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Abstract 

Assortment problems occur when we want to cut a number of small rectangular pieces from a large rectangle to get the 
minimum area within the rectangle. Recently, Chen et al. proposed a useful model for assortment problems. Although Chen 
et al.'s model is quite promising to find solutions, there are two inadequacies in their model: firstly, the objective function in 
their model is a polynomial term, which may not lead to a globally optimal solution; secondly, too many 0-1 variables are 
used to formulate the non-overlapping constraints. We propose a new method to reformulate an assortment model. Our 
model is not only able to find the approximately global optimal solution, but involves less 0-1 variables for formulating 
non-overlapping constraints. �9 1998 Elsvier Science B.V. 
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1. I n t r o d u c t i o n  

An assortment optimization problem is the problem of  placing a given set of  rectangles within a rectangle 
which has minimum area. Assortment problems occur when a number of  small  rectangular pieces need to be cut 
from a large rectangle to get minimum area. Methods for assortment problems can be classified as the exact 
approach and the heuristic approach. The exact approach guarantees to find the optimal solution, while the 
heuristic approach can only find solutions which are 'good enough ' .  This paper  emphasizes on discussing the 
exact methods of  assortment problems. 

Page [5] proposed a dynamic programming for solving cutting problems of  rectangle steel bars. Beaslay [2] 
proposed an integer model to solve a guillotine cutting problem. Recently,  Chen et al. [1] presented a mixed 
integer programming for assortment problems. Compared to previous models,  Chen et a l . ' s  model  is more 
promising in solving practical problems. However,  Chen at al . ' s  model  may only finds locally optimal solutions. 
In addition, Chen et al. use many 0-1 variables to formulate non-overlapping constraints in their models, which 

causes an extra computational burden. 

" Corresponding author. Tel.: (886)35-728709; fax: (886)35-723792; e-mail: hlli@ccsun2.cc.nctu.edu.tw. 

0377-2217/98/S19.00 �9 1998 Elsevier Science B.V. All rights reserved. 
PII S0377-2217(97)00072-6 



H.-L. Li, C.-T. Chang / European Journal of Operational Research 105 (1998) 604-612 6 0 5  

This paper proposes a new method for solving assortment optimization problems. Two advantages of  this 
method are listed below: 

1. it can find the solution which can be as close as possible to the globally optimum, instead of obtaining a local 
opt imum as found by Chen et al. 's  model; 

2. it adopts less 0-1 variables to reformulate the non-overlapping constraints than used in Chen et al. 's model. 

2. P r o b l e m  formula t ion  

Given n rectangles with fixed lengths and widths. An assortment optimization problem is to allocate all of  
these rectangles within an enveloping rectangle which has minimum area. Denote x and y as the width and the 
length of the enveloping rectangle, the assortment optimization problem is stated briefly as follows: 

Minimize xy 

Subject to 

I. all of  n rectangles are non-overlapping; 
2. all of  n rectangles are within the range of  x and y. 

The related terminologies used in assortment models, by referring to Chen et al. [1] are described below: 

(Pi,qi): Dimension of rectangle i, Pi is the long side and qi is the short side. Pi and qi are constants, i ~ J ,  J 
is the set of  given rectangles. 

(xi,Yi): The top right comer  coordinates of  rectangle i, i ~ J ,  x i and Yi are variables. 
(x ,y ) :  The top right comer  coordinates of  the enveloping rectangle, x and y are variables. 
si: An orientation indicator for rectangle i, i ~ J .  si = 1 if Pi (the longer dimension of rectangle i) is 

parallel to the x-axis; s i = 0 if p; is parallel to y-axis. Take Fig. 1 for example, s I = 0, s 2 = 1, and 

53= 1. 

For any pair of  rectangles i and k, the relative position indicators are denoted as follows: 

ait:: The ' lef t '  position indicator for rectangles i and k; aik equals 1 if rectangle i is to the left of  rectangle k, 
and aik equals 0 otherwise. 

bit:: The ' r ight '  position indicator for rectangles i and k; bit equals 1 if rectangle i is to the right of  rectangle 
k, and bit: equals 0 otherwise. 
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Fig. I. Graphical illustration of the Chen et al. model. 
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cik: The 'below' position.indicator for rectangles i and k; cik equals 1 if rectangle i is to the below of 
rectangle k, and cik equals 0 otherwise. 

d~k: The 'above' position indicator for rectangles i and k; d~k equals 1 if rectangle i is to the above of 
rectangle k, and d/k equals 0 otherwise. 

J: Set of all rectangles within the enveloping rectangle xy. 

The conditions for rectangles i and k to be non-overlapping are stated below 

(1) aikq-bik-FCik-l-dik>__ 1, 

(2) aik -t- bik < 2 and ci~ + dik < 2. 

Take Fig. 1 for example, rectangles 1, 2 and 3 are non-overlapping, where 

al2 + bl2 + c~2 + dj2 = 1 +  0 + 0 + 1 =  2,  

and 

a23 +b23 +c23 +d23 = 0 + 0 + 0 +  1 = 1. 

Chen et al. [1] formulated an assortment model as follows (Fig. 1): 

Chen et al.'s Model: 

Minimize xy 

subject to, for all i, k ~ J, i < k: 

x k - p k s k -  qk(1  -- Sk) + (1 -- a i k ) M > _ x i ,  (1) 

x i  -- PiSi -- q i (1  -- Si) + (1 -- bik ) M ~" Xk,  (2) 

Yk -- qk Sk -- Pk ( 1 -- S t )  + ( 1 -- Ci~) M > Yi,  (3) 

Yi - q is i  -- P i (  1 -- s i )  + ( 1 -- dik ) M > Yk,  (4) 

aik + bik -F cik + di~ >_ 1, (5) 

where M is a large positive numbers: for all i E J: 

x >__ x i, (6) 

Y >-- Yi,  (7) 

x i - p i s i -  q i (1  - s i )  > O, (8) 

Yi - q is i  - P i (  1 - s i )  >- O, (9) 

aik ,bik ,Cik ,dik = 0 or 1 

for all i, k ~ J ,  i < k,  

s i = O o r l  for a l l i ~ = J .  

The objective function is to minimize the enveloping area. Constraints (1)-(5) ensure that the rectangles will not 
overlap. Constraints (6)-(9) ensure that all rectangles are within the enveloping rectangle. 

Chen et al.'s model is a program with a nonlinear objective function, which is difficult to solve. By fixing the 
value of y in the objective function, Chen et al. solve their model to obtain the solution. Clearly, there are two 
defects within Chen et ai.'s model: 

1. Firstly, y is assigned as a fixed value in solution process to reduce the computational complexity of the 
problem. Chen et al.'s model therefore may only find a locally optimal solution. 
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Fig. 2. Graphical illustration of proposed model. 

2. Secondly, extravagant 0-1 variables are used to ensure the non-overlapping between rectangles, this will 
increase the computational burden in the solution process 

In order to overcome above defects, we propose a new model for assortment optimization problem. First, 

denote x'i and Y'i below: 

x'i: Distance between center of  rectangle i and original point along the x-axis, i ~ J (Fig. 2); 
y~: Distance between center of  rectangle i and original point along the y-axis, i ~ J (Fig. 2). 

The conditions of  non-overlapping between rectangles i and k can be reformulated by introducing two 
binary variables uik and vik as follows (Fig. 3): 

Condit ion 1. uik = 0 and vik = 0 if and only if rectangle i is at the right of  rectangle k. 

Condit ion 2. uik = 1 and vi, = 0 if and only if rectangle i is at the left of  rectangle k. 

Condit ion 3. ui~ = 0 and v~k = 1 if and only if rectangle i is at the above of  rectangle k. 

Condi t ion 4. uik = 1 and vi~ = 1 if and only if rectangle i is at the below of  rectangle k. 

These four conditions can be represented as a proposition below: 

uk=0 %=1 
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condition 1 
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Fig. 3. Graphical illustration of non-overlapping conditions. 



608 H.-L. Li, C.-T. Chang/European Journal of Operational Research 105 (1998) 604-612 

Table 1 
Non-overlapping and position indication 

Uik Uik Si Sk 

Corresponding Coordinates paralleled 

conditions in to longer dimension 

Fig. 3 i k 

1 0 0 0 
2 0 0 0 

3 0 0 l 

4 0 0 1 

5 0 1 0 

6 0 1 0 

7 0 ! 1 
8 0 1 1 

9 1 0 0 

10 1 0 0 
11 1 0 1 
12 1 0 1 

13 1 1 0 
14 1 1 0 

15 1 1 l 

16 i l 1 
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2 

2 
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y-axis  

x-axis  
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x-axis  
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Proposition 1. Rectangles i and k are non-overlapping i f  the following conditions are satisfied: 

1 
( x'i - x'k) + u i tM + vikM > -~ [ pisi + qi(1 -- si) + pksk + qk(1 -- st,)] , 

1 
( X' k -- X'i) + (1 -- Uik ) M + VikM > ~ [ PiSi + qi(1 -- si) + p , s  k + qk(1 -- St)] ,  

1 
( Y; -- Y'k) + uikM + (1--Vik)M>__ ~ [  p i (1- -S i )  + qisi + Pk(1 -- Sk) + q~Sk] , 

1 
( y~ -- y;) + (1 -- Uik ) M + (1 -- Vik ) M > "~ [ pi(1 -- si) + qisi + pk(1 -- sk) + qksk], 

where all of  variables are the same as defined before. 

The corresponding binary variables uik, vik, s i and s k have 16 combinations shown in Table 1. 
From the basis of Proposition 1 the proposed model can be formulated as follows: 

Proposed model: 

Minimize xy 

subject to 

constraints ( 10) - (13) ,  

1 
Y >- Y'i + ~ [ Pi(1 - si) + qisi], i = 1,2 . . . . .  N, 

1 
x>__x' i + - Z [ p i s i  + q i ( 1 - s i )  ], i = 1 , 2  . . . . .  N, z . -  

(lO) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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Table 2 
Size of non-overlapping constraints and variables 

609 

Chen et al.'s model Proposed model 

No. of 0-I variables 2n 2 - n n 2 

No. of constraints } n ( n -  l ) + 4 n  2n(n - l ) + 4 n  

1 
x ; - ~ [ P i s i + q i ( 1 - s i )  ] >0 ,  i = 1 , 2  . . . . .  N, (18) 

y ; - l [ p i ( 1 - s i ) + q ,  si] >_0, i = 1 , 2  . . . . .  N. (19) 

The number of variables and constraints used in Chen et al.'s model ((1)-(9)) and the proposed model 
((15)-(19)) is listed in Table 2. Table 2 shows that the proposed model uses less 0-1 variables to reformulate the 
non-overlapping constraints. 

3..Linear strategies 

This section aims at linearizing the polynomial term xy appear in the objective function of (14). Consider 
two bounded variables x, y where 0 < x < ~: and 0 < y < ~, .~ and ~ are constants, x and y can be represented 
as follows: 

G 

x =-~ E 2g-'Og + ~,,  (20) 
g = l  

H 

Y=~y E 2h-'~$h + 6, ,  (21) 
h = l  

where ~ and cy are small positive variables. ~ and ~y are the pre-specified constants which are the upper 
bounds of e~ and ey respectively. 0 and ~ are 0-1 variables, and G, H are integers which denote the number 
of required 0-1 variables for representing x or y. 

Proposition 2. Referring to (20)-(21), a polynomial term xy is represented as 

G 

xy = ~, E 2g-'OgY+ r 
g = l  

G H 

= ?~, ~7~ 2g-'OgY+-~y Y'. 2h- l~h~ 'x+gxo~ 
g = l  h = l  

Let exy as a linear approximation of r162 expressed as 

1 

The error of approximating c x cy is then computed as 

I _ e~ey 
O < e~Y -- ~r'g" = -2 ( gxgy + -~yr ) - r162 < - 4  

(22) 

(23) 
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The maximal difference between exy and ~ gy is ~cy/4 ,  which occurs at 

~ =  T and e y= T "  

S,tbstitute s ~ y  in (22) by e~y its (23), the polynomial term xy in (22) with 0 < x < Yc and 0 < y <_ ~, can be 
approximately linearized as 

G H 1 
Ycy=-~ E 2g-'OgY + -~r E 2h-'6he~ + -~('~,ey + -eyr (24) 

g~l h=l 

where 0 < Y~ - xy < ~x~/4.  

The term Ogy and 8h~, in (24) can be fully linearized based on Proposition 3 below 

Proposition 3. An optimization problem of {Minimize O y, where 0 E (0,1), 0 < y <_ Y, Y E F ( a feasible set)} 
cats be linearized as 

Minimize z 

subject lo 

y + ~ ( O - - 1 ) < z ,  

Z>_0, 0 ~ (0,1), 

y ~ F .  

From the basis of Proposition 1 to Proposition 3, the proposed model of (14)-(19) can be linearized as 
follows: 

G H 

Minimize ~ '~. 2 g - l z g  q- ~y E 2 h - l a b  
g = l  h = l  

subject to 

zg>_y+~(Og-1 ) ,  g---1,2 . . . . .  G, 

zg>_O 

l l h ~ _ _ _ E x ' ~ - - ~ x ( a  h - -  l ) ,  h = 1,2 . . . . .  H, 

It h >__ 0 ,  

(15)-(19) ,  

Og ,6h ~ (0,1). 

4. Examples 

Consider the following assortment optimization problems adopted from Chen et al. [ 1 ]: The sizes of pieces of 
rectangles are given in Table 3. 

Minimize xy 

subject to 

(1)-(9). 



H.-L. Li, C.-T. Chang / E,,ropean Journal of  Operational Research 105 (1998) 604-612 611 

Table 3 
Sample data 

(18,3G) 

Rectangle 2 

Rectangle  1 

Rectangle 3 

(31.21) 

!4,20) 

c t a n g l e  

4 

1 I ) I 1 

x=34 

(a) Result of Chert et a l .  model 

:3.1.36)y=31 
(34.35) 

(16 .38)  (30,381(31.38) 

Rectangle  2 Rectangle  3 

Rectangle I 

~.20) ' 

:ctangh 

4 

j (30,22) 
(21,31) 

x=31 ~ 
(b) Result of proposed model 

Fig. 4. Solutions of Problem 1. 

Problem number Number of rectangles Pi qi 

1 4 24  20 
18 16 
16 14 
21 7 

2 6 33 I0 
30 I1 
25 15 
18 14 
18 I0 
15 15 

y=3~ (30.35) (48.36) y=36 ! 
Rectangle 2 

05,25) 

Rectangle 8 

Rectangle 3 

Rectangle 4 

Rectangle 5 

Rectangle 1 

(a) Result of Chea et  a l .  model 

(48.34) 

(48.20) 

(48,10) 

i ) - -Z>  
x =48 

(30,3G) 

Rectangle 2 

(18,25) 

Rectangle 5 

(33,Z5) 

Rectangle 4 Rectangle 6 

Rectangle I 

J I I 1 , I 

Rectangle 3 

(33,10) 

(b) Result of proposed model 

Fig. 5. Solutions of Problem 2. 

48,36) 
48.35) 

48.25) 

~=48 > 



612 H.-L. Li, C.-T. Chang/European Journal of Operational Research 105 (1998) 604-612 

Table 4 
Computational comparison of two models 

Problem Chen et al.'s model Proposed model 

number No. of 0-1 variables Objective value No. of 0-1 variables 
in non-overiapping in non-overlapping 
constraints constraints 

Objective value 

1 28 1224 16 1178 
2 58 1728 36 1728 

Chen et al. treated Problem 1 by fixing the value of  y as y = 36, then they solved a linear mixed 0-1 
program to obtain the solution depicted in Fig. 4(a) with an objective value that equals 1224. Similarly, Chen et 
al. treated Problem 2 by assuming y = 36, then they solved the problem to obtain the results depicted in Fig. 
5(a). By specifying ~ , =  ey = 0.1, the proposed model solves these two problems by LINDO [4] on an 
I B M - P C / A T  586 to find the solution shown in Fig. 4(b) and Fig. 5(b) in which we obtained an approximately 
global optimal solution. 

Table 4 is the computational comparison of  two models, which demonstrates that 

1. the proposed model is guaranteed to find a approximately global optimal solution; 
2. the proposed model can solve an optimal program directly, while Chen et al. 's model needs to assign (or to 

guess) the value of  y; and 
3. the proposed model uses less number of  0-1 variables to formulate the non-overlapping constraints. 

5. Conclusion 

This paper proposes a new method to solve assortment optimization problems. By approximately linearizing 
the polynomial objective function, the proposed method with linear strategies can reach a solution which is close 
to the globally optimal solution. In addition, less 0-1 variables are used to reformulate the non-overlapping 
constraints of  assortment optimization problems. 
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