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Abstract

In this paper we present a method to predict the window size when determining the local granulometry for a structural
texture image set. The proposed method is based on the concept of periodicity property of structural texture images. It
suggests that one may choose the minimum odd number not less than the maximum periods of texture images as a window
size. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Dougherty and his colleagues introduce the con-
cept of local granulometric size distributions and

Žapply it to image segmentation Dougherty et al.,
. Ž1989 and pixel classification Dougherty et al.,
.1992a . Their works indicate that moments of local

granulometric size distributions provide good feature
sets for pixel classification, however, a feature value
from a local granulometric size distribution is a good
descriptor of an image only when an effective win-
dow size is chosen.

A good result of the pixel classification is ob-
tained only when the chosen window contains suffi-
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cient information. Thus, the selection of an effective
window size is very important. For a particular grain
model, there is an inverse relation between the varia-

Ž .tion of the PSM pattern spectrum mean and the
Ž .window size Dougherty et al., 1992b . In this paper,

we propose a method to predict a window size for a
structural texture image set. A structural texture im-
age possesses a property called texture periodicity.
By investigating texture periodicities of the given
images, we can determine the window size that in
turn determines the local granulometry. The pro-
posed method is based on the co-occurrence matrix
Ž .for the binary case and the covariance calculation
Ž .for the greyscale case . We first find the texture
periodicity and then determine a reasonable window
size.

The rest of this paper is organized as follows. In
Section 2, we briefly review morphological granu-
lometries and local granulometries. In Section 3, we
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review the notions of co-occurrence matrices and
covariance that will be used in the present study. In
Section 4, we describe the proposed method in de-
tail. In Section 5, we show experimental results and
give a discussions. Finally, we draw some conclu-
sions in Section 6.

2. Granulometry and local size distribution

Let S be a bounded set and E , E , E , . . . an0 1 2

increasing sequence of structuring elements such that
E is E -open, ks1,2, . . . . Then the opened im-kq1 k

ages S(E , S(E , S(E , . . . form a decreasing se-0 1 2
Ž .quence called a granulometry Matheron, 1975 .

Ž .Moreover, a decreasing function V k can be ob-
tained by counting the number of pixels remaining in

Ž .each succeeding opening. Since S is bounded, V k
s0 for sufficiently large k. If E consists of a0

Ž .single pixel, then V 0 gives the image area of S
Ž .itself. The function V k is called a size distribu-

Ž . Ž . Ž .tion. The normalization F k s1yV k rV 0 is a
probability distribution function and the discrete

Ž . Ž . Ž .derivative dF k sF kq1 yF k is a probabil-
ity mass function.

Local granulometric size distributions, introduced
Ž .by Dougherty et al. 1989 , are variations of size

distributions alluded to the above. As in the original
granulometry, the entire image is opened succes-
sively by a sequence of increasing structuring ele-
ments. Then, by placing a window at each pixel x in
the image and by taking a pixel-count in the window
at each stage of the granulometry, a local granulo-

Ž .metric size distribution V k is obtained for x.x

Then each size distribution is normalized and differ-
entiated to generate the local pattern spectrum

Ž .dF k .x
Ž .Consider the model in Dougherty et al., 1992b .

Let the regions S and S partition an image S suchr R

that they consist of disjoint balls of radius r and R,
respectively, where r-R. The proportion of the
number of balls in each region to the region area is
assumed to be a constant q. Now suppose W is the
window determining the local granulometric size
distribution for a pixel x. In the case when W lies
partially in both S and S , the area of WlS andr R r

Ž .WlS are assumed to be pW and 1yp W, re-R

spectively, where 0-p-1. Moreover, no balls are
assumed to intersect the boundary of W. Then

2 2°qpW pr q 1yp R for tFr ,Ž .~ 2V t sŽ .x qpW 1yp R for r- tFR ,Ž .¢
0 for R- t .

Normalization and differentiation yields:

21yp RŽ .
dF t s 1y d tyrŽ . Ž .x 2 2pr q 1yp RŽ .

1yp R2Ž .
q d tyR ,Ž .2 2pr q 1yp RŽ .

Ž .where d t is the delta function. Thus,

pr 3q 1yp R3Ž .
m s ,x 2 2pr q 1yp RŽ .

24 4 3 3pr q 1yp R pr q 1yp RŽ . Ž .
2s s y .x 2 2 2 2ž /pr q 1yp R pr q 1yp RŽ . Ž .

Note that as p™0, we have m ™R and s ™0,x x

and as p™1, we have m ™r and s ™0. Alsox x

note that r-m -R.x

The density dF can be used as a descriptor ofx

the local texture at x, and the moments of the local
granulometric size distributions can be used to clas-
sify pixels based on local texture. Interested readers

Ž .can find more details in Dougherty et al. 1992a,b .

3. Co-occurrence matrices and covariance

In the current study, we are interested in choosing
an effective window size that determines the local
granulometries for a structural texture image set. In
structural texture images, texture primitives are basic
units to form the images. These can be found by

Žusing co-occurrence matrices Zucker and Terzopou-
los, 1980; Parkkinen et al., 1990; Starovoitov et al.,

.1995 . A co-occurrence matrix M consists of ele-
Ž .ments M i, j; dk, d l , each of which represents the

number of times that a given feature i occurs in a
Ž .particular spatial relation dk, d l to another given

feature j. Generally, x 2 statistics are used to mea-
sure the association between the grey values of the

Ž . Ž .two pixels situated dk, d l apart. Let M i, j denote
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the elements of the co-occurrence matrix and, N the
Ž .sum of all elements of M i, j . Here, for brevity, the

Ž . 2displacement dk, d l is not explicitly given. The x
statistics are computed by the following formula
Ž .Parkkinen et al., 1990 :

2
M i , P M P, jŽ . Ž .

M i , j yŽ .m m ž /N2x s ,Ý Ý M i , P M P, jŽ . Ž .is1 js1

N

Ž . Ž .where M i, P and M P, j are row and column
sums, and m is the matrix size. The displacements
Ž . Ž .dk, P and P, d l are used to analyse the horizontal
and vertical periods, respectively. For the binary
case, this method is fast and effective. However, it
has to compute a large co-occurrence matrix for a
grey scale image. In order to avoid the large co-oc-
currence matrix computation, we use the concept of
covariance to find the texture primitives for grey
scale images.

Let S be an artificial texture image shown in Fig.
™Ž . � 41 a , and let Bs 0, 1h be a structuring element,

™
where 1h is parallel to the x-axis. Then the covari-

Ž . Ž .ance of S can be defined as CoÕ h sMes S]B ,
Ž .where Mes A denotes the number of black pixels in

Ž .A Serra, 1982; Giardina and Dougherty, 1988 . That
Ž .is, the covariance CoÕ h is the measure of S]B,

the erosion of set S by B. The calculated covariance
Ž .is depicted in Fig. 1 b . The period of repetition can

be found by investigating their spatial distribution
Ž . ŽSerra, 1982 or by using convolution filters De-

.waele et al., 1988 . In this study, we used a simple
and intuitive approach. The width of the texture
primitive is the distance between two adjacent local

Ž .maxima or minima . The height of the texture primi-

Ž .Fig. 2. Conditional covariance curve of Fig. 1 a .

tive can be similarly found by working along the
y-axis.

The preceding results are easily generalized to
Ž .grey scale images Serra, 1982 . For a grey scale

Ž .image S, the covariance CoÕ h of S is defined by

CoÕ h sE f x yp f xqh ypŽ . Ž . Ž .
2sE f x f xqh ypŽ . Ž .

Ž .where f x denotes the grey value at point x and
w Ž .xpsE f x . Interested readers can find the details in
Ž .Serra 1982 .

Ž .In Fig. 1 b , we observe that the heights of the
repetition peaks on the covariance curve are decreas-
ing. To find the repetition period of a texture primi-

Ž < .tive, we define the conditional covariance CoÕ h w
Ž .to be Mes Slw . Note that w is a window se-h

lected from the texture image S. Instead of measur-
Ž < .ing the entire image S, CoÕ h w just measures the

area of the intersection of the shifted window w andh

the image S. Fig. 2 exhibits the conditional covari-
Ž .ance curve of the image in Fig. 1 a . Note that all

Ž .peaks have equal height. Fig. 3 b shows the condi-
tional covariance curve of the texture image D102 in

Ž . Ž . Ž .Fig. 1. a Artificial texture image; b covariance curve of a .
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Ž . Ž . ŽFig. 3. a Texture image D102; b conditional covariance curve of example texture image D102 the thin line presents the horizontal
.period, and the bold line the vertical period .

Ž .Fig. 3 a . In our experiments, the position of the first
peak of the conditional covariance curve is taken as
the period of the texture primitive.

4. Texture primitive and window size.

In a pixel classification application, the selection
of a window size W will affect the training results of
a maximum likelihood classifier. Let us consider the
situation mentioned in Section 2. If WFr, then the
window W may lie entirely in the ball of radius r or
R. Moreover, if the distance d between disjoint balls
is less than W, then W may lie partly in balls of
radius r and R. Otherwise, W may lie between
disjoint balls. Thus, if one randomly chooses sample
points from a texture image to compute the local
granulometric size distributions associated with them,
then the local pattern spectrum mean values will
vary in the range from 0 to R, and the pattern
spectrum standard deviation of this texture image is
large. If r-WFR, the local pattern spectrum mean
values vary from r to R. Note that the probability of
the event that W lies between disjoint balls is de-
creased. As we keep enlarging the window size, the
variation of local pattern spectrum mean values is
further decreased.

In a practical application, we assume that texture
images are structural texture images. That is, the

images are defined by texture primitives which ap-
pear in near regular repetition spatial arrangements
Ž .Haralick, 1979 . In this case, as we enlarge the size
of window W, the variation of the local pattern
spectrum mean for each image is decreased. The
variation will be mitigated when the window size is
larger than the sizes of the texture primitives, due to
the periodicity property of structural texture images.
Fig. 4 illustrates the relation between W and the
pattern spectrum deviation for texture image D20.
The structuring elements used in this example are the

Ž .same as those used in Dougherty et al., 1992a . The
x-axis denotes the window size, the y-axis denotes
the standard deviation. If the texture image set is
separable, then the small deviation indicates that the
local pattern spectrum means highly concentrate on
the global pattern spectrum mean of the texture
image and the probability of inaccurate classification
can be reduced. From Fig. 4, we observe that the
local minimum deviation occurs when the window
size W equals 29. This is the same as the period of
texture image D20. The variation of the local pattern
spectrum means is mitigated whenever the size of
window W is larger than the period of repetition.

From another point of view, the maximum likeli-
hood classifier is based on Bayes theory. Its simplest
form is shown in Fig. 5. The shaded area denotes the
probability of error for a maximum likelihood classi-
fication. We can observe that if the features of the



( )S.-R. Jan, Y.-C. HsuehrPattern Recognition Letters 19 1998 439–446 443

Fig. 4. Relation between window size W and the pattern spectrum standard deviation of example texture image D20.

samples highly concentrate on the mean of the class,
the probability of the error for the maximum likeli-
hood classification is small. Hence, if the features of
samples concentrate more on the mean of the class, a
high accuracy rate can be obtained.

As mentioned in the previous discussion, the vari-
ation of the local pattern spectrum means of the
features of the samples tend to mitigate whenever the
window size is larger than the size of the texture
primitive. The texture primitive can be found by

investigating the variation of co-occurrence matrices
or covariance. Once texture primitives for a set of
texture images are found, the maximum size of the
texture primitives is chosen as the window size. This
window size will determine the local granulometric
size distributions of this set of images. Let
T ,T , . . . ,T be a set of texture images. Let1 2 n

w ,w , . . . ,w and h ,h , . . . ,h be periods of texture1 2 n 1 2 n

primitives along the x- and y-axis, respectively. The
window size of the local granulometric size distribu-

Fig. 5. A simplest example form for a maximum likelihood classification.
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Ž . Ž . Ž . Ž . Ž . . Ž . Ž . Ž . Ž . Ž .Fig. 6. Grey scale texture images. First row, left to right: a D6; b D17; c D20; d D52; e D53 . Second row, left to right: f D55; g D65; h D77; i D82; j D84.
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Table 1
Texture primitive of original and thresholded image set

Texture image Grey scale Binary

x-axis y-axis x-axis y-axis

d6 14 16 13 16
d17 10 11 10 11
d20 29 28 29 28
d52 13 26 15 25
d53 6 17 6 17
d55 19 8 19 8
d65 5 22 5 22
d77 11 6 11 6
d82 5 8 10 8
d84 10 14 10 5

tion for this set of images is the maximal value of
w ,w , . . . ,w and h ,h , . . . ,h , i.e.,1 2 n 1 2 n

� 4window_sizesmax w ,w , . . . ,w , h ,h , . . . ,h .1 2 n 1 2 n

It should be noted that the chosen window size is
increased by one when it is an even number.

5. Experimental results and discussion

A great deal of data have been tested for the
experiment. Ten test images are taken from Brodatz’s

Žcollection of photographic texture images Brodatz,
.1966 . A MicroTek ScanMarker 600Z scanner oper-

ating under Aldus Photostyler is used. The images
are scanned at: 75 dpi and 100% scaling into an 8-bit
grey digital format. Fig. 6 shows the ten grey scale

Ž .texture images image set A . For the same reason as
Ž .in mentioned by Dougherty et al. 1992a , a single

threshold value is employed across all ten texture
images. The moment preserving threshold method
Ž .Tsai, 1985 is chosen for binarization. The structur-

Ž .ing element sequences we used are vertical v ,
Ž . Ž .horizontal h , q458 diagonal pd , y458 diagonal

Ž . Ž .nd , and circular c . The features used are the three
Ž .central moments: the pattern-spectrum mean PSM ,

Ž . Ž .standard deviation PSSD , and skewness PSS for
each structuring element sequence. Two additional
features are also used: MAXLIN and LINEARLY.
The classifier used in our experiment is the Gaussian
maximum likelihood classifier, the same as the one

Ž .reported by Dougherty et al. 1992a .
The effective window size has to be determined

before performing granulometric classification. As
mentioned previously, the effective window size can
be determined by investigating the variation of co-
variance of each texture image. Table 1 shows the
size of the texture primitives found in the threshold

Table 2
Relation of window size and accuracy rate in the original and threshold image set

Window size Test image set A Test image set B

Classification Classification Classification Classification
accuracy accuracy accuracy accuracy
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .% grey scale % binary % grey scale % binary

17 96.6 95.4 97.8 93.1
19 97.1 96.1 98.0 95.2
21 97.9 97.5 99.0 96.9
23 98.7 97.6 99.6 97.1
25 98.5 98.2 99.7 97.8
27 99.2 98.2 99.9 98.1
29 99.1 98.1 100 98.1
31 99.5 98.3 100 98.4
33 99.0 98.1 100 98.2
35 99.1 98.4 98.4
37 99.3 98.2 98.4
39 98.9 98.3 98.3
41 99.1 98.5 98.6
43 99.1 98.7 98.8
45 99.4 98.8 98.8
47 99.6 98.9 98.7
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images and the images without thresholding. In the
threshold image set, the maximum primitive size, 29,
is chosen as the window size for granulometric
classification. Table 2 presents the relation between
window size and accuracy rates of classification. The
experimental results reveal that the selected window
size yields a high accuracy rate. Table 2 also shows
the relation of window sizes and accuracy rates for
classification on the same image set without thresh-
olding. The results confirm our idea again. The
maximum primitive size is 29 as well. The results
also indicate that classification with the window size
predicted by the proposed method results in a high
accuracy rate.

We also apply the proposed method to image set
B, which is the same as image set A, except that
image D55 is replaced by D102. In image D102, the
texture primitive has size 33 and 32 along the x- and
y-axis, respectively. Size 33 is selected as the win-
dow size for granulometric classification with image
set B. For the grey scale case, the results are very
satisfying, all pixels are classified correctly. The
relation between window sizes and accuracy rates is
shown in the right portion of Table 2. Observe that
the classification accuracy rate is already 100% when
the selected window size is 29.

Different test image sets need different window
sizes to achieve effective classification. In general,
larger windows decrease the variability of the feature
at the cost of positional uncertainty. Given an input
image set, the proposed method can predict a win-
dow size for granulometric classification. This win-
dow size can yield high classification accuracy and it
is acceptably small. However, an explicit limitation
of the proposed method is that the size of the largest
texture primitive cannot be larger than that of the
region to be classified. Otherwise, significant errors
will occur.

6. Conclusions

We propose a method to determine the window
size for local granulometric size distributions. The

co-occurrence matrices and covariance measures are
used to predict effective window sizes for granulo-
metric classification. The proposed method suggests
that one can choose the maximum size of texture
primitives in an image set as the window size for
local granulometric size distributions. Instead of the
overall classification accuracy calculation, the use of
the predicted window size can reduce the computa-
tion time. Moreover, the proposed method can auto-
matically determine the effective window size when
inputting a test image set.
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