
41 4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL 9, NO 4, APRIL 1998

4) Path P containing two nondiameter links is constructed as

where M # I and M # K. The routing distance of P is R, =

H(I, K) + 2. Since HU, M) + H(M, L) 2 HU, L), we have R, 2 R,.
Therefore, routing algorithm C provides the shortest path
that contains two nondiameter links Note that if M satisfies
HU, M) + H(M, L) = HU; L), path P has the same distance
as the path by routing algorithm C and can be used as its
alternate path.

foiiows: (I , J) (r, M) + (M, I) + (M, K) --f (K, M) 3 (K, L),

HU, M) + H(I, K) + H (M , L) + 2. From (3), R, = HU, L) +

5) It is obvious from the definition of routing algorithm B*.

REFERENCES
[1]

[2]

K. Ghose and K R Desai, ”Hierarchical Cubic Network,” IEEE Trans.
Parallel and Distributed Systems, vol. 6, no. 4, pp. 427-435, Apr. 1995.
A. El-Amawy and S. Latifi, “Properties and Performance of
Folded Hypercubes,” I E E E Trans Parallel and Distributed Systems,
vol 2, no. 1, pp. 31-42, Jan 1991
A. Esfahanian, L M Ni, and B E Sagan, ”The Twisted n-Cube with
Application to Multiprocessing,” IEEE Trans Computers, vol. 40, no. 1,
pp. 88-93, Jan 1991
K Hwang and J. Ghosh, ”Hypemet A Communication Efficient
Architecture for Constructmg Massively Parallel Computers,”
IEEE Trans. Computers, vol. 36, no 12, pp. 1,450-1,466, Dec. 1987.
J.M. Kumar and L.M. Patnaik, ”Extended Hypercube: A Hierar-
chical Interconnection Network of Hypercube,” IEEE Trans. Paral-
lel and Distributed Systems, vol. 3, no. 1, pp. 45-57, Jan. 1992.
N.F. Tzeng and S. Wei, ”Enhanced Hypercube,” I E E E Trans. Com-
puters, vol 40, no. 3, pp. 284-294, Mar 1991.
S.G. Ziavras, “A Versatile Family of Reduced Hypercube Inter-
connection Network,” I E E E Trans. Parallel and Distributed Systems,
vol. 5, no. 11, pp. 1,210-1,220, Nov. 1994
K. Efe, “A Variation on the Hypercube with Lower Diameter,”
IEEE Trans. Computers, vol 40, no 11, pp 1,312-1,316, Nov. 1991
D.R Duh, G.H. Chen, and J. F. Fang, ”Algorithms and Properties
of a New Two-Level Network with Folded Hypercubes as Basic
Modules,” IEEE Trans. Parallel and Distributed Systems, vol 6, no. 7,
pp. 714-723, July 1995.

[lo] K. Ghose and K.R. Desai, ”The HCN: A Versatile Interconnection
Network Based on Cubes,” Proc. Supercomputing, pp. 426435,1989.

[I11 K. Ghose and K.R. Desai, ”The Design and Evaluation of the Hi-
erarchical Cubic Network,” Proc 19th Int’l Conf Parallel Processing,

[3]

[4]

[5]

[6]

[7]

[SI

[9]

VO~. I, pp. 355-362,1990.

Mu It i processors”

Ting-Lu Huang, Member, IEEE, and Chien-Hua Shann

Abstract-The circular list-based mutual exclusion algorithm proposed
by Fu and Tzeng [I] is subject to a race condition that leads to a
deadlock under subtle situations. An execution sequence evidences
the race, and a modified version is provided. The performance of the
original algorithm remains unchanged.

Index Terms-Critical sections, race conditions, deadlocks, atomic
instructions.

1 lNTRODUCTlON

THE Acquae-lock procedure an
article [I] of this transaction are subject to a race condihon which
can lead to a disruption of the privilege consignation process un-
der subtle situations.

The race condition is evidenced by tracing a few steps of a
computation. The original algorithm is reproduced in Fig. 1,
with a label for each statement. Suppose there are two processes
that are competing for the root lock: the header and the successor.
Each arrives at the top level with the value of 1 - >next pointing
to itself. Table 1 details a sequence of events that ends with proc-
ess successor spinning forever, waiting for some other process to
write FALSE to its wait bit, but no one will. This results in a
deadlock, and no process may enter its critical section any more.

The cause of the problem can be explained by focusing on a
process executing li?e A7 in any computation. Presumably, the
action is meant to clear the bit for the later detection of a wake-up
signal from someone else leaving its critical section. What can go
wrong is that the signal may arrive earlier than the action of line
A7 itself and, then, the action unknowingly overwrites the
FALSE value which is meant to be detected as the sig
a typical race and could happen under subtle situa
context switching of the successor process. Notice that the same
type of race could also ha ess executes line R8.

The problem is due to coordination between
the waiting process and ling process associated with a
waif bit. A modified version, which satisfies mutual exclusion and
deadlock freedom, is given in Fig. 2. This is achieved simply by
setting the wait bit TRUE soon enough in order to prevent the race
condition as in Table 1. The modrfications include:

1) substituting X2 for A2, X7 for A7, X8 for A8, X13 for A13,

2) swapping line R7 and line R8.
Notice that the privilege consignation procedure for the global

header without the swap-and-compare primitive also needs a modi-
fication to prevent the same problem. Specifically, those processes
that need to wait for a wake-up signal are subject to the same race
condition. A similar modificahon is suggested.

and

The authors are with the Nation
Computor Science and Informat
Hsin-Cku, Taiwan 30050, Republic of China
E-mail {tlkuang, chshan)@csie nctu.edu tw

Tung University, Department of
neering, 1001 Ta-Hsueh Road,

Manuscripf recemed 26 Aug 1997
For information on obtaining reprints of this article, please send e-mazl to
tpds@computer orgj and reference IEEEECS Log Number 105551.

I

1045-9219/98/$10 0 0 0 1998 IEEE

http://nctu.edu

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 4, APRIL 1998

process actions process state afterwards
header A5 I->next=nil

level=root-level
 root-level] =header
I->wait=FALSE

41 5

description of the events
I am the global header.

A0
A1 int level;

Acquire-Lock(Lock L, node *I) {

A2 I->wait =FALSE;

I - >next = header
level=root-level
L [root-level 1 =SuCCeSSOr
I->wait=FALSE

A3
A4
A5
>next);
A6
A7
A8
A9
A10
All
nil);

I/ I should wake up headerwhen I am done.

I->next = my-proc-id;
for (level =l; level <= root-level; level++) {

I->next = fetch-and-store (L[level], I-

if (I->next != nil) {

I
if (level < root-level)

I->wait = TRUE;
break;

I->next = fetch-and-store (L[level],

A12]
A13 while &>wait);
A14]

RO
R1 if @>next == nil) (
R?. while (1) {
R3 I->next = my-proc-id;
R4 swap-and-compare(L[level], I->next,
nilk

Release-lock(1ock L, node *I) {

R5” if (I->next == my-proc-id)
R6 retum;
R7 I->next->wait = FALSE;
R8 I->wait = TRUE;
R9
R10

while (I->wait);
I

1
I->next->wait = FALSE;

1

A0
A1
x2
A3
A4
A5
>next);
A6
x7
X8
A9
A10
All
nil):

New-Acquire-Lock(Lock L, node *I) (
int level;
I->wait = TRUE;
I->next = my-proc-id;
for (level =l; level <= root-level; level++) [

I->next = fetch-and-store (L[level], I-

if (I->next != nil) {
while (I->wait);
retum;

I
if (level < root-level)

I->next = fetch-and-store (L[level],
~ ~~

Ai2)
X13
A14 1

1 * empty line */

RO
R1
R2 while (1) [
R3 I->next = my-proc-id;
R4 swap-and-compare(L[level], I->next,

R5 if (I->next == my-proc-id)
R6 retum;
R8*
line R8 */
RTI I->next->wait = FALSE;
R9 while (I->wait);
R10 I
R11 1
R12 I->next->wait = FALSE;
R13]

New-Release-lock(1ock L, node *I) {
if (I->next == nil) [

nil);

I->wait = TRUE; / * swap line R7 and

Fig. 1. Acquire and release procedures of the circular list-
based scheme given in [l].

Fig. 2. Modified procedures of the circular list-based scheme.

IIheader I A6 ~ I I->next=nil I The test result is neaative. II

Since the modifications involve only rearranging the order of a
few statements, neither an extra computation step nor extra net-
work traffic is incurred by such changes. As a result, the perform-

like to thank Prof. Ten H. Lai and the anonymous referees for their
valuable comments and suggestions.

ance of the original algorithm remains unchanged. REFERENCES

ACKNOWLEDGMENTS [l] S.S. Fu and N.-E Tzeng, “A Circular List-Based Mutual Exclusion
Scheme for Large Shared-Memorv Multiprocessors,” IEEE Trans.

This work is supported in part by the National Science Council of
Taiwan under Grant NSC 86-2213-E-009-092. The authors would

Parallel and DiGributed Systems, Gal. 6, Go. 6, pp. 628-639, June
1997.

