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A Prioritized Petri Net Model
and Its Application in
Distributed Multimedia Systems

Sheng-Uei Guan, Hsiao-Yeh Yu, and Jen-Shun Yang

Abstract—The achievement of media synchronization has been dealt
with in the Object Composition Petri Net (OCPN) model and the
extended OCPN (XOCPN) model. Yet these two models are not
enough for synchronization of computers in a distributed environment.
This paper proposes a new Petri Net model—Prioritized Petri Net (P-
net). The modeling power and properties of P-nets are analyzed. We
apply the P-net model to distributed multimedia synchronization, using
our version of Distributed Object Composition Petri Net (DOCPN)
model. Using the DOCPN model, we can coordinate operations among
distributed computer sites. The scenario is like a conductor conducting
an orchestra to perform a symphony.

Index Terms—Distributed multimedia system, synchronization, OCPN,
Petri Nets.

1 INTRODUCTION

NOWADAYS, many distributed multimedia applications have
emerged, such as video-on-demand, teleshopping, distance edu-
cation, etc. These applications already have changed our daily
activities. Web surfing is one example. Yet, there are some technical
problems still remain to be solved, e.g., how to store and place the
bulk of multimedia data [1], how to synchronize and integrate
them [2], [3].

Multimedia data when sent across networks may become out-
of-sync when being displayed. For example, audio and video to
be played in the same interval may start and finish at different
times. This can be annoying or even unacceptable for entertain-
ment or commercial purposes. Under the worst condition, audio
should be kept at a stable output rate and video output rate should
be tuned to fit with audio output rate. This is because video has a
characteristic that a few frames lost in one second won't usually be
perceived by human eyes.

The Petri Net model has been developed for modeling concur-
rent computation [4]. The model finds wide applications later in
the design and simulation of operating systems, hardware, and
communication protocols [6]. It has also been applied to multime-
dia systems with extensions. “Object Composition Petri Net”
(OCPN) [2] and “Extended OCPN” (XOCPN) [3] are two graphic-
based models devised to depict synchronization for multiple me-
dia. OCPN or XOCPN face two problems when replaying objects
in a distributed environment:

1) OCPN and XOCPN lack methods to describe the details of

synchronization across distributed platforms.

2) OCPN and XOCPN do not deal with the schedule change

caused by user interactions in interactive multimedia
systems.
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Asynchrony needs to be considered when media come from multi-
ple sources or arrive at multiple destinations for presentation or
other purposes. In most multimedia applications, e.g., web surfing
or navigation, user interaction is a normal action that can change the
display of media. Changing the display of media normally implies a
reschedule of current media flow. OCPN and XOCPN lack the mod-
eling components for these two functions. Supporting these func-
tions is required for guaranteeing the quality and responsiveness of
a multimedia application. We need a new model to guide the design
of control for distributed multimedia system, handling the synchro-
nization and interaction for the whole system.

An extension to Petri Nets is proposed in this paper. Arcs in
Petri Nets can be assigned with priorities. A transition with a high
priority arc ready may trigger the firing immediately. These “pri-
oritized Petri Nets” (P-nets) can be used to solve the above prob-
lems. Before we can put P-nets to wider use, we try to answer the
following questions: What is the modeling power of P-nets? Is it
more powerful than Petri Nets? These questions will be addressed
shortly.

The rest of the paper is organized as follows: Section 2 intro-
duces the concepts of Petri Nets, OCPN, and XOCPN models
briefly. Section 3 describes the concepts, application and properties
of P-nets. Section 4 elaborates on the architecture and synchronous
control of DOCPN. Section 5 discusses P-nets with multiple pri-
orities. Section 6 gives the conclusions.

2 RELATED WORK

The presentation of multimedia can be described using “time in-
tervals.” Little and Ghafoor described the temporal relationship
between two time intervals [2]. We briefly describe their results in
the following: Temporal relationships between any two time inter-
vals can be described using: “equal,” “before,” “meet,” “overlap,”
“during,” “start,” and “end.” Symmetric relationships exist when
their roles are exchanged. There are 13 temporal relationships be-
tween two time intervals in total. Synchronization among objects
can be specified based on these relationships .

2.1 Petri Net

Petri Net theory has been used as a basis for asynchronous and
synchronous communication [4].

DEFINITION (Petri Net). A Petri Net structure, C, is a four-tuple, C =
(P, T,1,0). P ={py, py --., P} is a finite set of places, n 2 0. T = {t;,
ty, ..., b} is a finite set of transitions, m > 0. The set of places and the
set of transitions are disjoint, PNT = @.1: T — P~ is the input
function, a mapping from transitions to bags of places. O : T — P is
the output function, a mapping from transitions to bags of places [4].

A “place” in the definition means the state of an event. A “tran-
sition” corresponds to the rule of firing or nonfiring. All events
concurring at a transition must be complete and ready before fir-
ing. Input functions and output functions change the state of
events. The advantage of Petri Net is that it describes the control
flow by manner of graphs.

2.2 OCPN Model

The OCPN model proposed by Little and Ghafoor in 1990 [2] can
be used to handle the synchronization of objects being played
back. This model inherits the methods in Petri Net to depict the
flow and synchronization control of playback, replacing “places”
in Petri Nets with “objects.” OCPN schedules the presentation of
media objects using time intervals. The interrelationship between
time intervals can be described in OCPN. For this reason, OCPN
offers a mechanism not only for asynchronous but also for syn-
chronous scheduling of events.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 4, APRIL 1998

Transition

ot 1€

Priority Input

Non-priority Tnput

Fig. 1. A transition with a priority input.

o0 1,
R e e
P

p8

Fig. 2. A prioritized Petri Net.

2.3 XOCPN Model

XOCPN (Extended OCPN) model was proposed by Woo et al. [3].
The major issues are upgrading the ability of OCPN in distributed
applications. Granulation of objects has been defined in XOCPN. A
Synchronization Interval Unit (SIU) defines time characteristics of
different media with different grain sizes.

XOCPN extends the expression method in OCPN. It adds some
resource setup control to OCPN to ensure the exhibited conditions
of objects meet the platform configuration requirement. Also,
XOCPN adds resource release control to release finished objects.
An exhibited object cannot go through a transition until it has pre-
pared all its resources.

3 PRIORITIZED PETRI NETS

3.1 Definitions

A P-Net structure, D, is a five-tuple, D = (P, T, I, Ip, 0). P = {py, po,
..., Pu} is a finite set of places, n 20. T = {t;, t,, ..., t,,} is a finite set of
transitions, m > 0. The set of places and the set of transitions are
disjoint, PN T = @.1: T — P” is the input function, a mapping
from transitions to bags of places. I, : T — P” is the priority input
function, a mapping from transitions to bags of places. O : T — P~
is the output function, a mapping from transitions to bags of
places.

The difference of P-nets from traditional Petri nets lies in the
introduction of priority into input functions. Input functions are
treated unequally at transitions, as shown in Fig. 1. A priority in-
put event arriving at a transition may force firing without waiting
for the arrival of nonpriority events.

Firing rules: A transition with nonpriority input events only
will fire when all events are complete and ready. A transition with
a priority input event concurring can fire with the arrival of that
priority input event, without waiting for other nonpriority events.
For the same priority events concurring at a transition, we apply
the “AND” rule. A place with a token and several transitions en-
abled from this place will fire the transition with a priority arc
from this place. If there are more than one priority arcs outgoing
from a place enabling more than one transition, then the firing
choice is nondeterminate.

3.2 Examples and Application

The mathematical representations for the example in Fig. 2 is
shown as below:
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P= {plr P2, P3, Py Ps/ Pes P7/ Ps/ P9}/ T= {tlr ty, t3}/
I(ty) = {Pl}/ Ip(t]) = {P7}/ O(ty) = {P2, Pa Ps},

I(to) = {p2, P3l, L(t2) = {po}, O(tz) = {p4, ps},

I(t3) = {ps, psl, Lo(ts) = {pal, Olts) = {pe}

The arrival of input event p7 at transition t1 will force t1 to fire.
The arrival of input event p9 at transition t2 will force t2 fire. Note
the forced firing at t2 will not affect p8 under our definition. But,
for implementation purposes, it may be good if a notification
mechanism can be added to inform places/processes concurring in
the near future to speed up processing whenever a transition is
being fired prematurely.

We illustrate the application of P-nets to real-world examples.
Imagine a scene we usually see at a bus stop. When people come
to a bus stop, they wait until a bus arrives, while a bus arriving at
an empty bus stop will usually drive away without waiting fur-
ther. Another scene we commonly see is in meetings: A meeting
usually will not start until the chairman arrives. People need to
wait if they come in early.

There are also many examples in the real or computer world
where time schedule dominates an event transition. Even though
some conditions are not ready yet, an event will occur when its
time schedule is due. This will happen when real time constraint is
concerned and when a downgraded service can be achieved with-
out some prespecified resources. P-nets can be applied to these
cases by using a clock or time schedule and priority arcs driving
those time-sensitive transitions.

3.3 Analysis—Modeling Power, Reachability, and Liveness
In this section, we show the following:

THEOREM 1. P-nets can simulate Turing machines. Agerwala [7] and
others have shown that an extended Petri Net model with the abil-
ity to test a place for zero token can simulate a Turing machine.

PROOF. We show in Fig. 3 how a P-net can be constructed to test
for zero. To test if P (place b) has a token, we place a token
in p = 0? (place a) initially and define two priority arcs from
places a and b to transition t1. Now, if P has no token, then
transition t1 won't fire. Transition t2 will fire. If P has tokens
in it, then both t1 and t2 are enabled. But, according to our
firing rule (a place enabling several transitions will fire the
transition with a priority arc from it), t1 will fire because
there is a priority arc from place a. O

Now that the P-net model has the power of Turing machines, the
issues of reachability and liveness [4] are undecidable. However, for
applications that have P-nets free from cycles, it will be live (i.e.,
free from deadlocks). A Petri Net is conservative if the number of
tokens in the net is conserved. For general P-nets, the number of
tokens in the net will depend on the concurrency of the modeled
system and, therefore, is not conservative.

4 DOCPN MODEL

Imagine we have multiple computers connected in a distributed
environment to simulate a distributed computer symphony. In
order to achieve this, we need to handle interaction and synchro-
nization within and across platforms. Here, we propose a Distrib-
uted Object Composition Petri Net (DOCPN) model with the fol-
lowing properties:

1) Inheriting the characteristics of Petri Net, that is, waiting
at a transition until all input signals arrived, then firing
concurrently.

2) Extending Petri Nets with P-net attributes described in Sec-
tion 3: The arrival of priority input at a transition may cause
firing of a transition without waiting for other nonpriority
input concurring at the same transition.
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Fig. 3. Testing zero using prioritized Petri Nets.

3) Using the synchronous methods inherited from OCPN and
XOCPN to achieve synchronization among intermedia-
objects.

4) Extending OCPN to a distributed environment that handles
asynchrony across platforms using a global clock.

5) Adding user interaction control into OCPN, thus user inter-
action can be a new and important factor in synchronization.

4.1 DOCPN Architecture

For each node to achieve synchronization within a distributed
multimedia system, it must have DOCPN control mechanism built
in. It communicates with other nodes to form an interconnected
synchronization control system. DOCPN consists of three sub-
components: Multimedia Synchronization Control, Integrated
Synchronization Control, and Interactive Control.

4.1.1 Multimedia Synchronization Control

This component exhibits multimedia according to a preprescribed
schedule. DOCPN inherits the characteristics of Petri Net, that is,
waiting at a transition until all input signals arrived, then firing
concurrently. Therefore, DOCPN can present multimedia with
time dependence on schedule. For example, a video channel and
an audio channel to be lip-synchronized can be achieved easily if
we define SIU as 1/30 second.

4.1.2 Integrated Synchronization Control

In a distributed environment, asynchrony of local clocks at various
sites is another difficult issue for keeping a consistent time across
platforms. In DOCPN model, “integrated synchronization control”
is treated as part of preorchestration. We propose a Global Clock
(GC) to adjust local time frame periodically. The time periods to
adjust local time frame are defined in advance. If the clock in a client
site is faster than GC, the current transition in this client will not fire
until GC arrives. Otherwise, if the clock in a client site is slower than
GC, the transition of this client will fire immediately once GC ar-
rives. Actions unfinished before the transition will be skipped.

4.1.3 Interactive Control

Multimedia preorchestration is as described above if combined
with user interaction allows on-demand application. In a distrib-
uted environment, interaction may come from participating group
members local or remote contributing to a harmonious orchestra-
tion. Orchestration flow may be modified according to user feed-
back. This allows a hypermedia-like navigation. Presentation can
be side-tracked, skipped, paused, or repeated.
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Fig. 4. An example of GC/UI replacement.

4.2 DOCPN Definitions and Examples
4.2.1 Places

TIP (Total Initial Place): TIP represents a unique starting-mark of a
DOCPN map.

TFP (Total Final Place): TFP represents a unique ending-mark of a
DOCPN map.

Conductor: Conductor indicates a site with the ability of sending
out global control signals GC.

a: client identifier, b: time sequence

CIP(a) (Client Initial Place): CIP represents the starting-mark of a

DOCPN map at client site a.

CFP(a) (Client Final Place): CFP represents the ending-mark of a

DOCPN map at client site a.

O(a, b), Oj’(a, b) (Object): objects sitting at client site a to be syn-

chronized at time b.

GC(b): Global clock sent at time b.

Ul(a): User Interaction from user a.

To simplify our diagram drawing: If there are more than one
client transitions that receive a priority arc from GC/UI, we use a
single GC/UI place to represent several identical GC/UI places
connected to the transition at each client. An example is shown in
Fig. 4.

4.2.2 Input, Priority Input Function, and Transitions

Output function
The output function of DOCPN is the same as that of Petri nets.

Priority input function and Transitions
DOCPN categorizes input events in two priorities:

 priority: global clock events, user input events
* nonpriority: Input events for the orchestration of objects.

T(a, b) was represented as a transition sitting in client a to be
synchronized at time b. With the new firing rules specified earlier,
GC and Ul events have leading roles in synchronization. They can
guide the schedule of a DOCPN map.

4.2.3 Distributed Synchronization Using a Global Clock

We explain the above, using Fig. 5 as an example. Here, a “Con-
ductor” plays the leading role as in an orchestra. It issues global
clock signals regularly to each client, fixing problems arising from
asynchrony. For example, if objects O(1, 3) and O’(1, 3) are dis-
played too fast at client site 1, then they have to wait at T(1, 3) until
the arrival of GC(3). Or, if objects O(1, 3) and/or O’(1, 3) are too
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Fig. 5. ADOCPN map with a global clock controlling the global schedule.
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Fig. 6. ADOCPN map with Ul controlling the global schedule.

late for presentation, then the arrival of GC(3) will force T(1, 3) to
fire. This will ignore the late schedule of O(1, 3) and/or O’(1, 3),
preparing the whole system for the next transition.

4.2.4 User Interaction

Similarly, as shown in Fig. 6, a user interaction event (e.g., button on
a mouse clicked, menu selected) will also change the global sched-
ule. In Fig. 6, the output of UI(1) event will force the firing of transi-
tions T(1, 3), T(2, 3), and T(3, 3). UI(1) may mean “skip the first two
parts of a presentation.” Incorporating Ul events into a DOCPN
map has an effect that it allows the global schedule to be adjusted
interactively. A Ul event may leave out a certain part of the or-
chestration and thus force a change of the global clock schedule.
The input of UI(1) at transition T(1, 3), T(2, 3), and T(3, 3) also
means that even with the completion of O(1, 3), O’(1, 3) and/or O(2,
3), O’(2, 3) the orchestration will halt temporarily waiting for user
input.

Combining GC and Ul, we form a complete DOCPN Map, such
as in Fig. 7. If a GC edge meets with a Ul edge at a transition, this
transition would apply the “AND” rule for these two edges be-
cause they are both of the same priority.

4.3 Late Arriving Tokens

When a transition is forced to fire by an incoming priority arc, how
should we handle the other late-coming tokens in places leading to
nonpriority arcs? We regard this as an implementation issue re-
lated to the system being modeled. If these late-coming tokens
stand for video frames, now, because they are late for presentation,
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Fig. 7. A complete DOCPN map (with GC and Ul).
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they can be discarded. If these late-coming tokens stand for reus-
able resources, e.g., buffers, then they should be preserved for the

next use.

5 PRIORITY PETRI NET EXTENSION WITH MORE
PRIORITIES

The proposed model can be extended with more priorities. The
arrival of the highest priority input event at a transition will force
firing without waiting for the arrival of low-priority or nonpriority
events. See Fig. 8 for an example: Here, UI has a priority higher
than GC; the arrival of UI at T(1, 3), T(2, 3), or T(3, 3) will force

firing without waiting for GC or others.

Applications of this extended model can be seen in some real-
world examples, e.g., scheduling of production lines in a manu-
facturing plant can be adjusted by the section leader, production
manager, or general manager, depending on the authorization.
Some production lines can be controlled by the section leader.
Other production lines are controlled by the production manager.
The most important production lines are controlled by the general

manager.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have described an extended Petri Net model. It
extends traditional Petri Nets with priority. We have illustrated the
application of P-nets using solid examples. We have also shown
that P-nets can simulate Turing machines. Properties of P-nets
have been analyzed. Fields in which we feel that P-nets may find
applications are: distributed control, distributed systems and ap-

plications, distributed simulation, and real-time scheduling.

We have presented the application of P-nets in distributed
multimedia synchronization using DOCPN. DOCPN can be used
to design the control mechanism for distributed multimedia sys-
tems, handling the synchronization and user interaction for the
system. At the same time, it needs the help of a Global Clock to
adjust asynchrony, which results from different timing among
computer sites. An interactive mechanism is incorporated to han-
dle the interactive operations of a multimedia system and the
branching resulting from navigation. DOCPN finds application in
distributed control or orchestration where user intervention and

global timing are critical.

An independent work done at University of Ottawa by Li et al.
has derived a software architecture for distributed data stream

without the use of a global clock [5].
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Fig. 8. ADOCPN map with two priorities.
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