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An Adaptive Multialphabet Arithmetic Coding for Video Compression
Meng-Han Hsieh and Che-Ho Wei

Abstract—In this paper, the hardware implementation issues duced. Section Il describes the constraints of the modeling
for an adaptive multialphabet arithmetic coder are discussed. A ynit for arithmetic code, and a weighted history model is
simple weighted history model is proposed to encode the video presented to overcome the impairments which arose from

data. This model uses a weighted finite buffer to model the th traints. The hard imol tati ) f
cumulative density function of the arithmetic coder. The perfor- ese constraints. € hardware implementation Issues o

mance of the weighted history model is evaluated together with the arithmetic coder with adaptive model are investigated in
several other well-known models. To access, search, and updateSection lll.

the cumulative frequencies corresponding to model symbols in

real time, we present a low complexity multibase cumulative

occurrence array structure that can offer the probability infor- II. MODELS FORARITHMETIC CODING

mation for high-speed encoding and decoding. For the application . . N . .

in video compression, the multialphabet arithmetic coding with | he arithmetic coding implementation by Witten al. [2]
weighted history model can be a good choice as the variable lengthis used with a model providing a cumulative frequency array

coding of the video symbols. cum_freq[]. The requirements on the cumulative array are
Index Terms— Data compression, multialphabet arithmetic that:
coding, symbol probability models. o cum_freqli — 1] > cum_freqli];
* an attempt is never made to encode a symljot which
cum_freqli — 1] = cum_freq[i];
|. INTRODUCTION .

cum_freql0] £ Max_frequency.

OR many years, the Huffman coding technique has beenproyided that these conditions are satisfied, the values in this
regarded as an optimal entropy coding for data COMatray need not bear any relationship to the actual cumulative
pression provided that the symbol statistics are known &mpol frequencies in message. Therefore, if the frequencies
advance [1]. However, the efficiency of the Huffman code igre accurate, encodings will occupy less space.
limited to the ?nteger representation of the assigned bit;,_ andrpe arithmetic coding technique can use any statistical
when processing texts where one symbol has a probability fhgel to estimate the probability characteristic of the incoming
occurrence approximating unity, the performance of Huffmajhta and the compression performance is dominated by the
encoding becomes poor. Although the entropy associated Wifydel used. More sophisticated models such as the finite-
such symbols is extremely low, each symbol must still R&ntext Markov models [4] can achieve better compression,
encoded as an individual value. Arithmetic coding [2], [3pyt the time consumption for updating the model is enormous.
removes this limitation by representing the symbol as ap reach the requirement for high-speed applications, not only
interval of real numbers in the range 0-1. Initially, the rang@e arithmetic coder itself but also the model used to estimate
of values for coding a text is the whole interval [0, 1). Asne statistics of the incoming data must be fast enough.
the message becomes longer, the interval needed to represeftsimple adaptive model presented by Witttral. [2] uses
it becomes smaller, and the number of bits needed to spegii¢ instantaneous statistics of the symbols. At the beginning,
this interval increases. Sequential symbols of message redgg&requency counts are the same. As an additional symbol
the size of the interval according to the symbol probabilitigg coded, the distribution of the cumulative probabilities is
set up by the model. The more probable symbols lower thggated. After/V symbols withp possible occurrences are
range by less than the less probable symbols and therefgggieq, the distribution is obtained fraivi+p occurrences. For
add fewer bits to the message. The performance of arithmeéi%rge N and relatively smalp, the distribution is very close
coding is optimal without the need for blocking of input datag that of ;7 and therefore the performance of the arithmetic
and it promotes a clear distinction between the model f@bding approaches that of the entropy of the source.
representing data and the encoding of information with respecta |imited past history model has been introduced by Ghan-
to that model. bari [5] to improve the performance of the adaptive model
In this paper, a simple adaptive model for a multialphabgtesented above. This model uses a limited number of past
arithmetic coder and its hardware implementation are intrgympols instead of the whole history to estimate the probability
distribution. A buffer is used to store onl§/ previous data
. . . . __with M < N. This buffer is constructed by a first-in—first-out
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the source, which can increase the efficiency of the arithmetiee range from 16-128. It should be noted that the limited
coder especially in compressing the image data. past history model with infinite buffer size is basically a low-
The limited past history model takes a relatively largeomplexity adaptive model of [2]. In [16], good initial models
buffer to achieve its optimal compression performance. Fand infinite buffer size are used as the probability model. The
example, the optimum value for buffer size of limited pasio-called syntax-based arithmetic coding (SAC) incorporates
history is about 2—4k when compressing an image file, henitee switching of probability models for corresponding data.
the hardware complexity will increase accordingly. The largé the syntax of the data source is known, the local statistics
buffer size also has the adverse effect that the local statistiedl be exploited more. However priori knowledge of the
are more difficult to pick up. data source has to be given, and thus restrict the applica-
A weighted history model has been proposed [6] to oveble range of the syntax-based model. The adaptivity of the
come these drawbacks of the limited past history modeldaptive model shown in [2] can be further improved by
Suppose that there apepossible occurrences and the alphabekecreasing the cumulative frequency limit. For a multialphabet
used in arithmetic coding is defined &s, - - -, S,. The buffer arithmetic coder, the occurrence of each alphabet must be at
size used in the limited past history model ¢, and the least one. Consequently, the adaptive model with a lower
occurrence of5; in the buffer is represented lty; for allindex cumulative frequency limit has large overhead probability
¢ lies between 1 ang. Adding all occurrence in the buffer, when the alphabet size is large. A similar solution is to
we obtain the buffer size &%/ = O; + O+ O3 +---+ O,, weight the occurrences, and the overhead probability will
and the relative frequency of symbd; as freq(S;) = be reduced. However, decreasing the cumulative frequency
(O; +1)/(p + M). Therefore, the corresponding cumulativéimit will make the updating procedure of the cumulative
frequency of symbob; is cum_freg(S:) = > ;_, freq(Skx). frequency count more often, and thus decrease the coding
The major disadvantages of the limited past history modgpeed.
are caused by the requirement that the occurrence of eachio evaluate the performance of the weighted history model,
symbol is at least one for arithmetic coding. The limited pasbme adaptive models are compared. The experimental results
history model overestimates the probability of each symbale shown in Fig. 2. There are five data sources used in the
by 1/(p + M), and the total overhead probability is equal teomparison of the compression ratio. The first one is a 256
p/(p + M). When the buffer sizél{ is small, the overhead gray-level image file from the video sequence called “Miss
probability is almost one. That is, the probability distributioAmerica” (“missa”) and the size of this image is 360288.
obtained by the limited past history buffer is nearly invarianthe other sources are output data from vector quantization
to occurrence in the history buffer, and the statistical propentyethods [7] containing the interframe and intraframe compo-
of the source data is not reflected by this model. To enforoents. Two methods of VQ, the classified VQ and pyramid
the relations between the probability distribution and th€Q, are used. The input data of these VQ methods are video
occurrence in the buffer, we can simply induce a weiglsequences “Miss America” and “sales man.” The Lempel-Ziv
to the buffer. Therefore, the frequency of tith symbol is model shown in Fig. 2 is the LZC algorithm, which is used
Jfreq(S;) = (O, - W+ 1)/(p+ M - W). The total overhead in the UNIX compressprogram [4]. This algorithm uses a
probability of the weighted history model j&(p + M - W), dictionary technique rather than a statistical model to compress
which is much smaller than that of the limited past historglata. The adaptive model in Fig. 2 is written by Wittehal.
model, especially when the buffer size is small. [2]. The dependency model is written by Abrahamson [8].
The performance of the arithmetic coding with weightedhis model reflects the accurate probability of each symbol's
history model for various buffer sizes and various weights @ccurrence following the previously encoded source character.
investigated as shown in Fig. 1. Fig. 1(a) uses a picture froiine ()-Coder has been implemented by Mitchell [9]. The
the video sequence “missa” as the source data. The limited pagapter of thel-Coder is a finite-state machine multiplexed
history model can be regarded as a special case of the weightednaintain a separate state record for each context. Symbol
history model with a unity weight. From this figure, it can berobabilities are updated only when renormalization occurs.
seen that the weighted history model really outperforms tie the weighted history model, weights and buffer sizes are
limited past history model, especially when the buffer sizearefully adjusted such that the denominator of the cumulative
is small. Fig. 1(b) shows the performance of the weightdoequency is a power of two. Therefore, the division operations
history model with source data from the coded data of thesed in calculating the frequency can be represented by shift
pyramid vector quantizer (VQ) [7]. This diagram shows thaiperations. Various weights, buffer sizes, and symbols used in
the weighted history model uses less buffer and has a betiethmetic coding are evaluated.
compression performance than that of the limited past historyThe performances of various probability models shown in
model. Fig. 2 are evaluated by the proportion remaining [4], which
From these two figures we see that if the weight is too large, calculated by dividing the output file size by the original
the performance of the weighted history model will degradéle size. From this table, we can see that the weighted history
The reason is that the large weight will reduce the probabilitpodel with weight= 16 and buffer size- 112 performs very
of the symbols that are not in current buffer, and if the nextell in all kinds of test sources, especially when coding the
symbol is not in the history buffer, a long codeword willdata after pyramid VQ.
be assigned to represent this symbol. From our experimentsi-rom the experiments, we see that the performance of the
an appropriate weight for the weighted history model is iarithmetic coding with the weighted history model is quite
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Fig. 1. Performance of arithmetic coding with weighted history model. Data source: (a) an image from “missa” and (b) coded data from pyramid VQ.

Weighted history model
Models Size Lempel-Ziv Adaptive Dependency £ Y
Q-Coder 256 symbols 16 symbois
(bytes) model model model
Data sources M=112,W=16 M=24W=32 M=[27W=16 M=30,W=8
Image file 103,026  0.6486 0.6702 0.5429 1.0719 0.7109 0.6683 0.8434 0.7889
Classified VQ(1) | 23,107 0.8924 0.7084 0.8361 1.0486 0.7619 0.8652 0.9108 0.9676
Classified VQ(2) | 35,256 0.7876 0.6813 0.7979 0.9365 0.7263 0.7530 0.9396 1.0656
Pyramid VQ(1) 51,513 06188 0.6591 0.5786 0.8913 0.4986 0.5293 0.6768 0.6852
Pyramid VQ(2) 51,513 0.6121 0.7126 0.5524 0.9409 0.5241 0.5346 07115 0.7018

Fig. 2. Performance of probability models (proportion remaining).
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good. Since the structure of the weighted history model is very
simple, it is suitable for compressing image data in real time.

The most well-known hardware implementation of arith-
metic coding is the@-Coder [10] reported by the IBM
Research Center. TRg-Coder is an optimal binary arithmetic
coder which uses a finite-state table to model the incoming data
and performs well when the binary sources are used as input.
A multiplication-free multialphabet arithmetic code devised
by Rissanen and Mohiuddin [11] requires no multiplication or
division, thus admitting a simple and fast hardware implemen-
tation. This code also accommodates the corresponding occur-
rence counts as well as the symbol probabilities. The code
efficiency is typically in the range of 97-99%. Several recent
publications also discuss the multiplication-free approximation
of arithmetic coding and make some improvements [12]-[15],
A nonadaptive 256-symbol arithmetic encoder |mplemente<§]
by field programmable gate array (FPGA) technology has been
presented in [14]. In this paper, a hardware structure for an
arithmetic code based on [11] is introduced for its simpler
decoder structure. The structure of an arithmetic codec can be
divided in three parts: encoder, decoder, and modeling unit.

HARDWARE |IMPLEMENTATION

A. Encoder

The main parts of the arithmetic encoder can be divided into
registers, a dynamic lookup table, adders, and the renormalizer.
The architecture of the encoder is shown in Fig. 3. Detalil
operations of each part are described as follows.

¢ Lookup table
Because of the approximation used in the encoder, a
lookup table between input data and the modeling unit is
used to keep the symbol with the largest count as the last
model symbol. In general cases, the adaptive models are
used in the arithmetic encoder and, therefore, the lookup
table must be dynamic to coincide with the modeling unit.

* Registers and adders
The range registerl and the code registet’ are used
to perform the encoding process. We updateand C'
simultaneously to increase the speed. In implementati
we use a 16-b register fod and a 64-b register fof’.

133

input data stream

|

[ Lookup Table J
|

[ Modeling Unit |

100 y (i)
Shifter k- omi<ar
- i=m?
_ -1 RENORMALIZER |
shift count

BUFFER output bit stream

3. Hardware architecture of multialphabet arithmetic encoder.

original A. That is, we first renormalized into the
range [1, 2). The notationt’ is used to represent the
renormalizedA. After step 1, we adjustd’ according

to the first bit below MSB. If it is 1, we must shiftl
right by one bit to bringA4 in the range [0.75, 1.5). If
this bit is zero, that meand’ is already in the range
[0.75, 1.5) and no further shift is needed. A cellular
approach of bus arbitration logic shown in Fig. 5 is used
to perform the operation of step 1 because of regularity
and modularity. The basic cell of bus arbitration logic
shown in Fig. 6 is designed with a pass transistor logic
circuit to achieve high speed. The shifter part of this
renormalizer is implemented by two barrel shifters, one
is for A and the other is folC. Each input is passed
through only one NMOS to obtain the shifted result. After
renormalization, the bits shifted out must be stored in
the buffer. An extra programmable logic array (PLA) is
needed to convert the control signal into shift count so
that we can do buffer control.

B, Decoder
Fig. 7 shows the architecture of the decoder. The coded

The higher-order 48 b of’ act as a 48-b guard register tostream is stored in buffer and is sent to the renormalizer.
prevent the carry-propagation problem. It can reduce tfidne renormalizer of decoder is the same as that in encoder,
probability of carry-over problem and, therefore, speedout we filled the bits to be shifted i’ with the incoming

up the encoding operation. The guard register can bede stream rather than zeros. No guard register is needed in
implemented as a counter whose input is the carry décoder, thus bothd and C are stored in 16-b registers. The
the adder connected @. By this variation, we use a 16- update rules ford and C' in decoder are the same as those in

b adder instead of a 64-b adder to updateThe bit-stuff
scheme used in th@-Coder can be applied t¢ if the
carry propagates over the guard register.

* Renormalizer
The renormalizer shown in Fig. 3 is used to bring

encoder. From the decoding algorithm described in [11], we
need to find the largest symbglsuch that2=?Q(j) < C,

and decode the symbol as the so-found largest symbbtd
implement this procedure in hardware, one comparator and
one shifter are needed for each To reduce the hardware

in the range [0.75, 1.5). The hardware structure of themplexity, we modify the decoding algorithm to find the

renormalizer is shown in Fig. 4. To renormalize we
first find the position of the first “1” ofA from most

largest symbolj such thatQ(j) < 2° . C, and decode the
symbol as the so-found largest symbolhat means we only

significant bit (MSB) to least significant bit (LSB), andneed a comparator for each and one shifter is used to shift
shift A left such that the MSB is the first “1” of the C before comparison is made. The notatiGfq.; is used to
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Fig. 5. Cellular approach for bus arbitration logic.

represenk” . C. The comparators and cumulative probability v After every 4th cascaded cel
registers are combined together to reduce the interconnection : 4

area. To obtain the model symhbgla PLA is used to convert

the output of comparators into a model symbol. The structugg. 6. Circuit of basic cell of bus arbitration logic.

of the modeling unit without update structure is shown in

Fig. 8. The update rule of the modeling unit in decoder must h iahted hi i i thi
be the same as that in encoder. The weighted history model introduced in this paper uses a

small history buffer to model the cumulative density function

of the arithmetic coder and smaller counters to record the
C. Modeling Unit cumulative frequencies. Each occurrence in the history buffer

The modeling unit of an arithmetic coder provides this multiplied by a weight, thus all bits below the weight are not

statistical information to the coder. For encoding operatiofhanged if the weight is an integer power of two. An example
the modeling unit acts as a lookup table and provides the prd®-shown in Fig. 9. The maximal cumulative frequency count
ability and the cumulative probability of the current incominds set to 512, and 256 symbols are used in the arithmetic
symbol. For decoding operation, the modeling unit searche@der. For a limited past history model or adaptive model
the symbol that has the largest cumulative frequency among@fil[2], @ 9-b counter is needed for each symbol, whereas
the symbols with cumulative frequencies smaller than curredtweighted history model with weight= 16 only needs a
code point. The compression performance is highly depend&rp counter for each symbol. The least significant four bits
on the modeling unit, and the modeling unit is usually adaptiva the cumulative frequency counter are not changed while
to gain better compression ratio. Most adaptive models devisgdating the model because the binary representation of the
are suitable for software implementations, but they usually aneight 16 is 10 000. A simple block diagram of the weighted
difficult to realize in hardware form. The more skillful methoddistory model is shown in Fig. 10. A shift register is used
such as the Markov methods or the Lempel-Ziv algorithnis store M most recent symbols. Initially, the history buffer
take more memory and increase the hardware complexity. is filled with symbols uniformly and the cumulative frequency
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all cumulative frequency counters ofirrent\_symbotoward
previoussymbot1 are counted down by one. Thus, the cu-

i mulative frequency counter must be an up-and-down counter,
and a parallel counter is recommended to increase the speed.
The complexity of modeling unit shown in Fig. 10 is
acceptable while the alphabet size is several tens, but if we
enlarge the alphabet size to 256, which is commonly used in
digital storage and transmission systems, the control circuit
FVH becomes too complex for practical realization. As discussed
in previous section, the compression performance is highly
MUX |<f- i=m? dependent on the alphabet size. Reducing the size of alphabet

will degrade the compression performance.
A ] The two main problems in implementing the modeling

! ! unit with large alphabet are the updating operation and the
shift count g”i_F,‘ENOR';"AL'ZEu sgarchifng optirat;ont. ;rhhet &roble.rph of ;t.he uzdating opt?]ration

__________ ! coded bit stream arises from the fact that the arithmetic coder uses the cu-
mulative frequency of the symbol to generate its code point.
Fig. 7. Hardware architecture of multialphabet arithmetic decoder. If the occurrence of one symbol is changed, the cumulative
frequency counts of symbols with alphabet order less than
that symbol must be changed accordingly. Then all cumulative

Modeling Unit with

Comparators
shifter -----1---- AEEREEEEE TRTSPRETE .
(i) :

[ Shifter k- omj<ar

Lookdp Table

Lc | |

Croet frequency registers must be accessible concurrently if we want
Q0] to use parallel structure for implementation. An alternative
comparator |—— structure is the serial structure, which updates a cumulative
aml frequency register of one symbol at a time. The speed of the
comparator |—— serial structure is much slower than the parallel one and has a
drawback that the input rate is not constant. The decoding
— Seiz)laram)_' operation for multialphabet arithmetic coding involves the
] searching operation over the cumulative frequency registers.
&) Q3)] M% The searching operation has the same kind of problems that
S comparator |—— < , the updating operation has: too complex if parallel structure
W @] El —# model symboli is used and too slow if serial structure is used. Therefore, a
— comparalor — S multibase cumulative frequency array is proposed in this paper
<QE . to solve these two problems.
a gi’p'araor}___. Our implementation focuses on the adaptive 256-symbol
> arithmetic coding. First, the 256 symbols are divided into 16
Qie) banks. Each bank has 16 registers to store the cumulative
comparafor |—— frequency information. The top register of each bank, called
am] the “base” of the bank, stores the corresponding cumulative
comparaior }— occurrence. The remaining 15 registers store the extent of the
difference between the corresponding cumulative occurrences

vy and the base, as shown in Fig. 11. The reason for storing
Q) the difference extent instead of the true value is shown in
the updating procedure. Because the alphabet size is 256, we
use 8 b to represent each symbol. When the occurrence of a
symbol is changed, the four MSB’s of this symbol are used
counters are initialized according to the contents of the histaiy determine which bank this symbol belongs to, and the four
buffer and the requirement of minimal occurrence. While BSB’s are used to obtain the location of this symbol in the
new symbol is encoded, this symbol is stored in the buffeank. In updating the cumulative occurrence array, we can
and the(M + 1)th previous symbol is shifted out. Only theupdate the bases of banks and the contents of the bank that the
first and the last symbols are used to update the cumulatasambol belongs to simultaneously. Instead of the 8-input—256-
frequency. The combinational logic gates in Fig. 10 firgiutput PLA used in the direct implementation of the modeling
compare these two symbols. If trearrentsymbolis larger unit, two 4-input—16-output PLA’s are used to implement the
than theprevioussymbo] all cumulative frequency countersupdating circuit of the multibase cumulative frequency array.
corresponding tgorevioussymbol toward currentsymbot-1 To see how the multibase cumulative occurrence array is
are counted up by one. This operation is equivalent to iapplied to the model, we take two examples: the adaptive
creasing the occurrence olirrentsymbolby a weight, and model used in [2] and the proposed weighted history model.
decreasing the occurrence of thevioussymbolby a weight. The adaptive model described in [2] increases a symbol's
While thepresentsymbolis smaller than th@revioussymbo] occurrence by one when a symbol is coded. When the total

Fig. 8. Hardware structure of modeling unit.
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Fig. 11. Hardware structure of multibase cumulative frequency array.

occurrence equals the cumulative frequency limit, the occurentents of the bank can be implemented as RAM rather than
rences of all symbols are halved. To implement the updateunters. When the total occurrence achieves the cumulative
circuit for this adaptive model, we need 32 counters and twiequency limit, the bases and the contents of each bank are
PLA’s. The two PLA’s are used to determine which banks artthlved. This action can be done serially because there are only
which contents of the bank should be updated. Sixteen countéésbanks to be updated. If the maximal occurrence is as large
are used as the bases of banks, and the other 16 countersaarseveral tens of thousands, the overhead time is negligible.
used for the updating of the bank that the current symb®he cumulative frequency limit is dependent on the bit length

belongs to. To update the bank, we download the contewfsbases and the contents of banks. The performance of this
of the bank into counters and update these counters. Thedel also depends on the maximal occurrence used [2]. A
updated values are saved into the bank hereafter. Therefore wioedlength of 14 b is suitable for the cumulative frequency
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array. The performance of this model is shown in Fig. 2. The IV. CONCLUSION
weighted history model avoids the halving problem in the 5 weighted history model proposed in this paper can

adaptive model. However, because two symbols are usedsffy e the disadvantages of the limited past history model for
update the cumulative frequency array, the updating operatigihmetic codes. The weighted history model can provide
of one symbol described above should be done twice. Thgiter performance with a smaller history buffer. Experimental
word-length of the cumulative frequency array is 7 b if thgagits show that the arithmetic coding with weighted history
weighted history model with history buffer length 112 an¢hqqe is good for image coding. A simple hardware block
weight 16 is used. Another weighted history model showgiaqram for the weighted history model is also presented in this
in Fig. 2 for performance evaluation uses a history buffer ofyher The memory size is small and the hardware structure of
length 24 and weight of 32, and a 5-b memory is sufficient fgfis model can be easily implemented when the alphabet size
each cumulative occurrence. The fixed part of the cumulatie ¢ 100 |arge. While the alphabet size is as large as several
frequency of the weighted history model can be implementedqreds, a multibase cumulative occurrence array is proposed
by the LSB'’s of the address lines of symbols without extrg, gecrease the hardware complexity of the updating and de-
hardware. We can see that although the proposed weighiefing circuits. The combination of the multibase cumulative
history model needs one more cycle to update the model, & rrence array, modeling unit, encoder, and decoder can be
memory required is less than the adaptive model in [2]. easily implemented as VLSI for video compression.
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