
454 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 46, NO. 4, APRIL 1998

Choosing the Best k(N, m, P) Strictly Nonblocking Networks
F. K. Hwang

Abstract—We extend thelog
2
(N; m; P ) network proposed by

Shyy and Lea to basek. We give a unifying proof (instead of
three separate cases as done by Shyy and Lea) for the condition
of being strictly nonblocking, and a simpler expression of the
result. We compare the number of crosspoints forlog

k
(N; m; p)

over various k.

Index Terms—Banyan network, Clos network, strictly non-
blocking network.

I. INTRODUCTION

T HE NOTION of a network for designing
photonic switching systems was introduced by Lea in

[1] and by Shyy and Lea in [2]. Following [2], we use the
Banyan networkas representative. An -extra-stage Banyan
network is a cascade of the Banyan network with extra
stages which are the mirror image of the firststages of the
Banyan network. A network can be treated as
a symmetrical three-stage Clos network with inlets,
while the middle stage consists ofcopies of an -extra-stage
Banyan network, and the first stage consists of copies of
a crossbar.

While a Banyan network usually uses crossbars as
components, it can be easily extended to a-nary Banyan
network using crossbars. Fig. 1 shows a ternary Banyan
network with inlets.

By using the -nary Banyan networks in the middle stage,
we can define a network with inlets,
where the input stage consists of crossbars and the
output stage crossbars.

The value of to guarantee strict nonblockingness of
the network was given in [1] and [2]. Their
arguments, divided into three cases also hold
for the network by simply replacing base 2
with base . We give a simpler proof by unifying the three
cases (also a simpler expression for).

Theorem 1: A network is strictly nonblock-
ing if

for even

for odd

Proof: Suppose . Define if is even
and otherwise. We use an argument analogous to the one
given in [1] for the case.
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Consider the channel graph between an input and
an output . From the structure of and the pattern ,
it is easily verified that is a symmetric series-parallel
channel graph with branching at the outer shells. Let
denote the number of paths at shell. Then

for
for

A stage- link may also be seized by a connection
where and . We call such a connection an
intersecting connection. To avoid counting twice, we must
assign such an intersecting connection either toor to .
We assign it to the input side of inputs (outputs) which can
generate an intersecting connection seizing a shell-link. Then

for except

Assuming the worst case that the and intersecting
connections are all disjoint, then a portion
of the paths in is unavailable to . Therefore, the
condition of SNB is

Theorem 1 follows immediately.

II. M INIMIZING THE NUMBER OF CROSSPOINTS

Let # denote the number of crosspoints. We first compare
strictly nonblocking over various for # by
keeping invariant. It is tacidly assumed that can be
approximated by a power of so that the formula in Theorem
1 applies. We will also ignore the integrality of.

An -extra-stage Banyan network has stages each
consisting of crossbars; therefore, it has
crosspoints. Thus, has crosspoints
in the middle and crossbars in each of its input and
output stages. Thus

#
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Fig. 1. A ternary Banyan network with 27 inlets.

Case 1: is even. Then

#

Let denote a positive integer much smaller than. If ,
then

#

which is essentially increasing in for or and
decreasing in for , where “essentially increasing”
means exceptions are allowed for very small. If
then

#

which is essentially increasing in for all .
Case 2: is odd. Then

#

If , then

#

which is essentially increasing in for but decreasing
in for . If , then

#

The analysis is the same as in case 1.
When # is essentially increasing in, the optimal is a

small which can be determined by standard method. When
# is decreasing in , the optimal should be as large as prac-
ticality allows. Note that the optimal is independent of .
Also note that requires crosspoints
for but only crosspoints for
( yields a variation of the Cantor network).

Sometimes, for a technology or performance reason, it is
necessary to keep constant. Then varies with
and will be denoted by . In this case one should compare
# , the number of crosspoints per input (or output). We
have previously shown

#

It is easily verified that as given in Theorem 1 is increasing
in . Hence, # is increasing in , and the optimal choice
of is .

Since there is noa priori reason to argue for being
the optimal choice, one expects # to consist of two factors,
one increasing in and the other decreasing, and the optimal

is determined by balancing these two factors. It is surprising
to find both factors in # increasing in .

REFERENCES

[1] C.-T. Lea, “Multi-Log
2
N networks and their applications in high-speed

electronic and photonic switching systems,”IEEE Trans. Commun., vol.
38, pp. 1740–1749, Oct. 1990.

[2] D.-J. Shyy and C.-T. Lea, “Log
2
(N; m; p) strictly nonblocking net-

works,” IEEE Trans. Commun., vol. 39, pp. 1502–1510, Oct. 1991.


