ultimate microscopic theory is n
known as yet, all of them should be considered as phen
enologically fixed parameters.

Using equations following from this free energy or mo
fundamental equations~see the recent quasiclassical Eile
berger equation treatment in Ref. 7!, one obtains a characte
istic four-lobe structure with four zeros for thes wave inside
a single vortex.9,10 Therefore the vortex core loses full rota
tional symmetry and only fourfoldD4h symmetry remains.

It was later pointed out by Affleck, Franz, and Amin11

~AFA! that becauses is induced by gradients ofd @with the
approximated relations'(2gv /as)(Py

22Px
2)d#, a single
570163-1829/98/57~13!/7955~15!/$15.00
lk

i-
u

fi-
t
-

component (d-wave! effective free energy that incorporate
the corrections due to thes wave is sufficient,

f eff@d#5
1

2md
uPdu22adudu21budu42hd* ~Py

22Px
2!2d.

~2!

The corresponding GL equation is

S 1

2md
P22adDd2h~Py

22Px
2!2d12budu2d50, ~3!

where we have replacedgd by a more conventional notatio
1/2md . The parameterh[gv

2/a is due to the nonvanishing
of thes wave, representingD4h symmetry. The contributions
to it might come not only froms-d mixing, which always
gives a positive h, but also from other sources. I
YBa2Cu3O7 ~YBCO!, twinning might be an important con
tribution to it. By simple dimensional analysis, one can e
ily show that up to dimension five,d* (Py

22Px
2)2d is the

only term that breaks rotational symmetry down toD4h .
Because fourfold symmetry is primarily located inside t
core, theh term will be important nearHc2. In the one-
component approach, since only fourfold symmetry is
tained, in principle it applies to conventional supercondu
ors with fourfold symmetry as well.12 In this case, the origin
of the h term is nots-d mixing, and its effect on the vortex
lattice has been recently observed.13 The one-field formula-
tion greatly reduces the number of parameters~instead of
nine as in the two-field approach, it has only four para
eters!, and thus is more analytically tractable.

In the work by AFA, the one-field approach was used
investigate the structure of the static vortex lattice in t
London approximation.11 Here we apply this formalism to
study two properties that depend the most on the core st
ture, that is, the static and moving vortex-lattice structure a
the I -V curve for the flux flow nearHc2. The simplicity of
7955 © 1998 The American Physical Society
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the formulation allows us to obtain an analytic expression
the Abrikosov parameterbA to leading order inh. Unlike
previous approaches, the numerical values ofbA can be
evaluated to a very high precision and thus provide an
ambiguous way to determine the vortex-lattice structure. T
degrees of freedom we include in the analysis contain~1! an
arbitrary rotation anglew between the crystal lattice and th
vortex lattice and~2! all the possible lattices, not only th
rectangular ones considered before.6,9 The lattice is demon-
strated to be body-centered rectangular~CR! with the most
general lattice included in the analysis. Moreover, the tre
ment can be easily extended to moving flux lattices, whi
as is well known14 are more demanding, as far as calcu
tional complexity is concerned. Our results indicate th
moving lattices are still the CR type. More importantly,
nonvanishing Hall current arises nearHc2. The Hall current
is due to the asymmetric motions of particles and ho
caused by the anisotropy of the crystal lattice. It is nonlin
and can become large enough to be observed if the fieldE is
large. This is very different from the simples-wave case in
which one has to introduce a complex relaxation time
order to break the particle-hole symmetry.15

This paper is organized as follows. In Sec. II, we sh
that the single-vortex solution that is obtained in the o
field approach is almost identical to the solutions obtain
earlier within the two-field approach. One still can define t
‘‘effective s-wave field by s5(2gv /as)(Py

22Px
2)d and

observe the four-lobe structure; see Figs. 2 and 3 ford ands
components, respectively. Relations to earlier work~discrep-
ancies or common points! are summarized in Appendix A.

The vortex lattice nearHc2 is studied in Sec. III. The
simplicity of the formulation allows for an analytic study o
all the possibilities, not considered before or considered
ing uncontrollable approximations. We tabulate the latt
characteristics for differenth in Fig. 7. At a certain value of
h there is a phase transition from rectangular to a more s
metric square lattice first noticed.9 The existence of a phas
transition becomes obvious in our formulation in which t
effective strength of the fourfold symmetry is proportional
the magnetic field, characterized by a dimensionless par
eter h8[hmde* H. In low fields, the fourfold symmetry is
subdominant, and so the lattice is closer to a triangle latt
In high fields, the fourfold symmetry dominates, and so
lattice becomes square. We find that the transition occur
hc850.0235.

The moving lattice solutions are derived in Sec. IV fro
an appropriately generalized time-dependent Ginzbu
Landau equation~TDGL!, which in the one-field formalism
only one additional parameter is introduced: the relaxat
time for thed field. They are not only needed for the no
linear conductivity calculation, but are also interesting
their own right, since they are, in principle, observable. U
like in the case of the pures-wave superconductor, the mov
ing ~with arbitrary, not infinitesimal, velocity! lattice solution
in this case cannot be obtained from the static one b
simple Galilean boost.14 It is a nontrivial problem and we
were able to solve it perturbatively inh. While thes-wave
moving lattices are triangular,14 the orientation is determine
by the direction of the crystal lattice as well as by the curr
direction. The AbrikosovbA now depends on the angleQ
between the electric fieldE and an axis of the underlying
f
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atomic lattice axis. The dynamical phase transition line a
function of current and its orientation with respect to t
atomic lattice are quantitatively discussed in Sec. IV A.

In Sec. V, we derive the nonlinear conductivity. The r
sult is remarkably simple. In addition to the isotropic line
parts, there is an anisotropic direct current, cubic in the e
tric field E,

DJdir52h8
admd

2g3E2

bbA
0H4

~11cos 4Q!E, ~4!

and the Hall current is

DJHall52h8
admd

2g3E2

bbA
0H4

sin 4Q~E3 ẑ!. ~5!

The presence of the Hall current is argued to be entirely d
to D4h symmetry. In these expressionsg is the order-
parameter relaxation rate. Both direct and HallI -V curves
depend on the angle between the current and the cry
lattice orientation via the fourth harmonic only. The res
contains only a cubic dependence of the currents on the e
tric field, higher orders being canceled.

Finally in Sec. VI we conclude by briefly discussing po
sible experiments to observe the various above mentio
effects, as well as some generalizations.

II. SINGLE-VORTEX SOLUTION

In this section we shall find an isolated vortex solution
the one-component equation, Eq.~3!, nearHc1. The opposite
case in which the magnetic field is close toHc2 will be
considered in the next section. We measure the ord
parameter field in units of the vacuum expectation va
C05Aad/2b2 and length in units of the coherence leng
jd51/A2mdad. In strongly type-II materials~when the
Ginzburg-Landau parameterk is very large!, as is the case in
high-Tc superconductors, we can safely ignore the magn
field and the dimensionless GL equation becomes

~2¹221!d2l~¹y
22¹x

2!2d1udu2d50, ~6!

wherel[4hmd
2ad is the dimensionless small perturbativ

parameter characterizing the anisotropy nearHc1. Equation
~6! can be solved perturbatively inl by setting d5d0
1ld11•••, whered05 f 0(r )eif is the solution of the stan
dard unperturbed GL equation. Then the first-order equa
in l is

~2¹221!d11~2ud0u2d11d0
2d1* !5~¹y

22¹x
2!2d0 . ~7!

The angular dependence ofd1 is easily observed to contai
only three harmonicse23if, e1 if, ande5if. This is con-
sistent with fourfold symmetry which is built into the theor
We therefore decomposed1 into a combination of these
three harmonics:

d1~r ,f!5 f 23~r !e23if1 f 1~r !eif1 f 5~r !e5if. ~8!

The equation becomes
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S d2

dr2
1

1

r

d

dr
2

9

r 2
11D f 232 f 0

2~2 f 231 f 5!52J23~r !,

~9!

S d2

dr
1

1

r

d

dr
2

25

r 2
11D f 52 f 0

2~2 f 51 f 23!52J5~r !,

~10!

S d2

dr2
1

1

r

d

dr
2

1

r 2
11D f 123 f 0

2f 152J1~r !, ~11!

with Ji ’s are defined by

~¹y
22¹x

2!2@ f 0~r !eif#5eifJ1~r !1e23ifJ23~r !1e5ifJ5~r !.

As is well known, an analytic expression forf 0 does not
exist; however, there are a number of known good appro
mations. Using one of them,16 f 0(r )5r /Ar 21jv

2 , the set of
linear equations is then solved numerically~the third equa-
tion decouples from the first two!. The results are shown in
Fig. 1. Thed-wave configuration is basically indistinguish
able from that of the two-field formalism; we show the s
lution for l50.15 in Fig. 2.

Note also that within the same approximation and norm
ization, the s component iss5l8(¹y

22¹x
2)d0 with l8

52gvmd(ad /as)5l/2gvmd being another dimensionles
small parameter. It is easy to see thats has the asymptotic
behaviors

s;re2 if, r→0, s;
1

r 2e13if, r→`. ~12!

The s field is plotted in Fig. 3. The different winding
numbers in the near and far asymptotic regions give rise
four additional poles in thes component in the intermediat
region. This confirms calculations in Ref. 9 even thou
some asymptotic analytic expressions used there to ob
the numerical results disagree with ours. A comparison w
Refs. 9 and 30 is presented in Appendix A.

FIG. 1. A single-vortex solution of the one-component G
equation. The coefficient functionsf 1 , f 23 , f 5 are for the harmonics
eif,e23if,e5if, respectively.f i ’s are given in units ofC05ad/2b,
and r is given in units ofjd . See Eqs.~9!, ~10!, and~11!.
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III. VORTEX LATTICE NEAR H c2

In this section we follow a generalization of Abrikosov
procedure17,18to investigate the structure of the vortex lattic
near Hc2. One first ignores the nonlinear terms in the G
equation and finds a set of the lowest-energy soluti
Ckn

(x,y) of the linearized equation. The vortex-lattice sol
tion is constructed as a linear superposition

d~x,y!5(
n

CnCkn
~x,y! ~13!

in such a way that it is invariant under the correspond
symmetry group of a given lattice structure. It is well know
that the free energy nearHc2 is monotonic in Abrikosov’s
parameterbA , defined bybA5^udu4&/^udu2&2, so that mini-
mizing bA equivalently minimizes the free energy.

A general lattice in two dimensions~2D! can be specified
by three parametersa, b, anda, wherea andb are the two
lattice constants, whilea is the angle between the two prim
tive lattice vectors~see Fig. 4!. Flux quantization gives a
constraintHab sina5F0, so that there are two free param
eters. In thed-wave superconductors rotational symmetry
broken; therefore the relative orientation of the vortex latt

FIG. 2. Thed field of a single vortex forh50.15. Only the
absolute value of thed field in units ofC0 is shown.~a! Contour
plot. ~b! Three-dimensional plot.

FIG. 3. Thes field of a single vortex forh50.15. ~a! Contour
plot. ~b! Three-dimensional plot. Note that there are four singula
ties on which thes field vanishes.
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to the underlying lattice becomes important. Later we w
denotew to be the angle betweena and one of the axes of th
underlying lattice. In Abrikosov’s original paper17 he had
assumedCn5Cn11 and obtained the square lattice; lat
Kleiner, Roth, and Autler19 generalized the procedure to th
case whereCn5Cn12. In this way all the rectangular body
centered lattices can be included in the analysis. In prev
work ond-wave superconductivity,9 the same formalism wa
used; however, it did not include the most general lattice
this section we follow a more generalized formulation
Ref. 18 to cover all possible lattice types.

A. Perturbative solution to the linearized GL equations

We start from the one-component linearized GL equat
to find Ckn

,

1

2md
P2d2h~Py

22Px
2!2d5add, ~14!

where for later convenience we have movedadd to the right-
hand side. It is important to note that in Eq.~14! we have
assumed that the coordinate system and the underlying
croscopic lattice coincide. Later it will be convenient to o
ent the coordinate system (x,y) with the Abrikosov vortex
lattice rather the atomic crystal. In general, if the crysta
rotated by an anglew clockwise with respect to the coord
nate system, Eq.~14! becomes

1

2md
P2d2h@cos 2w~Px

22Py
2!1sin 2w~PxPy1PyPx!#

2d

5add. ~15!

It is convenient to introduce dimensionless creation and
nihilation operators,â5 iP1l H /A2 and â†52 iP2l H /A2,
where P6[Px6 iPy and the scaling parameterl H

51/Aue* uH is the magnetic length. In terms ofâ andâ†, Eq.
~14! becomes

F â†â1
1

2
2h8~e12iwâ†21e22iwâ2!2Gd~x,y!5

H0

2H
d~x,y!.

~16!

FIG. 4. The coordinate system used in our calculations;
defines the anglesu, w, andQ.
l

us

n
f

n

i-

s

n-

Here the dimensionless parameterh8 is given by h8
5hmdue* uH.For later convenience, we have defined an u
perturbed ~conventional! upper critical fields H0

[F0 /(2pjd
2)52mdad /ue* u.

In the Landau gaugeA5Hxŷ, the y dependence is trivi-
ally separated and we can writed(x,y) as exp(iky)ck(x). The
operatorsâ and â† then become

â5
1

A2
S d

d x̃
1 x̃ D , ~17!

â†5
1

A2
S 2

d

d x̃
1 x̃ D , ~18!

where x̃[(x2x0)/ l H is dimensionless withx0[klH
2 . Using

standard perturbation theory, we found the lowest eigenva
to be

H0

2H
5

1

2
22h81O~h2!. ~19!

This determines the upper critical field

Hc2~T!5
2mda8

ue* u
@~Tc2T!18hmd

2a8~Tc2T!2#, ~20!

where we have writtenad asa8(Tc2T). Note that the rela-
tive anglew does not affectH in the lowest order. We ob-
serve that aroundTc for a positiveh the H(T) curve bends
upwards, in agreement with the two-field results.9,20 This ef-
fect has been reported in some experiments. However, s
the coefficientad5a8(Tc2T) is only accurate to first orde
in Tc2T, one should be cautious about taking this too se
ously.

Finally, the corresponding eigenfunctionc(x) is

c~ x̃ !5S 1

p l H
2 D 1/4F11h8

e14iw

16
H4~ x̃ !GexpS 2

x̃2

2
D ,

~21!

whereH4( x̃ ) is the fourth Hermit polynomial.

B. Abrikosov parameter and optimal vortex-lattice structure

Now we proceed to calculate Abrikosov’sbA
[^udu4&/^udu2&2. Here the angular brackets are defined
^ f &[(1/A)*2r f (r ) with A being the total area of the system
If the function f (r ) is periodic, it is sufficient to calculate th
average over one unit cell.

In the Landau gauge, a generic solution of the lineariz
equation takes the formCk(x,y)5exp(iky)c(x2klH

2 ). Peri-
odicity in they direction~our lattice vectora by assumption
is aligned with this axis; see Fig. 4! allows the following
linear combinations:

d~x,y!5 (
n52`

`

CnCkn
~x,y!

5 (
n52`

`

CnexpS i
2pn

a
yDcS x2n

2p l H
2

a D . ~22!

is
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If the second lattice constant isb and it makes an anglea
relative to they axis, the periodicity in theb̂ direction re-
quires thatd(x2b sina,y1b cosa)5d(x,y) ~up to a phase!.
One can achieve it by settingb sina5p(2plH

2 /a) and Cn1p

5Cnexp(i2pnbcosa/a), wherep is an integer. For simple
Bravais lattices, there is only one vortex in each unit c
Therefore, we can takep51. The area of the unit cell is the
ab sina5F0 /H52plH

2 . As a result, allCn can be fixed up to
an overall constant, to be fixed later,

Cn5expF2p i
b

a
cosa

n~n21!

2 G . ~23!

It is convenient to use new rectilinear coordinates wh
axes coincide with the vortex-lattice directions~Fig. 4!. We
shall denote them asX andY. Their relations to the oldx-y
coordinates arey5Y1X cosa andx52X sina.

^udu2& and ^udu4& are found by integratingudu2 and udu4

over 0,X,b and 0,Y,a. The details are relegated t
Appendix B. It will be convenient to introduce the comple
variable z[(b/a)exp(ia)[r1is. The unperturbedbA has
been shown to be18

bA
05AsH U (

n52`

`

exp~2p i zn2!U2

1U (
n52`

`

expF2p i zS n1
1

2D 2GU2J . ~24!

The above calculation can be straightforwardly extended
include the perturbation ofh. The relevant integral is

E
2b sin a

0

dx c1~x2nb sin a!c0 ~x2m sin a!

3c0~x2n8sin a!c0~x2m8sin a!, ~25!

wherec1 is now given by Eq.~21!. The correction ofbA in
the first order ofh8, after some algebra, is

bA
15

h8

4
AsReH exp~4iw!F(

n8
exp~22p i z* n82!G

3F(
n

exp~2p i zn2!~64p2s2n4248psn213!G
1S n→n1

1

2
,n8→n81

1

2D J . ~26!

From the calculated Abrikosov parameterbA , one finds
the vortex structure by minimizing it with respect
w, r, ands. The minimization with respect to the anglew
between the vortex lattice and the crystal axes is easily d
analytically. The general form ofbA is

bA~w,r,s!5bA
0~r,s!1h8@e4iwd~r,s!1e24iwd* ~r,s!#.

~27!

Obviously the minimum ofbA is achieved whenw5
2arg@d(r,s)#/46p/4. The minimum ofbA is bA

min(r,s)
5bA

0(r,s)2uh8d(r,s)u.
l.

e

to

ne

The further minimization ofbA
min(r,s) is done numeri-

cally. In Fig. 5, we show a plot ofbA
min(r,s) for h8

50.0193. Due to the fact that the same vortex lattice mi
be represented by several sets of (r,s), it is enough to con-
sider the region 0,r,1/2; see discussions in Ref. 18. F
every h8, there are two degenerate minima. One is atr
50.5,s50.663, and is clearly a rectangular body-cente
lattice with a553°. The correspondingw is zero. Therefore
the vortex lattice coincides with the crystal axes, which w
also claimed in Ref. 9. The other minimum is atr50.275
and s50.961 anda574°, but with w equal to 37°. This
corresponds to the previous lattice rotated byp/2. To con-
clude, we observed rectangular body-centered lattices o
The lowest-energy state is doubly degenerate. It is interes
to note thatD4h symmetry is not completely broken in th
static vortex lattice: Rotations ofp and reflections are re
tained. Theh8 dependence ofa andbA

min is plotted in Fig. 6
and Fig. 7. A phase transition occurs ath850.0235 where
the lattice goes continuously from rectangular to square.

Despite the fact that general oblique lattices were con
ered for d waves, our numerical analysis shows that th
have higher energy than the rectangular body centered o

FIG. 5. The Abrikosov parameterbA as a function of the lattice
parameters (r,s). There are three degenerate local minima. O
lique lattices are on the linesr51/2 and r21s251. The two
points A and B are related byr→1/r and therefore represent th
same lattice. PointC represents the same rectangular lattice rota
by 90°.

FIG. 6. The anglea as a function ofh8; the two branches
correspond to lattices related by a rotation of 90°. A continuo
transition from the rectangular lattice to the square lattice happ
at hc850.235.
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Intuitively in the symmetric case this is understandable
cause the rectangular lattices are more symmetric. Altho
for the s-wave superconductors this fact has be
established,21 for rotationally nonsymmetric superconducto
this ‘‘argument’’ is not invalid. We are not aware of an
mathematical investigations of this question. Moreov
when the vortex lattice starts moving, rotational symmetry
further explicitly broken. As we will see in the next sectio
general oblique lattices nevertheless are not formed.

IV. MOVING LATTICE SOLUTIONS

In this section we generalize the above procedure to
the structure for a moving vortex lattice nearHc2. For this
purpose, we need a time-dependent equation ford(r ,t). The
simplest scenario for the vortex lattice to move is that
moves as a whole. In this case, thes wave simply comoves
with the cores of thed wave so that its dynamics is com
pletely determined by that of thed wave. Therefore, we sha
assume that a time-dependent GL equation for thed field is
sufficient,22

gS ]

]t
1 ie* F Dd52S 1

2md
P22adDd1h~Py

22Px
2!2d

22budu2d, ~28!

whereF is the electric potential andg is the order-paramete
relaxation rate.

In principle g can be complex; its imaginary part repr
sents so-called particle-hole asymmetry in conventional
perconductors, resulting in nonvanishing Hall currents.15,23

Such Hall currents do not depend on the orientation of
electric fieldE to the crystal lattice. In thed-wave supercon-
ductors, however, because of the anisotropy due to the c
tal lattice, particles and holes can move asymmetrically. A
result, orientionally dependent Hall currents can arise. T
is captured by theh term. To see this orientional depen
dence, we shall only consider realg and concentrate on th
Hall current induced by theh term.

FIG. 7. The Abrikosov parameterbA as a function ofh8 for
triangular, square, and optimal rectangular body-centered latt
respectively. At the transition pointhc8 , the rectangular lattice is
taken over by the square lattice. Note thath8 is proportional to the
magnetic fieldH.
-
h

n

,
s

d

t

u-

e

s-
a
is

The vortex-lattice velocity is perpendicular to both ele
tric and magnetic fields~which is assumed not to be tilted fo
simplicity and taken to be in the1z direction!: E52v
3B. For a general direction of the electric field the fourfo
symmetry of the system is completely~explicitly! broken,
except for several special directions, along the crystal a
@1,0,0#, @0,1,0# or along the diagonal lines@1,1,0# or
@1,1̄,0#. Even for the simples-wave time-dependent GL
equations the problem of finding the moving lattice soluti
is nontrivial. However, there exists the ‘‘Galilean boos
trick14 to solve the linearized~and sometimes even a nonlin
ear problem for linear response23! problem. As we will see
shortly, for thed-wave equations, even the linearized equ
tion does not seem to possess a boosted static solution.

Technically the steps follow those of the static case. F
we find a complete set of solutions of the linearized equat
using perturbation theory inh. Then we impose periodicity
conditions to construct the vortex-lattice wave functions. I
more convenient to perform the first step in the gau
aligned in the direction of the electric field, while for th
second step it is preferable to use a gauge aligned in
direction of the vortex lattice. We will combine the two ste
using the gauge transformation. After the wave function
found, it is straightforward to apply the procedure describ
in the previous section to minimize Abrikosov’sbA and find
the lattice structure.

A. Linearized TDGL equation and the dependence ofH c2

on the electric field

To simplify the presentation, we first assume that the
rection of the electric field is special: along the crystallinex
~or @1,0,0#! direction. In this case the vortices are moving
the negativey direction of the coordinate system. We wi
return to the general case afterwards. The perturbative s
tion to the linearized TDGL equation can be most eas
constructed in the Landau gauge. In this case, if we choo
time- and y-independent electric potentialF52yHx, the
variables t and y trivially separate fromx: d(x,y,t)
5exp(iky)exp(2vt/g)c(x). As shown in Appendix C, after
substitutingd(x,y,t) into the linearized TDGL equation, th
equation reduces to a one-dimensional Schro¨dinger-type
equation with an anti-Hermitian dissipation term whic
comes fromie* F in Eq. ~28!. To compensate this term, w
allow v to have an imaginary part:v5vR1 iv I with v I5
2 ikgy. Another effect of this anti-Hermitian dissipatio
term is to shift the argumentx to x2 igl H with g
5gmdy l H . The final solution is simply the shiftedc(x)
together with other factors

d~x,y,t !5exp@ ik~y1yt !#expF2
1

2l H
2 ~x2klH

2 2 igl H!2G
3

1

AL
S 1

p l H
2 D 1/4F11h (

n51

4

cn

1

A2nn!

3HnS x

l H
2klH2 ig D G , ~29!

wherecn are given by Eq.~C12! in Appendix C.
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This solution is restricted to the case when the direction
the electric field is along the crystallinex direction. When
the electric field is in arbitrary direction, the solution is st
given by Eq. ~29! but with different cn . In this case,cn
depend on the angle between the crystal@1,0,0# axis and the
electric fieldQ5u2w ~see Fig. 4!; their explicit expressions
are given by Eq.~C13!.

From Eq. ~C10!, one deduces that in the simpler ca
when the electric field is parallel to one of the crystal ax
the new phase boundary equation follows,

Hc25Hc2
0 1hHc2

1 5
md

e*
~2ad2g2mdy2!1

2hmd
3

e*
~5md

2g4y4

212mdg2y2ad18ad
2!, ~30!

where the second term is a perturbation. The entire temp
ture dependence is contained insidead5a8(Tc2T). The
phase transition line is therefore still quadratic inT,

Hc2~T!5h01h1~Tc2T!1h2~Tc2T!2, ~31!

but the coefficients have a nontrivial dependance on velo
y,

h05
md

2

e*
~21110hmd

3g2y2!g2y2,

h152a8
md

e*
~1212hmd

3g2y2!, ~32!

h2516a82h
md

3

e*
.

Note that the curvature has not changed compared to
static case, but we have two new effects. First of all,
electric field~or, equivalently, electric current! reducesHc2;
this is expected. Second, although the curvatureh2 does not
change compared with the static case, the slopeh1 acquires a
negative contribution proportional toE2.

In the general case of an arbitrary orientation of the el
tric field, only the coefficienth0 gets modified:

h05
md

2

e*
$211@91cos 4Q#hmd

3g2y2%g2y2. ~33!

One sees that the shift inHc2 due to the electric field actually
depends on the direction of the electric field relative to
crystal lattice. This result should be checked experimenta

In thes-wave case~or h50) the boundary was found an
discussed in Ref. 14. There are a couple of peculiarities
sociated with it like the existence of a metastable norm
state and the unstable superconducting state. The sam
plies to the present case. As far as we know, these pecu
ties have not been directly observed in low-Tc materials. It
would be interesting to reconsider this question for highTc
materials. Note also that the phase transition is not the u
one~second order which probably turns to weakly first ord
due to fluctuations!. In the presence of flux flow the two
phases are stationary states rather than states in thermal
f

,

ra-

ty

he
e
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e
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s-
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librium. There exists therefore a phase diagram in the sp
containing the current as an external parameter~both magni-
tude and direction!.

B. Construction of the moving vortex lattice

We would like to follow a procedure similar to that de
scribed in Sec. III B for the static case to construct a mov
vortex-lattice solution. It turns out not to be a straightforwa
generalization. In earlier sections, we used the gauge f
dom to make both the scalar and the vector potentials in
pendent ofy and t. This allows for separation of variables
The fact thaty variable factored into the form exp(iky)
helped us implement the periodicity in they direction ~with
discrete values ofk). However, in general, the vortex lattic
will not be periodic along this special direction. To constru
this general periodic solution, one has to solve a very co
plicated periodicity constraint equation for the coefficien
Ck , wherek is now a continuous index.

In the static vortex-lattice case, we used the gauge fr
dom to align the vector potential to the vortex lattice. Th
choice allows us to solve the constraint equation onCk easily
since we already had periodicity along they axis which is
built in. This reduced the problem to a discrete one. Furth
more, only a fewkn’s were coupled, and it turned out to b
solvable, at least forp51. This is not the case for the mov
ing vortex lattice. In Sec. IV A, for the problem with electri
field and time dependence, we used the gauge freedom
align the vector potential with respect to the electric field
order to find the general solution of the perturbed Ham
tonian. Now, when we have to use this general solution
construct the periodic solution we encounter the problem
we cannot use the gauge freedom to simultaneously simp
bothproblems. Fortunately, in the unperturbed (s-wave! case
a simple ansatz for the construction of moving vortex-latt
solution exists. This works for the linearized TDGL equati
with an arbitrary direction of the electric field.14 We shall use
this observation to guide us in obtaining the periodic solut
for the moving vortex lattice in the presence of perturbatio
The solution can be explicitly checked to satisfy the TDG
equation and the periodicity constraints.

As mentioned earlier, in the previous subsection,
adopted a Landau gauge~which will be referred to later as
the gauge I!:

AI~x8,y8,t !5Hx8ŷ8, F I~x8,y8,t !5y•AI52yHx8.
~34!

Here, for later convenience we usex8,y8 to represent the
coordinate in which the electric field is along thex8 direc-
tion, whilex,y is the coordinate in which the vortex lattice
aligned to they direction ~see Fig. 4!. The relation isx8
5x cosu1y sinu andy852x sinu1y cosu. In this gauge,
it is very difficult to impose periodicity. Fortunately we ca
transform our solution to a gauge in which the periodicity
manifest and the standard procedure works~referred as
gauge II!:14

AII~x,y,t !5H~x2yxt !ŷ1g
md

e*
y3 ẑ,
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F II~x,y,t !5y•AII5yyH~x2yxt !, ~35!

where vx5y sinu,vy52y cosu. The gauge transformatio
between the two is determined by a phasex(x,y,t) satisfy-
ing ¹x5AI2AII and2] tx5F I2F II . One of the solutions
is

x5
gmdy

e*
x81

H

2
sin u cosu@~y81yt !22x82#

1H sin2u@x8~y81yt !#. ~36!

In this gauge, theunperturbedvortex lattice can be easily
formed using ‘‘boosted’’ solutions,

Cn
II~x,y,t !5

1

AL
S 1

p l H
2 D 1/4

exp@ ikn~y2yyt !#

3expF2
1

2l H
2 ~x2yxt2knl H

2 !2G , ~37!

with standard coefficientsCn : C II5(nCnCn
II . After the

gauge transformation is performed, these elementary s
tions are linearly related to the unperturbed normaliz
ox
lu-
d

eigenfunctions in the gauge I found in the previous subs
tion by

eie* xCn
II5

L

2pE2`

`

dk BnkCk
I , ~38!

whereCk
I is given by

Ck
I ~x8,y8,t !5

1

AL
S 1

p l H
2 D 1/4

expS 2
g2

2 Dexp@ ik~y81yt !#

3expF2
1

2l H
2 ~x82 igl H2klH

2 !2G , ~39!

where exp(2g2/2) is a normalization factor. Note that th
gauge transformation and hence the quantitiesBnk are in
general time dependent. However, since we are looking
boosted solutions so that the Abrikosov parameterbA ~which
is also gauge invariant! is time independent, we do not nee
to keep track of the time dependence here, and to simp
the calculation, we can sett50.

The coefficientsBnk can be found by performing the ove
lap integrals
by
e

Bnk5E dx8dy8@Ck
I* ~x8,y8,0!eie* x~x8,y8,0!Cn

II~x,y,0!#5
Ap l H

L

1

Aieiusin u
expF2

1

2

cosu

sin u
~k21kn

2!l H
2

1 ikl H
2 S kn

sin u
1gmdy D G . ~40!

The first-order corrections O(h) to the wave function in two different gauges are also related
eie* xdCn

II5(L/2p)*2`
` dk BnkdCk

I . dCk
I can be read off from Eq.~29!; it turns out that after a lengthy calculation, th

correction to the wave function in gauge II is amazingly simple:

dCn
II~x,y!5e2 ie* x

L

2pE2`

`

dk BnkdCk
I 5

1

AL
S 1

p l H
2 D 1/4

exp~ ikny!expF2
1

2l H
2 ~x2knl H

2 !2Gh8

3 (
m51

4

cm

eimu

A2mm!
HmS x

l H
2knl H2 ige2 iuD . ~41!

An important observation is that the corrected moving lattice solution att50 is

C II~x,y!5 (
n52`

`

Cn@Cn
II1dCn

II#5 (
n52`

`

Cn

1

AL
S H

p D 1/4

exp~ ikny!expF2
1

2l H
2 ~x2knl H

2 !2GF11h8 (
m51

4

cm

eimu

A2mm!

3HmS x

l H
2knl H2 ige2 iuD G , ~42!
her
he
c
on
an
wherekn52pn/a, andCn , being again given by Eq.~23!,
are still invariant under vortex-lattice symmetries.

C. Structure and magnetization of the moving lattice

The standard Abrikosov procedure to develop an appr
mation for a small order parameter aroundHc2 can be ap-
i-

plied also in the flux flow case~see Ref. 14!. This time,
however, the minimization of the Abrikosov parameterbA
does not correspond to the minimization of energy, but rat
to the smallest deviation from the exact solution of t
TDGL equation. The ‘‘derivation’’ closely follows the stati
one. Using the expression for the vortex-lattice soluti
found in the previous subsection, the correction term in
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expansion of the Abrikosov parameterbA in h8, bA5bA
0

1h8bA
1 , is

bA
15

As

4
ReH F(

n8
exp~22p i z* n82!G

3F(
n

exp~2p i zn2!G~n!G
1S n→n1

1

2
,n8→n81

1

2D J . ~43!

Here the functionG(n) is defined by

G~n!5e4iw~64p2s2n4248psn213!

28e2iwg2cos 2Q~8psn221!, ~44!

whereQ[u2w is the angle between the electric field a
the crystal lattice. One immediately observes a surpris
fact—the dependence on the angleQ and velocityv is only
via the combinationg2cos 2Q whereg[gmdv l H . It factors
out as

bA~w,r,s![bA
0~r,s!1h8Re@e4iwd~r,s!

1g2cos 2Qe2iwd8~r,s!#. ~45!

For example, the resulting lattice forQ5p/4 and arbitraryg
will be the same as without an electric field at all. Als
apparent complete breaking of rotational symmetry by
general direction of the electric field is not felt bybA . In-
deed, the lattice for some arbitraryQ andg2 is the same as
for Q50 andg285g2cos 2Q. Fourfold symmetry has bee
reduced, however. These results are nontrivial and can
checked experimentally. This degeneracy in velocity andQ
in the determination of the vortex lattice may be a reflect
of some dynamical symmetries which we have so far fai
to see yet.

We get thee62iw harmonics in Eq.~45! in addition to the
fourth harmonic that appeared in the static case. The m
mization with respect tow still can be done analytically
although the algebraic equation in this case is quartic.
fixed h8 and g2cos 2Q, the minimization with respect tor
ands was performed numerically and we again obtain o
rectangular body-centered lattices aligned to either crys
line axis. The anglea turns out to be only weakly depende
on the combinationg2cos 2Q. For example, for positiveh8
50.015, we founda5aug5011.0g2ucos 2Qu ~in degrees!
whereaug50569.3°. The AbrikosovbA is simply related to
the slope of the magnetization curve,

4p
dM

dH
5

1

~2k221!bA

, ~46!

as well as to other thermodynamic quantities. All of the
therefore exhibit a very simple dependence on the velociv
or, equivalently, on the currentJ.

The fact that the optimal lattice is rectangular body ce
tered is a bit mysterious. Rotational symmetry is complet
broken by both the electric field and by the underlying cr
tal lattice. It is not easy to attribute the advantage of t
g

e

be

n
d

i-

or

l-

-
y
-
s

lattice structure to some simple physical origin. It might
that it is a consequence of using the Abrikosov approxim
tion, and therefore beyond this approximation the lattic
might not be rectangular. Note also that it was also surpris
that bA was independent of the orientation of the elect
field even in thes-wave calculation.14 As far as we know, the
orientation dependence of the electric field for the mov
lattice has not been observed in either low-Tc or high-Tc
type-II superconductors.

V. NONLINEAR CONDUCTIVITY NEAR H c2

In this section we consider the dissipation in vortex co
due to flux flow. As is well known, fourfold symmetry force
the conductivity tensors i j to be rotationally symmetric,
namely, s i j 5sd i j 1sH« i j . Here s is the usual~Ohmic!
conductivity,sH is the Hall conductivity, and« i j is the an-
tisymmetric tensor. Boths andsH can be calculated via the
Kubo formula.24 Wheng is real,sH is identically zero,15 and
the correction tos is of orderh ~which is a small effect!. So,
to see nonzero Hall current, we need to go beyond a lin
response. Even in the simples-wave case, isotropy implies
that there is no particular direction perpendicular to theE
field so that there is no nonlinear Hall current. This w
confirmed in Ref. 14. The situation changes when the cry
lattice is included. In this case, directions perpendicular
the E field are not all the same; the anisotropy of the crys
lattice causes a nonvanishing nonlinear Hall current~how-
ever, the linear Hall current is still zero.!. This simple picture
implies that the leading Hall currentJHall must have the form
h sin 4Q or h cos 4Q.

A. Condensate for the moving lattice

To calculate the transport properties due to flux flow,
have to determine the normalization of the order param
and the expression for the electric current to first order inh8.
Note that in previous sections we do not need the normal
tion because Abrikosov’sbA is normalization independent
One can expand the order-parameter field as follows

d5N( Cn~Cn1h8dCn![N~C1h8dC!

>~N01h8N1!~C1h8dC!. ~47!

HereCn ,Cn , anddCn have been calculated in the previou
section,N is the normalization andN0 is the unperturbed
normalization ofC. The calculation is standard. We aga
expand it to first order inh8. The normalization is deter
mined from the minimization of the free energy as^d* d&
5ad /2bbA , where^•••& denotes the space average, andad
and b are coefficients of the GL equation. The Abrikoso
parameterbA has its ownh8 expansion calculated in Sec
VI C. Combining the two one obtains

N2>N0
2S 11h8

2N1

N0
D5

ad

2b

1

bA
0^C* C&

3F12h8S bA
1

bA
0

1
2Rê C* dC&

^C* C&
D G , ~48!

which will be used to calculate the current.
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B. Direct and Hall currents

We will neglect pinning and consider the motion of a ve
large bundle. While there is a normal component of the c
ductivity, here we will concentrate on the contribution of t
supercurrent only. For a discussion of the relative contri
tion of the two see Ref. 14. As usual, the supercurren
given byJ52dFeff /dA with Feff ([*dr f eff) being the to-
tal free energy. Since theh term in the free energy, Eq.~2!,
contains four covariant derivatives, consequently the elec
current, in addition to the usual expression, contains a
tional terms. The leading order current is given byJa

5(e* /2md)^d* (Pd)1(Pd)* d&, while the correction from
the h perturbation is

Jb~d!5e* h x̂9^@~Py9
22Px9

2!d#* ~Px9d!1@Px9~Py9
2

2Px9
2!d#* d1c.c.&2e* h ŷ9^@~Py9

2

2Px9
2!d#* ~Py9d!1@Py9~Py9

22Px9
2!d#* d1c.c.&,

~49!

where Px95coswPx1sinwPy,Py95coswPy2sinwPx, and

x̂95coswx̂1sinwŷ, ŷ95coswŷ2sinwx̂ ~see Fig. 4!.
Substituting the condensated5N(C1h8dC) with C
ha
ta

or
f
ex
-

-
is

ic
i-

and dC determined in the previous subsection, one obta
the expansion ofJa to the first order inh8,

Ja>j01h8d j1 , ~50!

where

j05N0
2S e*

2md
D @^C* PC&1^CPC* &#

5S e* ad

4bmd

1

bA
0 D 2Rê C* PC&

^C* C&
, ~51!

andd j1 contains both the correction toN2and the correction
to the wave functiondC,

d j152S bA
1

bA
0

1
2Rê C* dC&

^C* C&
D j

1S e* ad

4bmd

1

bA
0 D 4Rê dC* PC&

^C* C&
. ~52!

The expansion to first order inh8 of Jb is Jb(NC)
.N0

2Jb(C)[h8d j2 with d j2 being given by
ar
d j25S e* ad

2bmd

1

bA
0 D l H

2 H x̂9
^@~Py9

22Px9
2!C#* ~Px9C!1@Px9~Py9

22Px9
2!C#* C1c.c.&

^C* C&

2 ŷ9
^@~Py9

22Px9
2!d#* ~Py9d!1@Py9~Py9

22Px9
2!d#* d1c.c.&

^C* C&
J . ~53!

The total current is then given byJ5Ja1Jb5 j01h8(d j11d j2). Note that although the total wave function is a line
combination ofCn(x,y), after averaging over 2D space all the components decouple due to the exp(ikny) factors and the fact
that the current is quadratic inCn . We find that

22Rê C* dC&

^C* C&
J5S ue* uad

b

1

bA
0 D H 2g4F11

2

3
cos 4Q G14g2J ~gy3 ẑ!, ~54!

S e* ad

4bmd

1

bA
0 D 4Rê dC* PC&

^C* C&
5S ue* uad

b

1

bA
0 D H g4F11

2

3
cos 4Q G24g222J ~gy3 ẑ!, ~55!

S e* ad

2bmd

1

bA
0 D l H

2 H x̂9
2Rê C* $Py9

22Px9
2 ,Px9%C&

^C* C&
2 ŷ9

2Rê C* $Py9
22Px9

2 ,Py9%C&

^C* C&
J

5S ue* uad

b

1

bA
0 D $@g2~11cos 4Q!12#~gy3 ẑ!2g2sin 4Q~gy!%, ~56!
whereQ[u2w as before. Here we have used the fact t
P is Hermitian, and the curly brackets denote anticommu
tion. Note that sinceg carries the sign ofe* , combining with
the e* in front of the expression for current gives a fact
ue* u, which ensures that theI -V relation is independent o
the sign of charge. Summing them up we got our final
pression
t
-

-

d j52
bA

1

bA
0

j1
ue* uad

b

1

bA
0

g2~11cos 4Q!~gy3 ẑ!

2
ue* uad

b

1

bA
0

g2sin 4Q~gy!. ~57!
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From this, one obtains the simple results in Eqs.~4! and ~5!
as advertised earlier. Note that all theg4 terms are canceled
The Hall current is proportional toh sin 4Q. In fact, only the
fourth harmonics of the angle betweenE and the crystal
lattice orientation are retained. Furthermore, only the cu
power ofE contributes; all the higher orders terms are ca
celed. The Hall currentJHall does not depend on the sign
chargee* , and depending on the value ofQ, it can be
chargelike or holelike. This reflects its anisotropy origin.

VI. CONCLUDING REMARKS

Instead of summarizing the results~which has been done
in Sec. I!, we briefly comment on the possibility of the ob
servation of various phenomena quantitatively discusse
this paper.

(1) Internal structure of a single anisotropic vortex.Al-
though direct observation of the order parameter using s
ning tunneling microscopy26 ~STM! or the magnetic field
distribution 10 using electron holography28 or other tech-
niques is possible, the detailed effects hotly debated by th
reticians~where the zeros of thes field are located, smal
distance asymptotics! probably do not have a significant im
pact on such experiments. One also should note that
Ginzburg-Landau framework adopted here might not be
plicable close to the vortex center where microscopic exc
tion spectrum becomes important. An approach using
ments of the microscopic theory~via Bogoliubov–de Genne
equations along the lines of work in Refs. 27 and 7! will be
necessary.

(2) Structure of the static and moving anisotropic vort
lattice. The static vortex lattice has been observed by us
small angle neutron scattering3 and tunneling spectroscopy4

Although moving vortices have been directly observed us
electron tomography,25 to our knowledge the shape and o
entation of moving large bundles has not been observe
yet. The moving vortex lattice is much more sensitive
pinning effects than the static lattice. In the static case p
ning can just slightly distort or cause breakup of the crys
to smaller pieces. For the moving flux lattice pinning is e
pected to be much more significant. The orientation eff
that we predict is very small, but the asymmetry in mag
tization might be quite significant.

We found that the transition point for the parameterh8
5hmdue* uH is at hc850.0235. This transition between th
rectangular and the square lattices might be seen in neu
scattering experiments, since the square lattice has hi
symmetry~number of spots is reduced to four at the tran
tion!. Note that by increasing the magnetic field the critic
hc8 can be exceeded without changing the sample (h is in-
dependent of the magnetic field!.

(3) Static transition to the normal phase.As is well
known, in the presence of fluctuations, the second-or
phase transition from superconducting to normal state
comes a weakly first-order melting line into the vortex li
uid. This is the reason that the present study of the diag
will be useless for Bi2Sr2CaCu2O81d which has a relatively
large Ginzburg number. For YBCO and the low-temperat
superconductors, the curvature of the phase transition
can in principle provide an estimate ofh @see Eq.~20!#, with
reservations mentioned in the end of Sec. III A.
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(4) Dynamic phase diagram.The dynamical phase dia
gram, namely, the transition from the moving lattice to no
mal ~or moving liquid!, should be complicated by pinnin
effects. However, provided these could be overcome a n
ber of interesting effects could be observed. First, even
glecting rotational symmetry breaking effects, there are
number of peculiarities associated with the norm
superconducting boundary noted by Thompson and Hu
the existence of a metastable normal state and the uns
superconductive state. As far as we know, these peculiar
have not been convincingly observed29 in low-Tc materials.
It would be interesting to reconsider this question for t
high-Tc materials.

In the s-wave case, however, the phase diagram can
depend on the orientation of the current. We calculated
orientation dependence on the angle between the atomic
tice and the direction of current or electric field to first ord
in h @see Eqs.~31!, ~32!, and~33#. New effects include the
change in slope ofHc2 as a function of temperature, not on
in curvature.

Nonlinear I -V curves and magnetization

One should be able to measure currents in the sa
sample oriented differently with respect to the atomic crys
Note that the effect can be seen in low-temperature an
tropic superconductors, not necessarily in YBCO. The s
plicity of the expressions for both direct and Hall curren
Eqs. ~4! and ~5!, calls for some special ways to verify
experimentally. The angular dependence of the magnet
tion near the transition, given by Eqs.~43! and~46!, might be
large enough to be measurable.

There are number of limitations of our approach whi
can be lifted by possible extensions. One of them is the
sumption of exact fourfold symmetry. Deviations from it in
form of different coefficients of the gradient terms inx andy
directions have already been studied recently30 using the
two-field formalism. If they happen to be small, they can
easily added perturbatively. These effects of explicit bre
ing are clearly quite different from those of the spontaneo
breaking of fourfold symmetry studied here. Our results
the lattices are limited to fields close toHc2 only. It is pos-
sible, although more difficult, to extend them to lower ma
netic fields. Another interesting direction is the influence
anisotropy on vortex fluctuations in the lattice. We hope
address these issues in the future.

In addition, the effective one-component approach allo
us to consider possibilities not apparent within the two-fie
one. For example, the coefficienth, in principle, can be
negative despite the fact that within the two-field formalis
it should be positive. Twinning is expected to reduce t
value of the parameter.
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APPENDIX A: COMPARISON OF THE TWO-FIELD
AND THE ONE-FIELD RESULTS

FOR A SINGLE VORTEX

In the two-field formulation, the smallr asymptotics of
the solution for thed-wave component of the isolated vorte
is given by

d~r ,f!.~d1r 1d3r 3!eif, ~A1!

where the subleading term coefficient is

d352
d1

8jd
2F11

h0

Hc2~0!G.2
d1

8jd
2

,

neglecting terms proportional toh0 /Hc2(0).9 The
s-component asymptotics is

s~r ,f!.2
gv

as
~Py

22Px
2!d~r !.2

gv

as
~4d3re2 if!

51
1

2S gv

asjd
2D d1re2 if. ~A2!

The expression, Eq.~A2!, is different from what was ob-
tained in Ref. 9, Eq.~22!, but qualitatively the behavior is
not affected. We also found that it does not follow from th
Eq. ~19!, because to the same order of approximation Re
had a nonvanishing term proportional toe3if. Nevertheless,
the concluding statement in Ref. 9 is basically correct. F
lowing the same argument leading to an estimate of
maximal amplitude ofs(r ) as in Ref. 9 we obtained

smax

d0
.

1

4S gv

asjd
2D .
to
r
9

l-
e

Apparently this correction accounts for the 20% error cit
in Ref. 9.

The asymptotic form of the wave function was used
make a topological argument about poles in thes wave. Due
to the different winding number of smallr and larger as-
ymptotics ofs(r ,f), there must exist four poles in the inte
mediate region. This was shown numerically in Ref. 9. X
et al.,31 however, performed a similar calculation, but did n
get the poles. Our calculation, which is much simpler th
the two-field one, confirms the former and shows clearly fo
poles on thex and y axes, independent of what kind o
approximated-component wave function one chooses. W
suspect that the numerical simulation in Ref. 31 was
sensitive enough to resolve these poles.32

APPENDIX B: EVALUATION OF Šzdz2
‹ AND Šzdz4

‹

In this appendix, we shall find̂udu2& and^udu4&. The av-
erage ofudu2 is found by integratingudu2 over 0,X,b and
0,Y,a. The integration overY enforces ad function and
simplifies the double summation to

^udu2&5
1

absin a (
n52`

`

a sin a

3E
0

b

dXuc@~2X2nb!sin a#u2, ~B1!

wherea sina is the Jacobian. The summation overn con-
verts the integration domain into (2`,`). We thus obtain

^udu2&5
uC0u2

bsinaE2`

`

dxuc~x!u2. ~B2!

A similar manipulation on̂ udu4& leads to
^udu4&5
1

absina (
n,m,n8,m8

~a sin a!dm1m8,n1n8expF2p i
b

a
cosa

2m22m821n21n82

2 G
3E

0

b

dXc* @~2X2mb!sin a#c* @~2X2m8b!sin a#c@~2X2nb!sin a#c@~2X2n8b!sin a#

5
1

bsin a (
n,m,n8,m8

dm1m8,n1n8expF2p i
b

a
cosa

2m22m821n21n82

2 G
3E

2bsin a

0

dx c* ~x2mb sin a!c* ~x2m8bsin a!c~x2nb sin a!c~x2n8b sin a!. ~B3!
Equation~B2! and ~B3! are general expressions for^udu2&
and ^udu4&. We can specialize them to our perturbedd field
solution, Eq.~21!. It is easy to see that the correction
^udu2& starts fromh82. We found that

^udu2&5
1

b sin aS 11
3

2
h82D . ~B4!
The first-order term vanishes, because according to Eq.~B2!,
it is proportional to the inner product ofc0 andc1. Since we
shall be interested only inO(h8) corrections, we will drop
this second-order term.

The calculation of̂ udu4& is more involved even in zeroth
order.18 Because of the presence of the Kroneckerd, there
are only three independent summations in Eq.~B3!. We



i-
ce
h

n

tr

s

ua-

-
-
the
ric

e

57 7967STATIC AND DYNAMICAL ANISOTROPY EFFECTS IN . . .
choose the summation variables to beZ5n1n85m1m8,
N5n2n8, andM5m2m8. Note that the new discrete var
ables Z, M , and N are not completely independent sin
they have to be either all even or all odd simultaneously. T
summation in Eq.~B3! then becomes

(
m,m8,n,n8

dm1m8,n1n85 (
evenZ

(
evenM

(
evenN

1 (
oddZ

(
oddM

(
oddN

.

~B5!

To zeroth order inh, the integrand in Eq.~B3!, after appro-
priate rearrangement, has a simple Gaussian form

expF2
2 sin2a

l H
2 S X1

Z

2
bD 2GexpH 2

b2 sin2a

l H
2 F S M

2 D 2

1S N

2 D 2G J . ~B6!

As before, the summation overZ in Eq. ~B5! extends the
range of the integral overX to (2`,`), so that the Gaussia
integral becomes a common factor

E
2`

`

dXexpS 2
2 sin2a

l H
2

X2D 5Ap

2

l H

sin a
. ~B7!

Pulling out this factor, we obtain

^udu4&05Ap

2

l H

bsin a
X (

evenM ,N
expH 2p i

b

a
cosaF2S M

2 D 2

1S N

2 D 2G2
b2 sin2a

l H
2 F S M

2 D 2

1S N

2 D 2G J ~B8!

1 (
oddM ,N

expH 2p i
b

a
cosaF2S M

2 D 2

1S N

2 D 2G
2

b2 sin2a

l H
2 F S M

2 D 2

1S N

2 D 2G J C. ~B9!

Using the variablez5 (b/a) eia5r1 is introduced in Sec.
III B, the expression reduces to Eq.~24!. Similar calculations
apply to the correction term as well.

APPENDIX C: THE PERTURBATIVE SOLUTION
TO THE LINEARIZED TDGL EQUATION

The linearized TDGL equation is simply Eq.~28! without
the b term,

gS ]

]t
1 ie* F Dd52S 1

2md
P22adDd1h~Py

22Px
2!2d.

~C1!

We shall work in the Landau gauge and choose the elec
potential to be time andy independent:F52yHx. In this
gauge, the variablest and y trivially separate from
x: d(x,y,t)5exp(iky)exp(2vt/g)c(x), wherev can have
an imaginary part,v5vR1 iv I . The equation then reduce
to a one-dimensional ‘‘Schro¨dinger-type’’ equation
e

ic

H 1

2md
F p̂x

21S k2
x

l H
2 D 2G2 igve* Hx

2ad2h~Py
22Px

2!2J c~x!5vc~x!.

Note that there is an anti-Hermitian dissipation term
2 igye* Hx. Completing the square, rearranging the eq
tion, and choosingv I52 ikgy, one obtains

H 1

2md
F2

d2

dx2
1

1

l H
4 ~x2x02 igl H!2G2h~Py

22Px
2!22ad

1
1

2
g2mdy2J c~x![F ~K̂2hV̂!2ad1

1

2
g2mv2Gc~x!

5vRc~x!, ~C2!

where the dimensionless quantityg is defined by g
[sgn(e* )gmdy l H and x05klH

2 ; for later convenience we
have absorbed the sign ofe* into the definition ofg. The
parameterad should be adjusted~i.e., changing the tempera
ture! such that the lowest eigenvaluevR becomes zero; oth
erwise one gets runaway solutions. This is nothing but
Hc2 condition generalized to include an arbitrary elect
field. The operatorK̂ defined in Eq. ~C2! is simply K̃

[P2/2md with x̃[(x2x0)/ l H shifted by an imaginary
amount2 ig, and so we can write it as

K̂5exp~g lHp̂x!K̃ exp~2glHp̂x!. ~C3!

The perturbation theory to Eq.~C2! is most conveniently
performed on the shiftedc field defined by

c~ x̃ ![exp~glHp̂x!c̃~ x̃ !5c̃~ x̃2 ig !. ~C4!

The transformed Hamiltonian is

H̃[exp~2glHp̂x!~K̂2hV̂!exp~glHp̂x!.

Going to the creation and annihilation operatorâ† and â
representation, Eq.~C2! becomes

F â†â1
1

2
2h8Ṽ~ â,â†!G c̃~x!5

md

e* H
S vR1ad

2
1

2
g2mdy2D c̃~x![jc̃~x!.

~C5!

Here

Ṽ~ â,â†!5expF2 i
g

A2
~ â†2â!G ~ â†21â2!2

3expF i
g

A2
~ â†2â!G . ~C6!

The ‘‘potential energy’’can be further simplified using th
identities
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expF2 i
g

A2
~ â†2â!G âexpF i

g

A2
~ â†2â!G5â1 i

g

A2
,

~C7!

expF2 i
g

A2
~ â†2â!G â†expF i

g

A2
~ â†2â!G5â†1 i

g

A2
.

~C8!

It is helpful to note that the state resulting from the action
the shifting operator onu0& is a coherent state,

U2 i
g

A2
L [expF2 i

g

A2
~ â†2â!G u0&. ~C9!

The correction to the eigenvaluej ~used later to find the
phase transition boundary! to the first orderh is then easily
found:

j5
1

2
2h8~g422g212!. ~C10!

To the first order inh, the perturbed ground state is given b

c̃5u0&1 (
n51

4
h8

n
un&^nuF S â†1 i

g

A2
D 2

1S â1 i
g

A2
D 2G 2

u0&

[u0&1h8(
n51

4

cnun&, ~C11!

where

c1522A2ig~g221!, c2522A2g2,

c35
4A3

3
ig, c45

A6

2
. ~C12!
t,
f

The solution in thex representation is the shiftedc(x) to-
gether with other factors; see Eq.~29!.

The above solution is restricted to the case when the
rection of the electric field is along the crystallinex direc-
tion. Now we generalize the calculation to an arbitrary dire
tion of the electric field. The calculation is just a little b
more complicated. It still will be convenient to choose
coordinate system in which the direction of the electric fie
and that of thex axis coincide. The perturbed Hamiltonia
then becomes

Ṽ~ â,â†!5expF2 i
g

A2
~ â†2â!G ~e22iQâ†2

1e2iQâ2!2expF i
g

A2
~ â†2â!G .

The corrected solution has the same form as Eq.~C11!,
with the coefficientscn which now depend on the angl
Q5u2w ~see Fig. 4!, as follows:

c152A2ig@~11e24iQ!g222#,

c252
A2

2
~113e24iQ!g2,

c35
4A3

3
ige24iQ, c45

A6

2
e24iQ.

~C13!

The corresponding eigenvalue becomes

j5
1

2
2h8F1

2
~11cos 4Q!g422g212G . ~C14!
.
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