
130 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 2, APRIL 1998

An Adaptive Multialphabet Arithmetic Coding for Video Compression
Meng-Han Hsieh and Che-Ho Wei

Abstract—In this paper, the hardware implementation issues
for an adaptive multialphabet arithmetic coder are discussed. A
simple weighted history model is proposed to encode the video
data. This model uses a weighted finite buffer to model the
cumulative density function of the arithmetic coder. The perfor-
mance of the weighted history model is evaluated together with
several other well-known models. To access, search, and update
the cumulative frequencies corresponding to model symbols in
real time, we present a low complexity multibase cumulative
occurrence array structure that can offer the probability infor-
mation for high-speed encoding and decoding. For the application
in video compression, the multialphabet arithmetic coding with
weighted history model can be a good choice as the variable length
coding of the video symbols.

Index Terms— Data compression, multialphabet arithmetic
coding, symbol probability models.

I. INTRODUCTION

FOR many years, the Huffman coding technique has been
regarded as an optimal entropy coding for data com-

pression provided that the symbol statistics are known in
advance [1]. However, the efficiency of the Huffman code is
limited to the integer representation of the assigned bits, and
when processing texts where one symbol has a probability of
occurrence approximating unity, the performance of Huffman
encoding becomes poor. Although the entropy associated with
such symbols is extremely low, each symbol must still be
encoded as an individual value. Arithmetic coding [2], [3]
removes this limitation by representing the symbol as an
interval of real numbers in the range 0–1. Initially, the range
of values for coding a text is the whole interval [0, 1). As
the message becomes longer, the interval needed to represent
it becomes smaller, and the number of bits needed to specify
this interval increases. Sequential symbols of message reduce
the size of the interval according to the symbol probabilities
set up by the model. The more probable symbols lower the
range by less than the less probable symbols and therefore
add fewer bits to the message. The performance of arithmetic
coding is optimal without the need for blocking of input data,
and it promotes a clear distinction between the model for
representing data and the encoding of information with respect
to that model.

In this paper, a simple adaptive model for a multialphabet
arithmetic coder and its hardware implementation are intro-

Manuscript received April 15, 1996; revised December 22, 1997. This paper
was recommended by Associate Editor W. Li. This work was supported by
the National Science Council of the Republic of China under Grant NSC84-
0414-E009-010.

The authors are with the Department of Electronic Engineering, National
Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C.

Publisher Item Identifier S 1051-8215(98)02649-4.

duced. Section II describes the constraints of the modeling
unit for arithmetic code, and a weighted history model is
presented to overcome the impairments which arose from
these constraints. The hardware implementation issues of
the arithmetic coder with adaptive model are investigated in
Section III.

II. M ODELS FOR ARITHMETIC CODING

The arithmetic coding implementation by Wittenet al. [2]
is used with a model providing a cumulative frequency array

. The requirements on the cumulative array are
that:

• ;
• an attempt is never made to encode a symbolfor which

;
• .

Provided that these conditions are satisfied, the values in this
array need not bear any relationship to the actual cumulative
symbol frequencies in message. Therefore, if the frequencies
are accurate, encodings will occupy less space.

The arithmetic coding technique can use any statistical
model to estimate the probability characteristic of the incoming
data, and the compression performance is dominated by the
model used. More sophisticated models such as the finite-
context Markov models [4] can achieve better compression,
but the time consumption for updating the model is enormous.
To reach the requirement for high-speed applications, not only
the arithmetic coder itself but also the model used to estimate
the statistics of the incoming data must be fast enough.

A simple adaptive model presented by Wittenet al. [2] uses
the instantaneous statistics of the symbols. At the beginning,
all frequency counts are the same. As an additional symbol
is coded, the distribution of the cumulative probabilities is
updated. After symbols with possible occurrences are
coded, the distribution is obtained from occurrences. For
a large and relatively small , the distribution is very close
to that of and therefore the performance of the arithmetic
coding approaches that of the entropy of the source.

A limited past history model has been introduced by Ghan-
bari [5] to improve the performance of the adaptive model
presented above. This model uses a limited number of past
symbols instead of the whole history to estimate the probability
distribution. A buffer is used to store only previous data
with . This buffer is constructed by a first-in–first-out
shift register, which stores the most recent symbols of the
incoming data. When a new symbol is coded it is stored in
the buffer, and therefore the ()th previous symbol is
shifted out from the buffer. The limited past history model
modifies the cumulative distribution to the local statistics of

1051–8215/98$10.00 1998 IEEE

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 2, APRIL 1998 131

the source, which can increase the efficiency of the arithmetic
coder especially in compressing the image data.

The limited past history model takes a relatively large
buffer to achieve its optimal compression performance. For
example, the optimum value for buffer size of limited past
history is about 2–4k when compressing an image file, hence
the hardware complexity will increase accordingly. The large
buffer size also has the adverse effect that the local statistics
are more difficult to pick up.

A weighted history model has been proposed [6] to over-
come these drawbacks of the limited past history model.
Suppose that there arepossible occurrences and the alphabet
used in arithmetic coding is defined as . The buffer
size used in the limited past history model is, and the
occurrence of in the buffer is represented by for all index

lies between 1 and. Adding all occurrence in the buffer,
we obtain the buffer size as ,
and the relative frequency of symbol as

. Therefore, the corresponding cumulative
frequency of symbol is .
The major disadvantages of the limited past history model
are caused by the requirement that the occurrence of each
symbol is at least one for arithmetic coding. The limited past
history model overestimates the probability of each symbol
by , and the total overhead probability is equal to

. When the buffer size is small, the overhead
probability is almost one. That is, the probability distribution
obtained by the limited past history buffer is nearly invariant
to occurrence in the history buffer, and the statistical property
of the source data is not reflected by this model. To enforce
the relations between the probability distribution and the
occurrence in the buffer, we can simply induce a weight
to the buffer. Therefore, the frequency of theth symbol is

. The total overhead
probability of the weighted history model is ,
which is much smaller than that of the limited past history
model, especially when the buffer size is small.

The performance of the arithmetic coding with weighted
history model for various buffer sizes and various weights is
investigated as shown in Fig. 1. Fig. 1(a) uses a picture from
the video sequence “missa” as the source data. The limited past
history model can be regarded as a special case of the weighted
history model with a unity weight. From this figure, it can be
seen that the weighted history model really outperforms the
limited past history model, especially when the buffer size
is small. Fig. 1(b) shows the performance of the weighted
history model with source data from the coded data of the
pyramid vector quantizer (VQ) [7]. This diagram shows that
the weighted history model uses less buffer and has a better
compression performance than that of the limited past history
model.

From these two figures we see that if the weight is too large,
the performance of the weighted history model will degrade.
The reason is that the large weight will reduce the probability
of the symbols that are not in current buffer, and if the next
symbol is not in the history buffer, a long codeword will
be assigned to represent this symbol. From our experiments,
an appropriate weight for the weighted history model is in

the range from 16–128. It should be noted that the limited
past history model with infinite buffer size is basically a low-
complexity adaptive model of [2]. In [16], good initial models
and infinite buffer size are used as the probability model. The
so-called syntax-based arithmetic coding (SAC) incorporates
the switching of probability models for corresponding data.
If the syntax of the data source is known, the local statistics
will be exploited more. However,a priori knowledge of the
data source has to be given, and thus restrict the applica-
ble range of the syntax-based model. The adaptivity of the
adaptive model shown in [2] can be further improved by
decreasing the cumulative frequency limit. For a multialphabet
arithmetic coder, the occurrence of each alphabet must be at
least one. Consequently, the adaptive model with a lower
cumulative frequency limit has large overhead probability
when the alphabet size is large. A similar solution is to
weight the occurrences, and the overhead probability will
be reduced. However, decreasing the cumulative frequency
limit will make the updating procedure of the cumulative
frequency count more often, and thus decrease the coding
speed.

To evaluate the performance of the weighted history model,
some adaptive models are compared. The experimental results
are shown in Fig. 2. There are five data sources used in the
comparison of the compression ratio. The first one is a 256
gray-level image file from the video sequence called “Miss
America” (“missa”) and the size of this image is 360288.
The other sources are output data from vector quantization
methods [7] containing the interframe and intraframe compo-
nents. Two methods of VQ, the classified VQ and pyramid
VQ, are used. The input data of these VQ methods are video
sequences “Miss America” and “sales man.” The Lempel–Ziv
model shown in Fig. 2 is the LZC algorithm, which is used
in the UNIX compressprogram [4]. This algorithm uses a
dictionary technique rather than a statistical model to compress
data. The adaptive model in Fig. 2 is written by Wittenet al.
[2]. The dependency model is written by Abrahamson [8].
This model reflects the accurate probability of each symbol’s
occurrence following the previously encoded source character.
The -Coder has been implemented by Mitchell [9]. The
adapter of the -Coder is a finite-state machine multiplexed
to maintain a separate state record for each context. Symbol
probabilities are updated only when renormalization occurs.
In the weighted history model, weights and buffer sizes are
carefully adjusted such that the denominator of the cumulative
frequency is a power of two. Therefore, the division operations
used in calculating the frequency can be represented by shift
operations. Various weights, buffer sizes, and symbols used in
arithmetic coding are evaluated.

The performances of various probability models shown in
Fig. 2 are evaluated by the proportion remaining [4], which
is calculated by dividing the output file size by the original
file size. From this table, we can see that the weighted history
model with weight 16 and buffer size 112 performs very
well in all kinds of test sources, especially when coding the
data after pyramid VQ.

From the experiments, we see that the performance of the
arithmetic coding with the weighted history model is quite

132 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 2, APRIL 1998

(a)

(b)

Fig. 1. Performance of arithmetic coding with weighted history model. Data source: (a) an image from “missa” and (b) coded data from pyramid VQ.

Fig. 2. Performance of probability models (proportion remaining).

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 2, APRIL 1998 133

good. Since the structure of the weighted history model is very
simple, it is suitable for compressing image data in real time.

III. H ARDWARE IMPLEMENTATION

The most well-known hardware implementation of arith-
metic coding is the -Coder [10] reported by the IBM
Research Center. The-Coder is an optimal binary arithmetic
coder which uses a finite-state table to model the incoming data
and performs well when the binary sources are used as input.
A multiplication-free multialphabet arithmetic code devised
by Rissanen and Mohiuddin [11] requires no multiplication or
division, thus admitting a simple and fast hardware implemen-
tation. This code also accommodates the corresponding occur-
rence counts as well as the symbol probabilities. The code
efficiency is typically in the range of 97–99%. Several recent
publications also discuss the multiplication-free approximation
of arithmetic coding and make some improvements [12]–[15].
A nonadaptive 256-symbol arithmetic encoder implemented
by field programmable gate array (FPGA) technology has been
presented in [14]. In this paper, a hardware structure for an
arithmetic code based on [11] is introduced for its simpler
decoder structure. The structure of an arithmetic codec can be
divided in three parts: encoder, decoder, and modeling unit.

A. Encoder

The main parts of the arithmetic encoder can be divided into
registers, a dynamic lookup table, adders, and the renormalizer.
The architecture of the encoder is shown in Fig. 3. Detail
operations of each part are described as follows.

• Lookup table
Because of the approximation used in the encoder, a
lookup table between input data and the modeling unit is
used to keep the symbol with the largest count as the last
model symbol. In general cases, the adaptive models are
used in the arithmetic encoder and, therefore, the lookup
table must be dynamic to coincide with the modeling unit.

• Registers and adders
The range register and the code register are used
to perform the encoding process. We updateand
simultaneously to increase the speed. In implementation
we use a 16-b register for and a 64-b register for .
The higher-order 48 b of act as a 48-b guard register to
prevent the carry-propagation problem. It can reduce the
probability of carry-over problem and, therefore, speed
up the encoding operation. The guard register can be
implemented as a counter whose input is the carry of
the adder connected to. By this variation, we use a 16-
b adder instead of a 64-b adder to update. The bit-stuff
scheme used in the -Coder can be applied to if the
carry propagates over the guard register.

• Renormalizer
The renormalizer shown in Fig. 3 is used to bring
in the range [0.75, 1.5). The hardware structure of the
renormalizer is shown in Fig. 4. To renormalize, we
first find the position of the first “1” of from most
significant bit (MSB) to least significant bit (LSB), and
shift left such that the MSB is the first “1” of the

Fig. 3. Hardware architecture of multialphabet arithmetic encoder.

original . That is, we first renormalize into the
range [1, 2). The notation is used to represent the
renormalized . After step 1, we adjust according
to the first bit below MSB. If it is 1, we must shift
right by one bit to bring in the range [0.75, 1.5). If
this bit is zero, that means is already in the range
[0.75, 1.5) and no further shift is needed. A cellular
approach of bus arbitration logic shown in Fig. 5 is used
to perform the operation of step 1 because of regularity
and modularity. The basic cell of bus arbitration logic
shown in Fig. 6 is designed with a pass transistor logic
circuit to achieve high speed. The shifter part of this
renormalizer is implemented by two barrel shifters, one
is for and the other is for . Each input is passed
through only one NMOS to obtain the shifted result. After
renormalization, the bits shifted out must be stored in
the buffer. An extra programmable logic array (PLA) is
needed to convert the control signal into shift count so
that we can do buffer control.

B. Decoder

Fig. 7 shows the architecture of the decoder. The coded
stream is stored in buffer and is sent to the renormalizer.
The renormalizer of decoder is the same as that in encoder,
but we filled the bits to be shifted in with the incoming
code stream rather than zeros. No guard register is needed in
decoder, thus both and are stored in 16-b registers. The
update rules for and in decoder are the same as those in
encoder. From the decoding algorithm described in [11], we
need to find the largest symbol such that ,
and decode the symbol as the so-found largest symbol. To
implement this procedure in hardware, one comparator and
one shifter are needed for each. To reduce the hardware
complexity, we modify the decoding algorithm to find the
largest symbol such that , and decode the
symbol as the so-found largest symbol. That means we only
need a comparator for each and one shifter is used to shift

before comparison is made. The notation is used to

134 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 2, APRIL 1998

Fig. 4. Hardware architecture of renormalizer.

Fig. 5. Cellular approach for bus arbitration logic.

represent . The comparators and cumulative probability
registers are combined together to reduce the interconnection
area. To obtain the model symbol, a PLA is used to convert
the output of comparators into a model symbol. The structure
of the modeling unit without update structure is shown in
Fig. 8. The update rule of the modeling unit in decoder must
be the same as that in encoder.

C. Modeling Unit

The modeling unit of an arithmetic coder provides the
statistical information to the coder. For encoding operation,
the modeling unit acts as a lookup table and provides the prob-
ability and the cumulative probability of the current incoming
symbol. For decoding operation, the modeling unit searches
the symbol that has the largest cumulative frequency among all
the symbols with cumulative frequencies smaller than current
code point. The compression performance is highly dependent
on the modeling unit, and the modeling unit is usually adaptive
to gain better compression ratio. Most adaptive models devised
are suitable for software implementations, but they usually are
difficult to realize in hardware form. The more skillful methods
such as the Markov methods or the Lempel–Ziv algorithms
take more memory and increase the hardware complexity.

Fig. 6. Circuit of basic cell of bus arbitration logic.

The weighted history model introduced in this paper uses a
small history buffer to model the cumulative density function
of the arithmetic coder and smaller counters to record the
cumulative frequencies. Each occurrence in the history buffer
is multiplied by a weight, thus all bits below the weight are not
changed if the weight is an integer power of two. An example
is shown in Fig. 9. The maximal cumulative frequency count
is set to 512, and 256 symbols are used in the arithmetic
coder. For a limited past history model or adaptive model
of [2], a 9-b counter is needed for each symbol, whereas
a weighted history model with weight 16 only needs a
5-b counter for each symbol. The least significant four bits
of the cumulative frequency counter are not changed while
updating the model because the binary representation of the
weight 16 is 10 000. A simple block diagram of the weighted
history model is shown in Fig. 10. A shift register is used
to store most recent symbols. Initially, the history buffer
is filled with symbols uniformly and the cumulative frequency

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 2, APRIL 1998 135

Fig. 7. Hardware architecture of multialphabet arithmetic decoder.

Fig. 8. Hardware structure of modeling unit.

counters are initialized according to the contents of the history
buffer and the requirement of minimal occurrence. While a
new symbol is encoded, this symbol is stored in the buffer
and the th previous symbol is shifted out. Only the
first and the last symbols are used to update the cumulative
frequency. The combinational logic gates in Fig. 10 first
compare these two symbols. If thecurrent symbol is larger
than theprevioussymbol, all cumulative frequency counters
corresponding toprevioussymbol toward current symbol
are counted up by one. This operation is equivalent to in-
creasing the occurrence ofcurrent symbolby a weight, and
decreasing the occurrence of theprevioussymbolby a weight.
While thepresentsymbolis smaller than theprevioussymbol,

all cumulative frequency counters ofcurrent_symboltoward
previoussymbol are counted down by one. Thus, the cu-
mulative frequency counter must be an up-and-down counter,
and a parallel counter is recommended to increase the speed.

The complexity of modeling unit shown in Fig. 10 is
acceptable while the alphabet size is several tens, but if we
enlarge the alphabet size to 256, which is commonly used in
digital storage and transmission systems, the control circuit
becomes too complex for practical realization. As discussed
in previous section, the compression performance is highly
dependent on the alphabet size. Reducing the size of alphabet
will degrade the compression performance.

The two main problems in implementing the modeling
unit with large alphabet are the updating operation and the
searching operation. The problem of the updating operation
arises from the fact that the arithmetic coder uses the cu-
mulative frequency of the symbol to generate its code point.
If the occurrence of one symbol is changed, the cumulative
frequency counts of symbols with alphabet order less than
that symbol must be changed accordingly. Then all cumulative
frequency registers must be accessible concurrently if we want
to use parallel structure for implementation. An alternative
structure is the serial structure, which updates a cumulative
frequency register of one symbol at a time. The speed of the
serial structure is much slower than the parallel one and has a
drawback that the input rate is not constant. The decoding
operation for multialphabet arithmetic coding involves the
searching operation over the cumulative frequency registers.
The searching operation has the same kind of problems that
the updating operation has: too complex if parallel structure
is used and too slow if serial structure is used. Therefore, a
multibase cumulative frequency array is proposed in this paper
to solve these two problems.

Our implementation focuses on the adaptive 256-symbol
arithmetic coding. First, the 256 symbols are divided into 16
banks. Each bank has 16 registers to store the cumulative
frequency information. The top register of each bank, called
the “base” of the bank, stores the corresponding cumulative
occurrence. The remaining 15 registers store the extent of the
difference between the corresponding cumulative occurrences
and the base, as shown in Fig. 11. The reason for storing
the difference extent instead of the true value is shown in
the updating procedure. Because the alphabet size is 256, we
use 8 b to represent each symbol. When the occurrence of a
symbol is changed, the four MSB’s of this symbol are used
to determine which bank this symbol belongs to, and the four
LSB’s are used to obtain the location of this symbol in the
bank. In updating the cumulative occurrence array, we can
update the bases of banks and the contents of the bank that the
symbol belongs to simultaneously. Instead of the 8-input–256-
output PLA used in the direct implementation of the modeling
unit, two 4-input–16-output PLA’s are used to implement the
updating circuit of the multibase cumulative frequency array.

To see how the multibase cumulative occurrence array is
applied to the model, we take two examples: the adaptive
model used in [2] and the proposed weighted history model.
The adaptive model described in [2] increases a symbol’s
occurrence by one when a symbol is coded. When the total

136 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 2, APRIL 1998

Fig. 9. Relation between the cumulative frequency counter and the weight.

Fig. 10. Block diagram of weighted history model.

Fig. 11. Hardware structure of multibase cumulative frequency array.

occurrence equals the cumulative frequency limit, the occur-
rences of all symbols are halved. To implement the update
circuit for this adaptive model, we need 32 counters and two
PLA’s. The two PLA’s are used to determine which banks and
which contents of the bank should be updated. Sixteen counters
are used as the bases of banks, and the other 16 counters are
used for the updating of the bank that the current symbol
belongs to. To update the bank, we download the contents
of the bank into counters and update these counters. The
updated values are saved into the bank hereafter. Therefore, the

contents of the bank can be implemented as RAM rather than
counters. When the total occurrence achieves the cumulative
frequency limit, the bases and the contents of each bank are
halved. This action can be done serially because there are only
16 banks to be updated. If the maximal occurrence is as large
as several tens of thousands, the overhead time is negligible.
The cumulative frequency limit is dependent on the bit length
of bases and the contents of banks. The performance of this
model also depends on the maximal occurrence used [2]. A
wordlength of 14 b is suitable for the cumulative frequency

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 8, NO. 2, APRIL 1998 137

array. The performance of this model is shown in Fig. 2. The
weighted history model avoids the halving problem in the
adaptive model. However, because two symbols are used to
update the cumulative frequency array, the updating operation
of one symbol described above should be done twice. The
word-length of the cumulative frequency array is 7 b if the
weighted history model with history buffer length 112 and
weight 16 is used. Another weighted history model shown
in Fig. 2 for performance evaluation uses a history buffer of
length 24 and weight of 32, and a 5-b memory is sufficient for
each cumulative occurrence. The fixed part of the cumulative
frequency of the weighted history model can be implemented
by the LSB’s of the address lines of symbols without extra
hardware. We can see that although the proposed weighted
history model needs one more cycle to update the model, the
memory required is less than the adaptive model in [2].

In the encoding process, the modeling unit provides the
probability and the cumulative probability of the current
encoded symbol to the encoder. Because of the multibase
cumulative occurrence array used in our implementation, the
base of the bank should be added to the content of the
bank to obtain the actual cumulative occurrence. Therefore,
an additional adder is needed for accessing the cumulative
occurrence of the modeling unit. In the decoding process, the
decoder offers the current code point to the modeling unit,
and the modeling unit scans the cumulative occurrence array
to find the suitable symbol. Our structure has the advantage
that there is no need to search over all the symbols in the
array. Instead, we first find out the bank that the code point
lies in and then search over this bank to find the corresponding
symbol. The searching process for banks and that inside the
bank can be parallel because there are only 16 items to be
searched. The hardware complexity is reduced significantly
since only 32, instead of 256, comparators are needed for the
parallel searching structure. Thus, the multibase cumulative
occurrence array makes the hardware implementation of the
adaptive 256-symbol arithmetic decoder feasible. Note that
the complexity of the modeling unit is highly dependent
on the wordlength of the cumulative occurrence array. All
the counters, comparators, memories, and adders have the
same wordlength in the modeling unit. Thus, comparing the
adaptive model in [2] that uses 14-b word-length, the proposed
weighted history model with 7- or 5-b wordlength is easier to
implement. The hardware complexity of our weighted history
model is about 1/2 or 1/3 of that using the adaptive model
in [2].

IV. CONCLUSION

A weighted history model proposed in this paper can
solve the disadvantages of the limited past history model for
arithmetic codes. The weighted history model can provide
better performance with a smaller history buffer. Experimental
results show that the arithmetic coding with weighted history
model is good for image coding. A simple hardware block
diagram for the weighted history model is also presented in this
paper. The memory size is small and the hardware structure of
this model can be easily implemented when the alphabet size
is not too large. While the alphabet size is as large as several
hundreds, a multibase cumulative occurrence array is proposed
to decrease the hardware complexity of the updating and de-
coding circuits. The combination of the multibase cumulative
occurrence array, modeling unit, encoder, and decoder can be
easily implemented as VLSI for video compression.

REFERENCES

[1] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,”Proc. IRE,vol. 40, pp. 1098–1101, Sept. 1952.

[2] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,”Commun. ACM,vol. 30, no. 6, pp. 520–540, June 1987.

[3] G. G. Langdon, “An introduction to arithmetic coding,”IBM J. Res.
Develop.,vol. 28, no. 2, pp. 135–149, Mar. 1984.

[4] R. N. Williams, Adaptive Data Compression.Norwell, MA: Kluwer,
1991.

[5] M. Ghanbari, “Arithmetic coding with limited past history,”Electron.
Lett., vol. 27, no. 13, pp. 1157–1159, June 1991.

[6] M.-H. Hsieh and C.-H. Wei, “A multialphabet arithmetic coding with
weighted history model,” inIEEE Int. Symp. Information Theory,
Whistler, B.C., Canada, Sept. 17–22, 1995, p. 393.

[7] A. Gersho and R. M. Gray,Vector Quantization and Signal Compression.
Norwell, MA: Kluwer, 1992.

[8] D. M. Abrahamson, “An adaptive dependency source model for data
compression,”Commun. ACM,vol. 32, no. 1, pp. 77–83, Jan. 1989.

[9] J. L. Mitchell and W. B. Pennebaker, “Software implementations of the
Q-Coder,”IBM J. Res. Develop.,vol. 32, no. 6, pp. 753–774, Nov. 1988.

[10] R. B. Arps, T. K. Truong, D. J. Lu, R. C. Pasco, and T. D. Friedman,
“A multi-purpose VLSI chip for adaptive data compression of bilevel
images,”IBM J. Res. Develop.,vol. 32, no. 6, pp. 775–794, Nov. 1988.

[11] J. Rissanen and K. M. Mohiuddin, “A multiplication-free multialphabet
arithmetic code,”IEEE Trans. Commun.,vol. 37, pp. 93–98, Feb. 1989.

[12] D. Chevion, E. D. Karnin, and E. Walach, “High efficiency, mul-
tiplication free approximation of arithmetic coding,” inProc. Data
Compression Conf.,1991, pp. 43–52.

[13] G. Feygin, P. G. Gulak, and P. Chow, “Minimizing error and VLSI com-
plexity in the multiplication free approximation of arithmetic coding,”
in Proc. Data Compression Conf.,1993, pp. 118–127.

[14] H. Printz and P. Stubley, “Multialphabet arithmetic coding at 16
MBytes/sec,” inProc. Data Compression Conf.,1993, pp. 128–137.

[15] S. M. Lei, “Efficient multiplication-free arithmetic codes,”IEEE Trans.
Commun.,vol. 43, pp. 2950–2958, Dec. 1995.

[16] X. Ran and C. Y. Choo, “Syntax-based arithmetic video coding for very
low bitrate visual telephony,” inProc. IEEE Int. Conf. Image Processing,
1995, vol. 2, pp. 410–413.

