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Abstract

Assortment problems occur when we want to cut a number of small rectangular pieces from a large rectangle to get the
minimum area within the rectangle. Recently, Chen et al. proposed a useful model for assortment problems. Although Chen
et al.’s model is quite promising to find solutions, there are two inadequacies in their model: firstly, the objective function in
their model is a polynomial term, which may not lead to a globally optimal solution; secondly, too many 0-1 variables are
used to formulate the non-overlapping constraints. We propose a new method to reformulate an assortment model. Our
model is not only able to find the approximately global optimal solution, but involves less 0-1 variables for formulating
non-overlapping constraints. © 1998 Elsvier Science B.V.
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1. Introduction

An assortment optimization problem is the problem of placing a given set of rectangles within a rectangle
which has minimum area. Assortment problems occur when a number of small rectangular pieces need to be cut
from a large rectangle to get minimum area. Methods for assortment problems can be classified as the exact
approach and the heuristic approach. The exact approach guarantees to find the optimal solution, while the
heuristic approach can only find solutions which are ‘good enough’. This paper emphasizes on discussing the
exact methods of assortment problems.

Page [5] proposed a dynamic programming for solving cutting problems of rectangle steel bars. Beaslay [2]
proposed an integer model to solve a guillotine cutting problem. Recently, Chen et al. [1] presented a mixed
integer programming for assortment problems. Compared to previous models, Chen et al.’s model is more
promising in solving practical problems. However, Chen at al.’s model may only finds locally optimal solutions.
In addition, Chen et al. use many 0-1 variables to formulate non-overlapping constraints in their models, which
causes an extra computational burden.
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This paper proposes a new method for solving assortment optimization problems. Two advantages of this
method are listed below:

1. it can find the solution which can be as close as possible to the globally optimum, instead of obtaining a local
optimum as found by Chen et al.’s model;
2. it adopts less 0-1 variables to reformulate the non-overlapping constraints than used in Chen et al.’s model.

2. Problem formulation

Given n rectangles with fixed lengths and widths. An assortment optimization problem is to allocate all of
these rectangles within an enveloping rectangle which has minimum arca. Denote x and y as the width and the
length of the enveloping rectangle, the assortment optimization problem is stated briefly as follows:

Minimize xy
Subject to

1. all of n rectangles are non-overlapping;
2. all of n rectangles are within the range of x and y.

The related terminologies used in assortment models, by referring to Chen et al. [1] are described below:

(p;»q;): Dimension of rectangle i, p; is the long side and g; is the short side. p; and g; are constants, i € J, J
is the set of given rectangles.

(x;,y;): The top right comer coordinates of rectangle i, i €J, x; and y, are variables.

(x,y): The top right comer coordinates of the enveloping rectangle, x and y are variables.

5 An orientation indicator for rectangle i, i €J. 5;=1 if p; (the longer dimension of rectangle i) is
parallel to the x-axis; s; =0 if p; is parallel to y-axis. Take Fig. 1 for example, s, =0, s, =1, and
5;=1

For any pair of rectangles i and k, the relative position indicators are denoted as follows:

a;,: The ‘left’ position indicator for rectangles i and k; a;, equals 1 if rectangle i is to the left of rectangle &,
and a;, equals O otherwise.

b,: The ‘right’ position indicator for rectangles i and k; b;; equals 1 if rectangle i is to the right of rectangle
k, and b;, equals 0 otherwise.

x

X

Fig. 1. Graphical illustration of the Chen et al. model.
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ci: The ‘below’ position_ indicator for rectangles i and k; ¢;, equals 1 if rectangle i is to the below of
rectangle &, and c;, equals O otherwise.

d,: The ‘above’ position indicator for rectangles i and k; d;, equals I if rectangle i is to the above of
rectangle &, and d,, equals O otherwise.

J: Set of all rectangles within the enveloping rectangle xy.

The conditions for rectangles i and %k to be non-overlapping are stated below
(1) ayp+by+ep+dy=1,
(2) au+by<2andc,+d, <2.
Take Fig. 1 for example, rectangles 1, 2 and 3 are non-overlapping, where
ap+b,+cptd,=1+0+0+1=2,
and
Qyy byt ey tdy;=0+04+0+1=1,

Chen et al. [1] formulated an assortment model as follows (Fig. 1):

Chen et al.’s Model:

Minimize xy
subject to, for all i, k€ J, i <k:
=S~ Gl —s) +(1—ay)M=x, (1)
x;~pis;i—q(1—5) + (1= by )M =x, (2)
Ve~ s —Pe(1—5) + (1 =) M2y, (3)
yi—a@si—p(1—s) +(1—dy)M=y, (4)
agthytc,tdy=1, (5)
where M is a large positive numbers: for all i € J:
Xz x;, (6)
Y2y (7
x;—pisi—qi(1—5;) 20, (8)
yi—gisi—pi(l1—5) 20, (9)

@ixsbyysCipndiy =0 or
forall i, keJ, i<k,
s;=0orlforallie=J.

The objective function is to minimize the enveloping area. Constraints (1)-(5) ensure that the rectangles will not
overlap. Constraints (6)~(9) ensure that all rectangles are within the enveloping rectangle.

Chen et al.’s model is a program with a nonlinear objective function, which is difficult to solve. By fixing the
value of y in the objective function, Chen et al. solve their model to obtain the solution. Clearly, there are two
defects within Chen et al.’s model:

1. Firstly, y is assigned as a fixed value in solution process to reduce the computational complexity of the
problem. Chen et al.’s model therefore may only find a locally optimal solution.
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Fig. 2. Graphical illustration of proposed model.
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2. Secondly, extravagant 0-1 variables are used to ensure the non-overlapping between rectangles, this will

increase the computational burden in the solution process

In order to overcome above defects, we propose a new model for assortment optimization problem. First,

denote x; and y! below:

x): Distance between center of rectangle i and original point along the x-axis, i € J (Fig. 2);
y.: Distance between center of rectangle i and original point along the y-axis, i € J (Fig. 2).

The conditions of non-overlapping between rectangles i and k can be reformulated by introducing two

binary variables u;, and v, as follows (Fig. 3):

Condition 1. u;, =0 and v;, = 0 if and only if rectangle i is at the right of rectangle k.

Condition 2. u;, = 1 and v;, = 0 if and only if rectangle i is at the left of rectangle k.

Condition 3. u;, =0 and v;, = 1 if and only if rectangle i is at the above of rectangle k.

Condition 4. u;, = 1 and v, =1 if and only if rectangle i is at the below of rectangle k.

These four conditions can be represented as a proposition below:

u,=0

u

=1

condition |

condition 2

i ]k

condition 3

=<

EA
1t

—

i

k

condition 4

k

i

Fig. 3. Graphical illustration of non-overlapping conditions.
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Table 1
Non-overlapping and position indication

Corresponding Coordinates paralleled

conditions in to longer dimension

Uiy Uiy 5; Sy Fig.3 i k
1 0 0 0 0 1 y-axis y-axis
2 0 0 0 1 1 y-axis x-axis
3 0 0 1 0 1 x-axis y-axis
4 0 0 1 i i x-axis x-axis
5 0 1 0 0 2 y-axis y-axis
6 0 1 0 1 2 y-axis x-axis
7 0 1 1 0 2 x-axis y-axis
8 0 1 1 i 2 x-axis x-axis
9 1 0 0 0 3 y-axis y-axis
10 1 0 0 1 3 y-axis x-axis
11 1 0 1 0 3 x-axis y-axis
12 1 0 1 1 3 x-axis X-axis
13 1 1 0 0 4 y-axis y-axis
14 1 1 0 1 4 y-axis X-axis
15 1 1 1 0 4 x-axis y-axis
16 i 1 1 1 4 x-axis x-axis

Proposition 1. Rectangles i and k are non-overlapping if the following conditions are satisfied:

1
(xi—x) tugM+o, M> E[Pisi'*"li(l —5) +pese (1 —sk)],

1
(xp—x}) + (1 —"ik)M+UikMZE[pisi+qi(l —s) s+ q(1 _Sk)]’

1
(Yi=x) tupM+(1=vy ) M= E[Pi(l —- )+ @5+ p (1 = 5,) +qese]s

1
(V=) +(Q—w )M+ (1 —v )M= E[Pi(l —5;) g5, +p(1-5,) +qksk]’

where all of variables are the same as defined before.

The corresponding binary variables u;, v, s; and s, have 16 combinations shown in Table 1.
From the basis of Proposition 1 the proposed model can be formulated as follows:

Proposed model:
Minimize xy
subject to
constraints (10)-(13),

1
y2ﬂ+§[m0—&)+mﬂ,i=1&”.

1
x2ﬁ+5[mg+%ﬂ—ﬁﬂ,i=LZ“.

(10)
(11)
(12)
(13)

(14)

(15)
(16)

(17)
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Table 2
Size of non-overlapping constraints and variables
Chen et al.’s model Proposed model
No. of 0-1 variables 2t —n %
No. of constraints Sn(n—1)+4n 2n(n—1)+4n
! 1 .
Xi_E[pisi_l_qi(l_si)]ZO’ i=12,....N, (18)
’ l 4
)’i—E[Pi(I_Si)"'CIiSi]ZO’ i=12,....N. (19)

The number of variables and constraints used in Chen et al.’s model ((1)-(9)) and the proposed model
((15)-(19)) is listed in Table 2. Table 2 shows that the proposed model uses less 0-1 variables to reformulate the
non-overlapping constraints.

3. Linear strategies

This section aims at linearizing the polynomial term xy appear in the objective function of (14). Consider
two bounded variables x, y where 0 <x<Xxand 0 <y <Yy, X and y are constants. x and y can be represented
as follows:

G
x=z ), 23"63-{- £,, (20)
g=1
_H
y=g 2, 2""8h+8y, (21)
h=1

where £, and £, are small positive variables. g, and Ey are the pre-specified constants which are the upper
bounds of &, and &, respectively. 6 and & are 0-1 variables, and G, H are integers which denote the number
of required 0-1 variables for representing x or y.

Proposition 2. Referring to (20)-(21), a polynomial term xy is represented as

G
xy = &5 L2 ytey
g=1
G H (22)
= & 23_'0gy+2‘, Y 25,6, + £, 8,
g=1 h=1
Let e, as a linear approximation of ¢, €, expressed as
1 _ -
€)= 5(8“8’ + e,sx). (23)

The error of approximating &£, €

y is then computed as

1 ,_ _ £,&
0<e,,—e8,= 5(818Y+ eysx) — &8, < 2
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The maximal difference bet)veen e,y and &,&, is £.£ /4, which occurs at

&, P &
5 and &,= —.

Substitute &, &, in (22) by e, in (23), the polynomial term xy in (22) with 0 <x <X and 0 <y < can be
approximately linearized as

&y =

G H 1 -
ﬁ:'z‘x E 23-lggy+—éy Z 2"'18th+ E(Exsy'i‘ 8,81), (24)
g=1 h=1

where 0 <3 ~xy < Z‘XZ'y/4.
The term 0§,y and 8,£, in (24) can be fully linearized based on Proposition 3 below

Proposition 3. An optimization problem of {Minimize 8y, where € (0,1), 0 <y <y, y € F (a feasible set)}
can be linearized as

Minimize z
subject to

y+y(0—1) <z,

z20, 6€(0,1),

yEF.

From the basis of Proposition 1 to Proposition 3, the proposed model of (14)-(19) can be lincarized as
follows:

Minimize &, i 2871z, 4%, ‘E 2k 1y,
g=1 h=1
subject to
232)’+5’(93_ 1), g=12,....G,
7,20

u,>¢e,+g(8,—-1), h=12,...,H,
u,>0,

(15)-(19),

6.8, € (0,1).

4. Examples

Consider the following assortment optimization problems adopted from Chen et al. [1]: The sizes of pieces of
rectangles are given in Table 3.

Minimize xy
subject to

(1)-(9)-
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/
(16.38)
(18.35) - (30,38 (31,38)
= 1, =38
y=36; a3
Rectangle 2 Rectangle 3 Rectangle 2 | Rectangle 3
@ 0.2
———(21,31)
(24,200 24,20
T Rectangle T Rectangle
1 Rectangle 1 4 L Rectangle 1 4
x=34 X3~

(a) Result of Chen et al. model

(b) Result of proposed model

Fig. 4. Solutions of Problem 1.

Table 3
Sample data
Problem number Number of rectangles Di q;
1 4 24 20
18 16
16 14
21 7
2 6 33 10
30 11
25 15
18 14
18 10
15 15
/r (30.36) .
y=36% 48.38) y=36 (30.36) (48.36)
48.39) (48.35)
1 Rectangle 2 L Rectangle 2 Rectangic 5
5 Rectangle 4
(15,25
(18,25) (33,25) 18.25)
1 (48.20) 4
Rectangle § Rectangle 4 Rectangle §
tangl
T Rectangle 5 1 Rectangle 3
Rectangle 3
L (48,100 (33,10
Rectangle 1 Rectangle 1
T T T T x’ - 48 T T T T ’x=48

(a) Result of Chen et al. model

(b) Result of proposed model

Fig. 5. Solutions of Problem 2.
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Table 4

Computational comparison of two models

Problem Chen et al.’s model Proposed model

number No. of 0-1 variables Objective value No. of 0-1 variables Objective value
in non-overlapping in non-overlapping
constraints constraints

1 28 1224 16 1178

2 58 1728 36 1728

Chen et al. treated Problem 1 by fixing the value of y as y= 36, then they solved a linear mixed 0-1
program to obtain the solution depicted in Fig. 4(a) with an objective value that equals 1224. Similarly, Chen et
al. treated Problem 2 by assuming y = 36, then they solved the problem to obtain the results depicted in Fig.
5(a). By specifying &, =%,=0.1, the proposed model solves these two problems by LINDO [4] on an
IBM-PC/AT 586 to find the solution shown in Fig. 4(b) and Fig. 5(b) in which we obtained an approximately
global optimal solution.

Table 4 is the computational comparison of two models, which demonstrates that

. the proposed model is guaranteed to find a approximately global optimal solution;

. the proposed model can solve an optimal program directly, while Chen et al.’s model needs to assign (or to
guess) the value of y; and

3. the proposed model uses less number of 0-1 variables to formulate the non-overlapping constraints.

N =

5. Conclusion

This paper proposes a new method to solve assortment optimization problems. By approximately linearizing
the polynomial objective function, the proposed method with linear strategies can reach a solution which is close
to the globally optimal solution. In addition, less 0-1 variables are used to reformulate the non-overlapping
constraints of assortment optimization problems.
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