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Abstract 

Although learning controllers are considered to be capable of generalization, most robot learning control schemes either 
need to include conventional controllers, or need to repeat the learning process each time a new trajectory is encountered. 
The main reason for this deficiency is that the learning space for executing general motions of multi-joint robot manipulators 
is too large, In this paper, we propose an approach, motivated by the equilibrium-point hypothesis in human motor control, to 
simplify the learning space when learning controllers are used to govern robot motions. In the proposed approach, the motion 
command is formulated in the form of three square pulses in alternate directions with adjustable heights and widths. When 
the motion command is specified in this simple form, the learning space for dealing with variations exhibited in different 
movements is dramatically simplified. Thus, we can then implement a fuzzy system for robot motion control, which generates 
appropriate controlled parameters for the motion commands by using a reasonable number of rules. Theoretical analyses and 
simulations are performed to demonstrate the feasibility of the proposed approach. @ 1998 Elsevier Science B.V. 
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1. Introduction 

Compared to conventional controllers, learning 
controllers are capable of  tackling highly complex 
dynamics without explicit model dependence and 
identification. In addition, learning controllers are 
computationally efficient after training. Two well- 
known types o f  learning controllers for robot mo- 
tion control are fuzzy systems and artificial neural 
networks [19,22]. The structure of  artificial neural 
networks is modeled after the organization of  the 
brain, although the similarity between the two is 
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actually slight [19]. On the other hand, fuzzy systems 
are meant to encode pieces o f  knowledge presented 
by experts [10, 14, 18]. In some previous research 
involving the application of  these two types of  learn- 
ing controllers for governing a multi-joint robot 
manipulator, they are used as subordinates, while 
a conventional control algorithm, e.g., PD or PID 
control, is responsible for the major portion of  the 
control [12, 13, 15]. In this approach, the conven- 
tional control algorithm brings the system close to the 
desired state and the learning mechanism then com- 
pensates for the remaining error. On the other hand, 
some systems use learning algorithms alone to execute 
the control. However, although these learning con- 
trollers are considered to be capable of  generalization, 
most of  them need to repeat the learning process each 
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time a new trajectory is encountered [9]. The main 
reason for this deficiency is that a huge number of 
training patterns will be demanded for the setup of a 
learning controller for executing general motions of 
multi-joint robot manipulators. Consequently, a neu- 
ral controller would consist of a number of neurons or 
a fuzzy system requires numerous rules. This learn- 
ing space problem severely hinders the application of 
learning control. 

Learning control is biologically inspired and 
intended to emulate human motor control. Then, 
a problem that may be raised is how the human motor 
control system resolves the aforementioned learning 
space problem. The superiority of the human motor 
control system may be attributed to its salient control 
strategies and exceptional capability to make proper 
decisions using information from abundant and ver- 
satile biological sensory feedback. On the other hand, 
human beings are not very accurate in their move- 
ments. Then, an intuition is that the human motor 
control system may have the learning space simplified 
at the expense of accuracy in movements. Motivated 
by the intuition above and the equilibrium-point hypo- 
thesis in human motor control, we propose an ap- 
proach to trade movement accuracy for learning space 
simplification. In this approach, the motion command 
is formulated in the form of three square pulses in 
alternate directions with their heights and widths ad- 
justed according to various robot motions [ 11,20, 21 ]. 
With the controlled parameters in the motion com- 
mand being the heights and widths of the square 
pulses, the learning space for dealing with varia- 
tions exhibited in different movements is dramatically 
simplified. The simplification of the learning space, 
however, is achieved at the price of accuracy in move- 
ments, because continuous control signals in conven- 
tional robot motion control schemes are approximated 
by signals in the form of a series of square pulses [ 1 ]. 

With the learning space significantly simplified, it 
is then feasible to design a fuzzy system for robot 
motion control, which can generate the heights and 
widths of the square pulses in the motion command by 
using a reasonable number of rules. The reason that 
we chose to use a fuzzy system for motion command 
generation instead of using an artificial neural net- 
work is because that empirical rules and data related to 
biological control systems are usually described and 
analyzed qualitatively instead of quantitatively [5]. 

Therefore, a fuzzy system is a more intuitive tool than 
an artificial neural network. The rest of the paper is 
organized as follows. Biological backgrounds and re- 
lated discussions of the equilibrium-point hypothesis 
are given in Section 2. The feasibility and performance 
of the proposed approach and its application on robot 
motion control are demonstrated by theoretical ana- 
lyses and simulations in Sections 3 and 5, respectively. 
The implementation of the fuzzy system for robot 
motion control is described in Section 4. Finally, con- 
clusions are stated in Section 6. 

2. Inspiration from equilibrium-point hypothesis 

Fig. 1 shows a simplified block diagram for the 
neuromuscular system, which governs human limb 
movements. In Fig. 1, human movement is governed 
by a hierarchical structure [9, 17]. The central nervous 
system (CNS) makes movement plans according to 
different demands. Appropriate motor commands are 
then generated and sent to the peripheral neuromotor 
system, which modifies the motor commands via 
sensory feedback. The peripheral neuromotor system 
behaves as a local controller that adapts to different 
movements, loads, and environments, in addition to 
accepting commands from the CNS [4]. Finally, the 
modified commands are sent to the muscular-skeletal 
system for movement execution. With this hierarchi- 
cal structure, the difficulty of performing complex 
movements is shared by the CNS at the higher level 
and the local controller at the lower level. 

The equilibrium-point hypothesis suggests that the 
CNS specifies equilibrium points between agonist 
and antagonist muscle groups that correctly posi- 
tion the arm in relation to the target by indicating 
new sets of length-tension curves for the muscle 
groups [3,7, 16, 17]. In other words, movement is 
treated as transition between postures. The CNS needs 
only select new levels for the motor commands. The 
subsequent result, mediated by autogenetic reflexes 
and the mechanical properties of the muscles, should 
be a smooth transition from one posture-state to an- 
other. The simplicity in the form of the control signal 
makes this hypothesis very attractive for motion con- 
trol. However, since only one equilibrium point is 
selected, a control strategy based on this hypothesis 
would not enable us even to vary the speed of the 
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Fig. 1. A simplified block diagram of the neuromuscular system. 
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Fig. 2. Three-pulse command pattern. 

movement between two given postures. To exploit 
the simplicity of the equilibrium-point hypothesis and 
make it capable of dealing with different velocities 
and loads in reaching various positions, the motor 
command can consist of a number of equilibrium 
points. Thus slow movements can be produced by 
progressive shifts of equilibrium points. Movements 
can be speeded up by assigning an initial shift that 
is larger than necessary, followed by a return to a 
proper static level [7]. 

Motivated by the equilibrium-point hypothesis, we 
propose a formulation of the motion command in the 
form of a train of square pulses in alternate directions 
with their heights and widths adjusted according to 
the demands of different tasks. Similar concepts can 
also be found in [11,20]. Note that the controlled 
parameter in the equilibrium-point hypothesis is the 
muscle compliance instead of the equilibrium point 
used in the proposed approach. Our purpose is not to 
propose a new biological hypothesis, but to develop 
control strategies inspired from human motor control 
for robot motion control. In light of both physiolog- 
ical and engineering considerations, the number of 
pulses in the motion command should be kept fairly 
small [5, 11,20]. We propose to use three pulses 

in the motion command, as shown in Fig. 2. The 
triphasic motion command pattern is clearly not an 
invariant pattern of muscle activation. The command 
pattern should be task, velocity, subject, and muscle 
dependent [5]. Nevertheless, the three-pulse motion 
command pattern has an engineering analogy in the 
bang-bang control, which is intended for fast move- 
ments and like the present pattern demonstrates three 
major force changes. The proposed command pattern 
also gains support from the investigation of rapid 
voluntary wrist movements [20], which showed that 
these movements normally exhibit motor commands 
with a three-pulse pattern for a light load: first an 
agonist burst, followed by an antagonist burst, fol- 
lowed by a second agonist burst. Correspondingly, 
three major alternating phases of net force were 
observed: a net force first in the direction of move- 
ment, then opposed to the movement, and finally 
in the direction of movement again. For a heavy 
load, however, the second agonist burst was not very 
apparent. 

3. Proposed approach 

According to the discussions above, when the 
three-pulse motion command pattern is used for robot 
motion control, the controlled parameters in the mo- 
tion command will be a constrained set with few 
parameters. We will then develop a fuzzy system, 
acting as the CNS of the neuromuscular system in 
Fig. 1, to generate motion commands. The controlled 
parameters for the proposed fuzzy system are the 
heights and widths of the three square pulses cor- 
responding to the equilibrium points in the motion 
command. It can be seen that the fuzzy system under 
design will face a small learning space. For a feasible 
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Fig. 3. Conceptual organization of the proposed control scheme. 

implementation of the fuzzy system, the number of 
basic three-pulse command patterns for generalization 
will be limited. In other words, the fuzzy system will 
generalize a set of basic command patterns to cover a 
wide variety of movements. As the simplification of 
the learning space is at the price of inaccuracy dur- 
ing movement, the proposed approach demonstrates 
a trade-off between movement accuracy and memory 
utilization in learning. 

A conceptual organization of the control scheme for 
governing motions of multi-joint robot manipulators 
by applying the proposed approach is as shown in 
Fig. 3. The inputs to the fuzzy system are distance 
of movement, velocity, and load corresponding to the 
robot motion. In turn, the fuzzy system will generate a 
corresponding three-pulse motion command and send 
it to the local controller. The local controller will then 
modulate the command via sensory feedback and use 
the resulting signal to move the robot link. Before 
the implementation of the fuzzy system for the robot 
control scheme, we will first evaluate the feasibility 
of applying the three-pulse motion command pattern 
for robot motion control from an engineering point of 
view. 

3.1. Feasibility analysis 

The three-pulse motion command pattern (shown 
in Fig. 2) functions as follows: first, a large burst gen- 
erates a large initial speed, then a small burst brakes 
the movement, and finally, a step brings the limb 
into the equilibrium posture assigned by the CNS. In 
order to check whether the three-pulse motion 
command pattern is appropriate for controlling robot 
motions, we investigate the force profiles correspond- 
ing to various movements reaching the same distance 
with different loads and velocities. A simulation sys- 
tem is developed to derive the force profile from the 

desired movement positions, velocities, and acceler- 
ations. Both single-joint and multi-joint movements 
are analyzed. 

We will begin with single-joint movements. 
Consider the second-order system described in 
Eq. (1): 

M£+BJc+K(x--Xd) = O, (1) 

where M is the load, K the stiffness, B the damp- 
ing coefficient, and xd the equilibrium point. In the 
simulations, motion commands, and consequently 
the three-pulse command patterns, are introduced to 
the system via the assignment of the equilibrium point 
Xd. This second-order system can also be interpreted 
as having an equilibrium point at the origin and an in- 
put force specified by KXd. If we choose the values of 
K and B for a given load M properly, the system can 
be designed to be critically damped when the equilib- 
rium point is fixed, which corresponds to an applied 
step force. Fig. 4(a) shows two desired critically 
damped trajectories with different natural undamped 
frequencies, wn. First we conducted a simulation to 
see how the applied force adjusted to deal with a 
heavier load when the same movement profile is pre- 
served. The critically damped trajectory with smaller 
wn was used as a reference. The evaluated force pro- 
file, K(Xd --x) --BYe, can be derived by using Eq. (1) 
and x, ;?, and 5? of the critically damped trajectory. 
The simulation results are shown in Fig. 4(b). The 
trace marked by 1 is the reference force profile when a 
step input is applied. The force profile corresponding 
to a heavier load marked by 2 exhibits a large initial 
bell-shaped waveform, followed by a small one in the 
negative direction, and finally a step at the origin. This 
force profile implies that the control signals are in the 
form of a large burst, followed by a small burst, and 
finally a step indicating the equilibrium point, i.e., the 
three-pulse motion command pattern. We performed 
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Fig. 4. Single-joint movement: (a) desired critically damped trajectories and (b) force profiles for a heavier load or a faster velocity. 

another simulation to see how the force profile is af- 
fected by a larger movement  velocity when the load 
and the distance of  movement  are kept the same. In this 
case, the critically damped trajectory with the larger 
natural undamped frequency wn, which corresponds 
to a smaller time constant, was used as a reference for 
a fast movement.  Consequently, the values of  K and 
B for this trajectory are larger than those for the previ- 
ous one. The desired force profile is still derived using 
Eq. (1); x, 2, and 5/are for the new critically damped 
trajectory, and the values of  K and B are those of  
the previous trajectory. The resulting trace is shown 
in Fig. 4(b), marked by 3; the trace demonstrates a 
force profile similar to that in the previous case. 

To extend the analysis to multi-joint movements,  we 
need to consider dynamic interaction between joints. 
The dynamics of  multi-joint movements  can be for- 
mulated as follows: 

z : H(q)i~ + C(q, i l )+ G(q),  (2) 

where q, ~¢, and ~/stand for joint variables and their 
derivatives, H ( q )  is the inertia matrix, C(q,( l )  is 

the vector of  centrifugal and Coriolis terms, G(q)  is 
the vector of  gravity terms, and z is the vector of  joint 
torques. The effect of  gravity will be ignored in the 
following simulations. As we did for the single-joint 
movement,  we generate critically damped trajectories 
for each of  the two joints. We performed simula- 
tions to see how the force profile varies with different 
loads, movement  velocities, and the presence of  dy- 
namic interaction. Similar to the procedure for single- 
joint movements,  the evaluated force profile can be 
derived by using Eq. (2) and the critically damped 
trajectories for the two joints. Fig. 5 shows the simu- 
lation results for two-joint movements with a heavier 
load and a faster movement  velocity. In Fig. 5, phe- 
nomena similar to those in Fig. 4 are observed for 
both joints under different load and movement  velocity 
conditions, thus providing evidence to justify use of  
the three-pulse motion command pattern. In summary, 
the simulation results for single-joint and two-joint 
movements imply that the three-pulse motion com- 
mand pattern captures most of  the behavior of  robot 
motion. 
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Fig. 5. Force profiles for two-joint movement with a heavier load or a faster velocity. 

3.2. Local controller 

As mentioned in the introduction of  the neuro- 
muscular system in Section 2, the three-pulse motion 
command pattern will be modified by the peripheral 
neuromotor system before it reaches the limb. The me- 
chanical properties possessed by the peripheral neu- 
romotor system play an important role for supporting 
the simple control strategies employed by the CNS. 
Especially when compliant motions are involved, 
for which different environments exhibit various 
stiffnesses and viscosities, the influence of the me- 
chanical properties is significant [8]. To replicate the 
mechanical properties of the peripheral neuro-motor 
system adequately, a complicated local controller will 
be needed. In tackling free motions, however, the 
local control system may not be so crucial. There- 
fore, for the purpose of simplicity we will attribute 
the intelligence of the proposed scheme to the fuzzy 
system and the three-pulse motion command pattern, 
and use the local controller to deal with sensory feed- 
back only. Because no desired velocity is specified in 
the three-pulse motion command pattern, we propose 

a simple position control law with linear damping for 
this local controller: 

7: = Kp(qd  -- q) - Kdq ,  (3) 

where qd stands for the vector of the equilibrium joint 
positions and Kp and Kd are symmetric positive def- 
inite matrices. The actual positions and velocities, q 
and q, are obtained via sensory feedback. 

3.3. Stability analysis 

Another main concern of the proposed approach is 
stability using the three-pulse motion command pat- 
tern and the local controller. Since the first two pulses 
of the motion command pattern can be taken as the 
transient, we may in turn analyze the stability of the 
multi-joint system under step inputs and the control 
law described in Eq. (3). In the absence of gravity, the 
system dynamics described in Eq. (2) can be rewritten 
as 

r = Hi l  + C'gt, (4) 
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where C '  = C ' (q ,q )  is a matrix and ( H  - 2C ' )  is 
antisymmetric [1]. Consider a Lyapunov function 
candidate 

V 1 T ~(qeKpqe + qTHq), (5) 

where qe = qd -- q. After some manipulation using 
Eqs. (3) - (5) ,  we obtain 

: -- ¢iTKd¢i ~0.  (6) 

Thus the system is proved to be stable using the 
three-pulse motion command pattern and the local 
controller. 

4. Implementation of the fuzzy system 

In order to realize the robot control scheme in Fig. 3, 
we need to implement a fuzzy system for generating 
proper three-pulse motion commands according to dif- 
ferent distances, velocities, and loads. As four vari- 

ables, hi, h2, tl, and t2, need to be assigned for the 
motion command as indicated in Fig. 2, there will be 
three inputs and four outputs for this fuzzy system. We 
will first develop a fuzzy system to control a second- 
order system. Later, to control multi-joint movements, 
the fuzzy system for the second-order system will be 
applied to each of the joints via proper scaling. To 
deal with dynamic interaction present in multi-joint 
movements, in some sense our design takes advantage 
of the fuzzy relation incorporated in the fuzzy rules 
via open-loop control. It can be seen that the compen- 
sation effect via the robustness of the fuzzy system 
will diminish along with the increase of the number 
of joints. At the current stage of the study, we do 
not intend to develop a fuzzy system that can govern 
general motions of multi-joint robot manipulators. In- 
stead, we will concentrate on demonstrating the effect 
of the combination of the proposed motion command 
pattern and the fuzzy system in learning space simpli- 
fication and coverage. 
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Fig. 8. Membership functions for (a) load and (b) velocity. 

Fig. 6 shows the structure of the proposed fuzzy 
system. The system will function as follows: first, the 
crisp inputs are fuzzified through a fuzzifier, then the 
fuzzy data are processed by an inference engine which 
takes information from the rule base and data base, and 
finally, they are defuzzified to obtain the crisp outputs. 
Note that, although three inputs - distance, velocity, 
and load - are called for in this fuzzy system, only 
velocity and load are input to the fuzzifier. This is be- 
cause the input distance will be directly proportional 
to the final step of the three-pulse motion command 
under the equilibrium-point hypothesis and so it re- 
quires no further processing. In order to construct this 
system, proper membership functions need to be de- 
rived for the fuzzifying process. In addition, the rule 
base and data base, representing the fuzzy reasoning 
process, have to be developed. Therefore proper mo- 
tion command patterns corresponding to various con- 
ditions need to be provided, so that the membership 
functions, rule base, and data base can be implemented 
according to these reference commands. 

We will generate the reference commands by 
engineering means, instead of collecting data by 

performing extensive experiments on human limb 
movements. In our design, the reference motion 
command patterns are derived by a learning pro- 
cess, as shown in Fig. 7. In Fig. 7, various com- 
binations of tl, t2, hi, and h2 are first assigned for 
the three-pulse motion commands. Then the com- 
mands are sent to move the links. In turn, the 
performance of the movement solicited is eval- 
uated by comparing it with the desired move- 
ment profiles. The desired movement profiles 
are generated by adjusting the values of  K and 
B to make the linear second-order system, de- 
scribed by Eq. (1), behave as critically damped 
under different distance, velocity, and load con- 
ditions. These procedures will be repeated until 
enough sets of motion commands are obtained 
for various distance, velocity, and load condi- 
tions. 

By utilizing these sets of  motion commands as 
references, we can implement the fuzzy system. We 
assign 99 rules for each of hi, h2, tl, and t2. These 
rules are defined as fuzzy conditional statements of the 
form given in Eq. (7): 
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IF  load is Ai A N D  velocity is Bj T H E N  h]is Ci, j, 

IF  load is Ai A N D  velocity is Bj T H E N  h2 is Di.j, 

IF  load is Ai A N D  velocity is Bj T H E N  tl is E~,j, 

IF load is Ai A N D  velocity is Bj T H E N  t2 is Fi, j, 

(7) 

where i = 1 , . . . ,  9, j = 1,. . . ,  1 l, and Ai, Bi, Ci, j, Di, j, 
Ei,/, and F/, j are fuzzy sets. In combining fuzzy rules, 
we adopt the commonly-used max-min composition 
[22]. 

The triangular membership function is used for the 
input fuzzy sets, as described below: 

,4x) 

0 
7?> 

a - b  a a + c  " X 
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(8) 

Different membership grades at the same crisp point 
can be obtained by adjusting parameters a, b, and c. 
The membership functions of  output fuzzy sets are 
chosen as fuzzy singletons. A fuzzy singleton is a 
fuzzy set F whose support is a single point in a uni- 
versal set ( U )  with UF = 1.0 [10]. For a defuzzifica- 
tion strategy, we shall adopt the center o f  area method 
(COA),  which generates the center o f  gravity of  the 
possibility distribution of  a control action. In the case 

of  discrete universe sets, this method yields 

n 

X* --  ~ i :  1 U(Xi)Xi ( 9 )  

l u ( x i )  

where n is the number of  quantization levels o f  
the outputs. The ranges for the input variables are 
load E [1,20] and velocity c [10,30] when the dis- 
tance is equal to 1.75. The range of  velocity will be 
further adjusted directly proportional to the distance, 
because intrinsically, the equilibrium point corre- 
sponding to a larger distance will induce a larger 
velocity. Fig. 8 shows the membership functions for 
both load and velocity. In Fig. 8, constants CV and 
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CM are equal to 18 and 20, respectively. These two 
constants are used to make the fuzzy sets correspond 
to the input-output ranges. 

We performed a series of simulations to demon- 
strate the performance of the fuzzy system for a 
second-order system. Fig. 9(a) shows the system's 
behavior in reaching the same distance under different 
velocity requirements. Two loads, one a small mass 
and one a large mass were simulated. The system 
performed well in both cases; the curves for the small 
mass are smoother. It can be seen from the figure that 
the heavy load involves commands with larger mag- 

nitudes, as expected. Fig. 9(b) shows the system's 
behavior as it reaches the same distance under differ- 
ent load requirements. Both slow and fast velocities 
were simulated, and the system again performed well 
in both cases. As expected, the case of fast velocity 
involves commands with larger magnitudes. 

5. Simulations 

We executed simulations for single-joint and two- 
joint movements. The performance of the single-joint 
movements can be expected to be similar to that of the 
fuzzy system for a second-order system in Section 4. 
The performance of the single-joint movements will 
serve as a reference for evaluating that of the two- 
joint movements. In two-joint movements, we dealt 
with both whipping and reaching movements and the 
related dynamic coupling. 

5.1. Single-joint movements 

The dynamic equation for a single-joint manipu- 
lator, as shown in Fig. 10(a), can be expressed as 
follows: 

I0 + Bi 0 + #g cos (0) = z, (10) 

where I = 1 2 gmol + Ml 2, U =l(½Mo + M),  34o= 
2.815 kg is the mass of the link, M is the load, l = 
0.3 m is the manipulator length, BI is the damping 
coefficient, and the center of mass is located at the 
middle of the link. If the single link moves in a hori- 
zontal plane with input torque z = - Ko0 - K p ( O  - 0 0 ) 

provided by the local controller, the dynamic equation 
in Eq. (10) can be rewritten as 

I0 + BdO + Kp(O - 00)=0,  (11) 

where Kp and Kd are constants for the local controller, 
Bd = Kd + B~, 0 is the actual joint value, and 00 is the 
joint variable specified by the motion command. The 
values of Bo and Kp in Eq. (11 ) can be obtained via 
a linear scaling of the B and K used in the fuzzy sys- 
tem for a second-order system by comparing the iner- 
tia in Eq. ( 11 ) with the load used in the fuzzy system. 
The scaling Of Bd( =Kd + B1 ) and Kp in some sense 
implicates the adjustment of Kd and Kp of the local 
controller for matching the system's operating range. 
The simulation results are shown in Fig. 11. Fig. 1 l(a) 
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Fig. 12. Simulation results for two-joint movements: (a) whipping action and (b) reaching action. 

shows the performance in reaching the same distance 
under different velocity requirements with no load and 
with a heavy load. Fig. 1 l(b) shows the performance 
in reaching the same distance under different load re- 
quirements using slow and fast velocities. The sys- 
tem's  behavior in these simulations is similar to that 
shown in Fig. 9. 

5.2. Two-joint movements  

In the simulations for two-joint movements, first we 
need to map the distance and velocity from Cartesian 
to joint space by solving the inverse kinematics. The 
distance of  movement and the velocity for the individ- 
ual joint can then be obtained. The values of  Kd and 

Kp in the local controllers will also be adjusted fol- 
lowing the procedure in the simulation for single-joint 
movements. However, because the inertias for the two 
joints are varying and dynamic coupling are present 
during two-joint movements, the "equivalent inertias" 
of  the two joints used for the scaling of  Kd and Kp will 
be in the middle range of  the varying inertias plus the 
effect of  the dynamic coupling. 

The dynamic equations for a two-joint planar 
manipulator, as shown in Fig. 10(b), can be expressed 
as follows 

r, =HIlO,  + H1202 - HO~ - 2H0",0'2 + G], (12) 

~z =H2101 4-H2202 4- HO} 4- G2, (13) 
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1'.5 2 

where 

H~j = m112cl + 11 

, 2 ,2  + m 2 [ l l  + It2 + 2lllc2 cos(02)]  + I2", 

• , .2 +/2* ' H22 ~--- m2 tc2 

• • • .2 • H12 = m2 Ii l~2 cos(02)  + m 2 lc2 + I~, 

Hzl = H12, 

H = m~ll 1c2 sin(02), 

GI = ml lcl g cos(01 ) 

+m~g [lc2 cos(0l + 02) + ll cos(01 )], 

(14)  

(15) 

(16)  

(17)  

(18) 

(19)  

G2 = m~Ic*2 9cos(01  + 02) (20) 

and 

m~ = m2 + M, (21 ) 

m2 lc2 + M12 
l~2 = , (22) 

m2 

I~ = 12 + m2(l* 2 - / c 2 )  2 + M(12 - / ' 2 )  2, (23)  

with mt = 2 . 8 1 5 k g ,  m 2 =  1.640kg, ll = 0 . 3 0 m ,  
12 = 0 . 3 2  m, lct = 0 . 1 5  m, lc2 = 0 . 1 6  m, and It = / 2  = 
0.0234 kg m 2. 

The effect o f  gravity was ignored in the simulation, 
since these two links were assumed to move  in a hori- 
zontal plane. In the presence o f  dynamic  coupling, the 
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two-joint movements will be divided into whipping 
and reaching actions [6]. A whipping action involves 
flexion of  the upper and lower links in the same 
direction; a reaching action involves flexion o f  two 
links in opposite directions. These two actions induce 
different coupling effects. We simulated whipping 
actions with two different loads; the corresponding 
traces overlap, as shown in Fig. 12(a). Since the two 
links rotate in the same direction, the joint  velocities 
of  the two joints have the same signs. The induced 
dynamic coupling can be deduced from Eqs. ( 1 2 ) -  
(13) [6]. In Fig. 12(a), the position trace in Cartesian 
space is a curve with a small hook near the destina- 
tion. Fig. 12(b) shows the simulation results for the 
reaching action. In this case, the two links move in 
opposite directions, so the Coriolis and centripetal 
torques have a diminished influence compared with 
their influence on a whipping action. In Fig. 12(b), the 
reaching movement  demonstrates a straighter position 
trace than the whipping movement.  The simulation 
results in both cases show that the motion commands 
generated by the fuzzy system possess certain degree 
o f  robustness and can still yield stable and smooth 
Cartesian trajectories in the presence o f  dynamic 
coupling. 

6. Conclusions 

In this paper, we proposed an approach to simplify 
the learning space for robot learning control. Theo- 
retical analyses and simulations demonstrate the fea- 
sibility of  our approach. At  the current stage of  the 
study, a robot control scheme based on the proposed 
approach is not available for application on general 
industrial robot manipulators. Nevertheless,  the com- 
bination o f  the proposed motion command pattern and 
the fuzzy system leads to learning space simplifica- 
tion and coverage, and is with a potential to achieve 
the goal of  governing general industrial robot manip- 
ulator by using the learning mechanism as the main 
control module.  Future study will concentrate on tack- 
ling dynamic interactions present in motions of  multi- 
joint  robot manipulators. Another  worthwhile task will 
be to develop a more intelligent fuzzy system to ap- 
proximate the reasoning process o f  an expert, such 
that the fuzzy system can deal with inputs beyond 
the specified range and refine i tself  from inputs, in 

addition to the generalization of  the reference motion 
commands [2]. 
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