414

4) Path P containing two nondiameter links is constructed as
follows: (I,) = (I, M) — (M, I = (M, K) > (K, M) = (K, L),
where M # I and M # K. The routing distance of P is Rp =
H{, M) + H(I, K) + H(M, L)+ 2. From (3), Rc = H(J, L) +
H(I, K) + 2. Since H(J, M) + H(M, L)> H(J, L), we have Rp = R¢.
Therefore; routing algorithm C provides the shortest path
that contains two nondiameter links. Note that if M satisfies
H({J, M) + HM, L) = H(J, L), path P has the same distance
as the path by routing algorithm C and can be used as its
alternate path.

5) Itis obvious from the definition of routing algorithm B*. 0

REFERENCES

[1] K. Ghose and KR. Desai, “Hierarchical Cubic Network,” IEEE Trans.
Parallel and Distributed Systems, vol. 6, no. 4, pp. 427-435, Apr. 1995.

[2] A. El-Amawy and S. Latifi, “Properties and Performance of
Folded Hypercubes,” IEEE Trans. Parallel and Distributed Systems,
vol. 2, no. 1, pp: 31-42, Jan. 1991.

[3] A.Esfahanian, L.M. Ni, and B.E. Sagan, “The Twisted n-Cube with
Application to Multiprocessing,” IEEE Trans. Computers, vol. 40, no. 1,
pp. 88-93, Jan. 1991.

[4] K. Hwang and J. Ghosh, “Hypernet: A Communication Efficient
Architecture for Constructing Massively Parallel Computers,”
IEEE Trans. Computers, vol. 36, no. 12, pp.1,450-1,466, Dec. 1987.

[6] JM. Kumar and L.M. Patnaik, “Extended Hypercube: A Hierar-
chical Interconnection Network of Hypercube,” IEEE Trans. Paral-
lel and Distributed Systems, vol. 3, no. 1, pp. 45-57, Jan. 1992.

[6] N.E Tzeng and S. Wei, “Enhanced Hypercube,” IEEE Trans. Com-
puters, vol. 40, no. 3, pp. 284294, Mar. 1991.

[7]1 S.G. Ziavras, “A Versatile Family of Reduced Hypercube Tnter-
connection Network,” IEEE Trans. Parallel and Disiributed Systems,
vol. 5, no. 11, pp: 1,210-1,220, Nov. 19%4.

[8] K. Efe, “A Variation on the Hypercube with Lower Diameter,”
“IEEE Trans. Computers, vol. 40, no. 11, pp. 1,312-1,316, Nov. 1991.

[9] D.R Duh, GH. Chen, and J. F. Fang, “Algorithms and Properties

of a New Two-Level Network with Folded Hypercubes as Basic

Modules,” IEEE Trans. Parallel and Distributed Systems, vol. 6, no. 7,

pp. 714-723, July 1995.

K. Ghose and KR. Desai, “The HCN: A Versatile Interconnection

Network Based on Cubes,” Proc. Supercomputing, pp. 426-435, 1989.

K. Ghose and K.R. Desai, “The Design and Evaluation of the Hi-

erarchical Cubic Network,” Proc. 19th Int'l Conf. Parallel Processing,

vol. I, pp. 355-362, 1990.

(103

[11]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, :VOL. 9, NO. 4, APRIL 1998

A Comment on “A Circular List-Based
Mutual Exclusion Scheme for Large
Shared-Memory Multiprocessors”

Ting-Lu Huang, Member, IEEE; and Chien-Hua Shann

Abstract—The circular list-based mutual exclusion algorithm proposed
by Fu and Tzeng [1] is subject to a race condition that leads fo a
deadlock under subtle situations. An execution sequence evidences
the race, and a modified version‘is provided. The performance of the
original algorithm remains unchanged.

Index Terms—Ciitical sections, race conditions, deadlocks, atomic
instructions.

<+

1 INTRODUCTION

THE Acquire_lock procedure and the: Relense: Jock procedure in an
article [1] of this transaction are subject to a race condition which
can lead to a disruption of the privilege ¢consignation process un-
der subtle situations. . :

The race condition is evidenced by tracing a few steps of a
computation. The original algorithm is reproduced. in Fig. 1,
with a label for each statement. Suppose there are two processes
that are competing for the root lock: the header and the successor.
Each arrives at the top level with the value of I~>next pointing
to itself. Table 1 details a sequence of events that ends with proc-
ess successor spinning forever, waiting for some other process to
write FALSE to its wait bit, but no one will. This results in a
deadlock, and no process may enter its critical dection any more.

The cause of the problem can be explained by focusing on a
process executing line A7 in any computation. Presumably, the-
action is meant to clear the bit for the later detection of a wake-up
signal from someone else leaving its critical section. What can go
wrong is that the signal may arrive earlier-than the action. of line
A7 itself and, then, the action unknowingly overwrites the
FALSE value which is meant to be detected as the signal. This is
a typical race and could happen under subtle situations, like
context switching of the successor process. Notice that the sarie
type of race could also happeri when a process executes line R8.

The problem is due to the lack of proper coordination between
the waiting process and the’ signaling process associated with a
watit bit. A modified version, which satisfies mutual exclusion and
deadlock freedom, is given in Fig. 2. This is achieved simply by
setting the wait bit TRUE soon enough in order to prevent the race
condition as in Table 1. The modifications include:

1) substituting X2 for A2, X7 for-A7, X8 for. A8, X13.for Al13,
and
2) swapping line R7 and line R8.

Notice that the privilege consignation procedure for the global
header without the swap_and_compare primitive also needs a modi-
fication to prevent the same problem. Specifically, those processes
that need to wait for a wake-up signal are subject to the same race
condition. A similar modification is suggested. .-

Y

o The authors are with the National Chmo Tung Umverszty, Department of
Computer Science and Information Engineering, 1001 Ta-Hsueh Road,
Hsin-Chu, Taiwan 30050, Republic of Ching.

E-mail: {tlhuang, chshan}@csie.nctu.edu.tw.

Manuscript received 26 Aug. 1997.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 105551,

1045-9219/98/$10.00 © 1998 IEEE

http://nctu.edu

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 9, NO. 4, APRIL 1998 415

A0 Acquire_Lock(Lock L, node *I) {

Al int level;

A2 I->wait = FALSE;

A3 I->next = my_proc_id;

A4 for (level =1; level <= root_level; level++) {
A5 I->next = fetch_and_store (L[level], I-
>next);

A6 if (I->next !=nil) {

A7 I->wait = TRUE;

A8 break;

A9

Al0 if (level < root_level)

A1l I->next = fetch_and_store (L[level],
nil);

Al12

Al3 while (I->wait);

Al4

RO Release_lock(lock L, node *I) {

R1 if (I->next ==nil) { ’

R2 while (1) {

R3 I->next = my_proc_id;

R4 swap_and_compare(L[level], I->next,
nil);

R5 if (I->next == my_proc_id)

Ré6 refurn;

R7 I->next->wait = FALSE;

R8 I->wait = TRUE;

R9 while (I->wait);

R10 }

R11 }

R12 I->next->wait = FALSE;

R13 }

A0 New_Acquire_Lock(Lock L, node *I) {

Al int level;

X2 I->wait = TRUE;

A3 I->next = my_proc_id;

A4 for (Jevel =1; level <= root_level; level++) {
A5 I->next = fetch_and_store (L[level], I-
>next);

A6 if (I->next !=nil) {

X7 while (I->wait);

X8 return; .

A9 }

Al0 if (level < root_level)

All I->next = fetch_and_store (L{level],
nil);

Al2.)

X13 /* empty line */

Al4 }

RO New_Release_lock(lock L, node *1) {

R1 if (I->next == nil) {

R2 while (1) {

R3 I->next = my_proc_id;

Réi swap_and_compare(L[level], I->next,
nil);

R5 if (I->next == my_proc_id)

R6 return;

R8* I->wait = TRUE; /* swap line R7 and
line R8*/

R7* I->next->wait = FALSE;

R9 while (I->wait);

R10 }

R11 }

R12 I->next->wait = FALSE;

R13 }

Fig. 1. Acguire and release procedures of the circular list-
based scheme given in [1].

Fig. 2. Modified procedures of the circular list-based scheme.

TABLE 1
A SEQUENCE OF EVENTS THAT LEADS TO A DEADLOCK

process actions process state afterwards description of the events
header A5 I->next=nil | am the global header.
level=root_level
L[root_levell=header
I->wait=FALSE ,
successor A5 I->next=header I should wake up header when | am done.
level=root_level
L{root_levell=successor
I->wait=FALSE
header AB I->next=nil The test result is negative.
header A10,A13,A14 | I->wait=FALSE 1 don’t have to spin. Enter critical section.
header R1 I->next=nil | am the global header.
header R2,R3 I->next=header Prepare data for swapping.
header R4 I->next=SUCCesSor Swap L[root_levell and I->next.
L[root_levell=header
header R5 I->next=8SUCCesSor The test result is negative.
header R7 I-s>next->wait=FALSE Since I~>next->wait points to the same
bit as successor’s I->wait does, the action
is meant to wake up process successor.
successor AB I->next=header The test result is positive.
successor A7 I->wait=TRUE | overwrote the FALSE value that process
header had written as a wake-up signal.
successor A8 I->wait=TRUE Will go to A13.)
successor A13 I->wait=TRUE | am block here since no process will write a
FALSE value to I->wait.

Since the modifications involve only rearranging the order of a
few statements, neither an extra computation step nor extra net-
work traffic is incurred by such changes. As a result, the perform-
ance of the original algorithm remains unchanged.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Council of
Taiwan under Grant NSC 86-2213-E-009-092. The authors would

like to thank Prof. Ten H. Lai and the anonymous referees for their
valuable comments and suggestions.

REFERENCES

[1] S.S.Fuand N.-F. Tzeng, “A Circular List-Based Mutual Exclusion
Scheme for Large Shared-Memory Multiprocessors,” IEEE Trans.
Parallel and Distributed Systems, vol. 6, no. 6, pp. 628-639, June
1997.

