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Abstract 

Necessary and sufficient conditions are given to embed a maximum packing of K,, with 
4-cycles into a maximum packing of K, with 4-cycles, both when the leave of the given packing 
is preserved, and when the leave of the given packing is not necessarily preserved. 

I. Introduction 

A Steiner triple system (or simply triple sys tem)  of  order n is a pair (S, T), where 

T is an edge-disjoint collection of  triangles (triples) which partition the edge set of  Kn 

(the complete undirected graph on n vertices) with vertex set S. It has been known 

forever (=  since 1847 [5]) that the spectrum for triple systems ( = t h e  set of  all n such 

that a triple system of  order n exists) is precisely the set of  all n - 1 or 3 (mod 6). In 

this case ITI = n ( n -  1)/6. 

The triple system ($1, TI) is said to be embedded in the triple system ($2, 7"2) pro- 

vided Sl C_ 5'2 and 7"1 C_ T2. We also say that (Sl, TI ) is a subsystem of  ($2, T2). It is 

trivial to show that if ($1, Ti) is a proper subsystem of  ($2, 7"2) then 21S1 ] +1~< IS21. 
Now, a quite natural question to ask is: given integers m = 1 or 3 (mod 6) and n ~-1 

or 3 (mod6)  with 2m + 1 ~<n, does there exist a triple system of  order n containing 

a subsystem of  order m? In 1973 the celebrated work of  Jean Doyen and Richard 

Wilson [2] showed that this is in fact the case. 
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The Doyen and Wilson Theorem [2]. Let 2 m +  l~<n, m = l  or 3(mod6) ,  and n -  = 1 

or 3 (mod 6). Then there exists a triple system of order n containing a subsystem of 
order m. 

Over the years, any problem involving trying to prove a similar result for a given 
combinatorial structure has come to be called a Doyen-Wilson problem, and (not too 

surprisingly) any solution a Doyen-Wilson type theorem. The Doyen-Wilson Theorem 

has spawned a cottage industry with respect to just about any combinatorial design you 

can think of. The history of work along these lines is much too extensive to go into 

here. The interested reader is referred to [1] for an excellent history of this problem. 
Now it does not take a lot of imagination to think of one Doyen-Wilson type problem 

that is a natural generalization of the original result: maximum packings of K,  with 
triples. Without going into details, this problem has been settled (in two different ways) 

by the combined work in [3,4,7]. 

The object of this paper is the complete solution of the Doyen-Wilson problem for 
maximum packings of K, with 4-cycles. 

2. Statement of the problem 

A 4-cycle system of order n is a pair (S, C), where C is an edge disjoint collection 

of 4-cycles which partition the edge set of K, with vertex set S. It is a well known [6] 
that the spectrum for 4-cycle systems (=  the set of all n such that a 4-cycle system 

of order n exists) is precisely the set of all n-= 1 (mod 8). It is trivial to prove the 
Doye~Wilson Theorem for 4-cycle systems. 

Theorem 2.1. Let m < n  and m, n ~  1 (mod8). Then there exists a 4-cycle system of  

order n containinq a 4-cycle system o f  order m. 

Proof. Let ( { ~ }  UX, G )  be a 4-cycle system of order m and ( { ~ }  U Y, C2) a 4-cycle 
system of order n - m + 1. Let S = {<x~} UX U Y and define a collection of 4-cycles C3 
as follows: (1) C1 C_ C3, (2) C2 C_ C3, and (3) decompose the complete bipartite graph 
with parts X and Y into 4-cycles (this is easy, see [9] for example) and place these 
4-cycles in C3. Then (S, C3) is a 4-cycle system of order n containing a subsystem of 
order m. [] 

A packin9 of Kn with 4-cycles (or a partial 4-cycle system) is an ordered triple 
(S,P,L), (pair (S,P)), where S is the vertex set of Kn, P is a collection of edge 
disjoint 4-cycles of the edge set of K,,, and L is the set of edges in K,, not belonging 
to a 4-cycle in P. The number n is called the order of the packing (partial 4-cycle 
system) and the set of edges in L is called the leave. 

If  IPI is as large as possible (or ILl is as small as possible) the packing is said to be 
maximum (MPC). For example, a 4-cycle system is a maximum packing with leave the 
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Fig. 1. Leaves of a maximum packings. 

empty set. When n ~ 1 (mod 8) it is easy to see that the leave of  a MPC is: a 1-factor 

if n=-0 ,2 ,4 ,  or 6 (mod8) ,  a 3-cycle if n ~ 3 ( m o d 8 ) ,  a 5-cycle if n = - 7 ( m o d 8 ) ,  and 

a graph of  even degree with 6 edges if n ~ 5 (mod 8) (so a 6-cycle, or a pair of  disjoint 

3-cycles (triangles), or a bowtie (=  a pair of  3-cycles (triangles) having a vertex in 

common))  (see Fig. 1). 

It is well known (see [8] for example) that MPCs can be constructed for every 

n and with all possible leaves for n = 5 (rood 8), except when n = 5. In this case only 

a bowtie is possible as a leave, since a 6-cycle and 2 disjoint triangles use 6 vertices. 

The MPC ( & , P 1 , L I )  is said to be embedded in the MPC (S2,P2,L2) provided Sl C_ $2 

and Pl C_ P2. Now a bit of  reflection shows that there are two types of  embeddings 

possible: one that preserves the leave Li; i.e., Li C_ L2; and one that does not necessarily 

preserve the leave. In the case where the leave Lj is not necessarily preserved, the 

MPC ( & , P 1 , L I )  is treated as a partial 4-cycle system (&,P i ) .  This second type of  

embedding is considerably more complex and difficult than the embedding where the 

leave is preserved. Never-the-less we give a complete solution of  the Doyen-Wilson 

problem for both types of  embeddings; i.e., we determine necessary and sufficient 

conditions for a MPC of  order m to be embedded in a MPC of  order n as a partial 

4-cycle system and with the leave preserved. We will handle the more difficult type of  

embedding first, since the embeddings with the leave preserved are trivial modifications 

of  the embedding where the leave is not necessarily preserved. 

We will organize the embeddings where the leave is not necessarily preserved into 

four sections: even into even, even into odd, odd into even, and odd into odd. The 
first of  these sections is quite trivial. The remaining three are far from trivial! In 
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what follows we will denote the m-cycle ( m = 3 , 4 , 5 ,  or 6) by (XI ,X2,X3, . . . ,Xm)  or  

(Xl,Xm,Xm-1,...,x2) (see Fig. 2). 

3. Even into even 

This is by far the easiest case to handle, and so a good place to start! 

Lemma 3.1. A MPC of order 2n can be embedded in a MPC of order 2n + 2t if 
and only if t >~ 1. 

ProoL The necessary condition is less than trivial. Let (SI,PI,L]) and (S2,Pz,L2) be 

MPCs of orders 2n and 2t, respectively (so the leaves are 1-factors), where S1 A $2 = ~b. 

Let $3 =$1 @$2 and define a collection of 4-cycles P3 by: (1) Pl C_P3, (2) P2 C_P3, and 
(3) for each {a,b} cL] and each {c,d} EL2, the 4-cycle (a,c,b,d) or (a,d,b,c)cP3. 
Then (S3,P3,L3) is a MPC of order 2 n + 2 t ,  where L3 = L 1 0 L 2  and contains both 

(SI ,Pl)  and ($2,P2) as subsystems. [] 

Remark. It is important to note that the containing MPC (S3,P3,L3) preserved the 
leaves L1 and L2. Hence Lemma 3.1 also takes care of the embedding with the leave 
preserved. 

4. Even into odd 

The following construction is the principal tool used in the embeddings of a MPC 
of even order into a MPC of odd order. 

The Fundamental Construction. Let (SI,PI,L]) be a MPC of order 2t (so Ll is 
a 1-factor containing t edges) and X a set of odd size x such that Sl AX = ~b. Let Ks 
be the complete graph of order x with vertex set X and G a subgraph of Kx with each 
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vertex having even degree and such that E(Kx)\E(G) can be partitioned in a collection 
of 4-cycles P2. Form any one of the following graphs in Fig. 3. 

In each of (2), (3), (4), (5), and (6) the graph between (SI,PI,LI) and Kx is called 
the connecting graph. Now let ~ be a 1-1 mapping from E(G) onto the edges of  Li 

not belonging to the connecting graph. Define a collection of 4-cycles C as follows: 

(i) For each edge {a, b} E E(G) such that {a, b}~ = {c, d}, place exactly one of the 

4-cycles (a,b,c,d),  (a,b,d,c)  in C. 
(ii) For each vertex a EKx let X~ = {b E S~ ]the edge {a,b} is in a cycle of  type (i) 

or is an edge belonging to the connecting graph}. Now some of the sets Xu may be 
empty, but the nonempty sets X~ each contain an even number of vertices and partition 

the set Sl. For each nonempty X~ partition the complete bipartite graph with parts Xa 
and X \ { a }  into 4-cycles and place these 4-cycles in C. 

Set $3 = S1 U X, P3 = Pl U P2 U C, and L3 = the connecting graph. Then ($3, P3, L3) 
is a MPC of order 2t + x  with leave the connecting graph and, of course, it contains 

(S1,PI). [] 

With the above construction in hand the embedding of MPCs of even order into 

MPCs of odd order goes quite smoothly. 

Lemma 4.1. A necessary and sufficient condition to embed a M P C  of  order 2t in 
a M P C  of  odd order 2 t + x  is: (2) >~t,t- 1 , t - 2 ,  or t -  1 i fandonly  i f Z t + x =  1,3,5, 
or 7 (rood 8), respectively. 

Proof. We begin with the necessary conditions. So let (S1,Pj,L1) be a MPC of order 

2t and (S2,P2,L2) a MPC of odd order 2t + x  containing (SI,Pl). I f  2t + x  = 1,3, 5, or 
7 (modg)  then at most 0, 1,2, or 1 edges of L1, can belong to the leave L2. The other 

(at least) t, t - 1, t - 2, or t - 1 edges must belong to 4-cycles each of which contains 

exactly one edge in $2\$1. Since ]S2\SjI=x we must have (2)>t ,  t - 1 ,  t - 2 ,  or 
t - 1 respectively. In the following constructions, the cases t = 1 and 2 are trivial and 

so in every case we assume t ~> 3. 
Now let (SI,PI,LI) be a MPC of order 2t and 2 t + x = - l , 3 , 5 ,  or 7 (modg)  and 

(2) ~> t, t - 1, t - 2, or t - 1 as the case may be. We break the proof up into four cases: 
2 t + x -  1 (roodS). Let (S2,P2,L2) be a MPC of order x: If x _  = 1 (modg) use part 

(1) of the Fundamental Construction (FC) with G consisting of any t/4 4-cycles of 
P2. If  x = 3 ( m o d g )  use part (1) of the FC with G consisting of L2 along with any 
( t -  3)/4 4-cycles of  P2. I f x - 5 ( m o d g )  use part (1) of the FC with G consisting of 
L 2 along with any ( t - 6 ) / 4  4-cycles of P2. If  x - = 7 ( m o d g )  use part (1) of the FC 

with G consisting of L2 along with any ( t -  5)/4 4-cycles of P2. 

2t + x  -= 3 (modg). Let (S2,P2,L2) be a MPC of order x. We use part (2) of the FC. 
If  x =  1 (modg) take G to be any ( t - 1 ) / 4  4-cycles of P2. I f x = - 3 ( m o d g )  take G to 
be L2 along with any ( t -  4)/4 4-cycles of P2. If  x ~ 5 (mod 8) take G to consist of  L2 
(take L2 to be a bowtie in the case where x = 5) along with any (t - 7)/4 4-cycles of 
P2. If  x--= 7 (rood 8) take G to consist of L2 along with any ( t -  6)/4 4-cycles of P2. 
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2 t + x = 5 ( m o d 8 ) .  Let (S2, P2,L2) be a MPC of order x. We use part (3), (4), 
and (5) of the FC. If x = - l ( m o d 8 )  take G to be any ( t - 2 ) / 4  4-cycles of  P2. If  

x = 3 ( m o d 8 )  take G to be L2 along with along ( t - 5 ) / 4  4-cycles of  P2. If 
x ~ 5 ( m o d S )  take G to be L 2 (take L2 to be a bowtie in the case where x - 5 )  

along with any ( t - 8 ) / 4  4-cycles of P2. If x z 7 ( m o d 8 )  take G to be L2 plus any 

(t - 7)/4 4-cycles of P2. 
2t + x  = 7 (mod 8). Let ($2, P2,L2) be a MPC of order x. We use part (6) of the FC. 

If x-= l (m od8)  take G to be any ( t +  1)/4 4-cycles of P2 and use a path of  length 

2 in one of these 4-cycles for the connecting graph. If x _  = 3 (mod8) take G to be L2 
plus any ( t -  2)/4 4-cycles of P2 and use a path of length 2 in L2 in the connecting 

graph. If x = 5 (mod 8) take G to be L2 plus any ( t -  5)/4 4-cycles of P2 using a path 
of length 2 belonging to L2 for the connecting graph. If x = 7 (mod 8) take G to be L 2 

plus any ( t -  4)/4 4-cycles of P2 and use a path of length 2 belonging to L2 for the 

connecting graph. 
Combining the above four cases completes the proof. [] 

5. Odd into even 

We divide these constructions into four parts. 

Lemma 5.1. A MPC of order m=- 1 (rood8) (=  4-cycle system) can be embedded in 
a MPC  of order 2t 0 ¢" and only if  2t ~ 2m. 

Proof. The necessary condition is obvious. Now let (SI,P1,LI = q~) be a MPC of order 

m--- 1 (rood 8). Set $2 =$1 × {1,2} and define a collection of 4-cycles P2 as follows: for 
each 4-cycle (a, b, c, d) E P1 place the four 4-cycles ((a, 1 ), (b, 1 ), (c, 1 ), (d, 1 )), ((a, 2), 
(b, 2), (c, 2), (d,2)), ((a, 1),(b, 2),(e, 1),(d,2)), and ((a, 2),(b, 1),(c,2),(d, 1)) in P2. 

Then (S2,P2,L2) is a MPC of order 2m with leave the 1-factor L2 = {{(a, 1),(a, 2)} [ 
a C $1 }. By Lemma 3.1 ($2,P2, L2) can be embedded in a MPC of order 2t for every 

2t ~>2m. [] 

Lemma 5.2. A M P C  of order m=-3(mod8)  can be embedded in a M P C  of order 
2t ([' and only ![ 2t >~ 2m - 2. 

Proof. Let (SI,PI,LI) be a MPC of order m---3(mod8)  and (S2,P2,L2) a MPC of 
order 2t containing (S1,P1). Since L1 is a triangle and L2 is a 1-factor, at most one 
edge of L1, can be used in the leave L 2. Hence at least m - 2 vertices of S~ must be 

covered by edges in L2 with one vertex in Si and one vertex in $2\$1. It follows that 
2 t > ~ m + ( m -  2 ) = 2 m -  2. 

Now let (Si ,Pi ,Li)  be a MPC of order m ~ 3 ( m o d 8 )  with leave L1- - (a ,b , c )  and 
let X = $1 \{b, c}, Let 5'2 = {b, c} tA (X × { 1,2}) and define a collection of 4-cycles P2 
as follows: (1) define a copy of ($1, PI ) on {b, c} tA (X × { 1 }) and place these 4-cycles 
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in ~ ;  (2) (b,(a, 1),c,(a, 2))EP2; (3) partition the complete bipartite graph with parts 
{b,c} and (X\{a})  × {2} into 4-cycles and place these 4-cycles in P2; (4) let (X,P~) 
be a 4-cycle system and for each 4-cycle (d ,e , f ,9 )EP~,  place the three 4-cycles 
((d,2),(e,2),(f,2),(g,2)), ((d,2),(e, 1) , (f ,2) , (g,  1)), and ((d, 1) , (e ,2) , (f ,  1),(9,2)) 
in P2. Then (S2,P2,L2) is a MPC of order 2 m - 2  with leave L2 = {{b,c}} U {{(x, 1), 
(x,2)} Ix EX}. By Lemma 3.1 (S2,P2,L2) can be embedded in a MPC of order 2t for 
every 2 t~>2m-2.  [] 

Lemma 5.3. A MPC of order m ~ 5 ( m o d 8 )  can be embedded in a MPC of order 2t 
if  and only if  (i) 2t>~2m-4 if  the leave is a bowtie or a pair of  disjoint triangles, 
and (ii) 2 t~>2m-6  if the leave is a 6-cycle. 

Proof. We break the proof into three parts depending on the leave. 
Leave a bowtie. Let (S1,PI,L1) be a MPC of order m = 5 ( m o d 8 )  with leave the 

bowtie (a,b, cx~), (c ,d ,~) .  Any MPC of order 2t containing (SI,PI) can use at most 
2 edges of L1 in the leave and so 2 t>~2m-4.  

Let X=S~\{a,b,c,d} and set $2 = {a,b,c,d} U(X × {1,2}). Define a collection of 
4-cycles P2 as follows: 
(1) Define a copy of (S1,PI) on {a ,b , c ,d}U(Xx  {1}) and place these 4-cycles 

in P2; 
(2) (a,(c~, 1),b,(e~,2)) and (c,(cx~, 1),d, Cx~,2))EP2; 
(3) partition the complete bipartite graph with parts {a,b,c,d} and ( X \ { e c } ) ×  {2} 

into 4-cycles and place these 4-cycles in P2; and 
(4) let (X,P~) be a 4-cycle system and for each 4-cycle (e , f ,y ,h)  EP~, place the three 

4-cycles ((e, 2),(f ,2),(g, 2),(h,2)), ( (e ,2) , ( f ,  1),(9,2),(h, 1)), and ((e, 1) ,(f ,  2), 
(g, 1),(h,2)) in P2. 

Then ($2, P2, L2) is a MPC of order 2m - 4 with leave L2 = { {a, b}, {c, d} } U { {(x, 1 ), 
(x,2)} Ix EX}. By Lemma 3.1 (S2,P2,L2) can be embedded in a MPC of order 2t for 
every 2t~>2m-4.  [] 

Leave 2 disjoint triangles. Let (S1, PI, L1 ) be MPC of order m - 5 (mod 8) with leave 
the pair of disjoint triangles (a, b, ocl ) and (c, d, e~2). As in the bowtie case, any MPC 
of order 2t containing (SI,P1) can contain at most 2 edges of L1 in the leave and so 
2t >~ 2m - 4 .  

Set X=S , \ {a ,b , c , d }  and S2={a,b ,c ,d}U(X×{1,2}) .  Define a collection of 
4-cycles P2 as follows: 
( 1 ) Define a copy of (S1, Pl ) on {a, b, c, d} tO (Y × { 1 }) and place these 4-cycles in P2; 
(2) (a,(ool, 1),b,(ooi,2)) and (c,(oo2, 1),d,(oo2,2)) EP2; 
(3) partition the complete bipartite graph with parts {a,b} and ( X \ { ~ } ) ×  {2} into 

4-cycles and place these 4-cycles in P2; 
(4) partition the complete bipartite graph with parts {e,d} and (X\{oo2})× {2} into 

4-cycles and place these 4-cycles in P2; and 
(5) the same as (4) when the leave is a bowtie. 
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Then ($2, P2, L2) is a MPC of order 2m - 4 with leave L2 = { {a, b}, {c, d} } U { {(x, 1 ), 
(x, 2)} I x E X }. By Lemma 3.1, ($2, P2, L2) can be embedded in a MPC of order 2t for 
every 2t ~> 2m - 4. 

Leave a 6-cycle. Now if the leave is a 6-cycle then rn>~ 13. Trivially, if (Si ,Pi ,Li)  

is a MPC of order m with leave a 6-cycle, any MPC of order 2t containing (S1,P1) 
can use at most 3 edges of Ll in the leave. Hence 2t>~2m- 6. 

We handle the case m = 13 separately. So let (S1,P1,L1) be a MPC of order 13, where 
S~ ={1,2,3,4,5,6,7,8,9,10,11,12,13} andLj =(1,2 ,3 ,4 ,5 ,6) .  Let X = {7,8,9, 10, 11, 
12,13}, S2={1 ,2 ,3 ,4 ,5 ,6}U(X × {1,2}), and define a collection of 4-cycles P2 as 
follows: 
(1) Define a copy of (S~,P~) on {1,2,3,4,5,6} U(X x {1}), with leave (1,2,3,4,5,6),  

and place these 4-cycles in P2; and 
(2) place the following 27 4-cycles in P2 : 

((7,2),(10,2),(8,2),(11,2)),  ((7,2),(12,2),(8,2),(13,2)),  
((9,2),(12,2),(10,2),(13,2)),((7,2),  1,(8,2),2), 
((7,2),3,(8,2),4),((7,2),5,(8,2),6),  ((9,2), l ,(10,2),2), 
((9,2),3,(10,2),4),((9,2),5,(10,2),6),((11,2),  1,2,(12,2)), 
((12,2),3,4,(13,2)),((11,2),5,6,(13,2)),  ((12,2), 1,(13,2),5), 
((11,2), 2, (13, 2), 3), ((1 l, 2), 4, (12, 2), 6), ((7, 2), (8, 1 ), (11,2), (9, 2)), 
((7,2), (10, 1), (9,2), (8,2)),((9, 2), (12, 1),(1 1,2),(10,2)), 
((7, 1), (8,2), (10, 1),(1 1,2)),((7,2), (9, 1),(8,2), (1 1, 1)), 
((7, 2), (12, 1), (8,2), (13, 1)), ((9,2), (7, 1 ), (10,2),(8, 1)), 
((9, 2), (11, 1), (10,2),(13, 1)), ((10, 2),(9, 1),(13,2), (12, 1)), 
((1 1,2),(9, 1),(12,2),(13, 1)),((12, 2), (7, 1),(13,2),(8, 1)), 
((12,2), (10, 1),(13, 2), (1 1, 1)). 

Then (S2,P2,L2) is a MPC of order 20 with leave the 1-factor L2 = {{1,6}, {2,3}, 
{4,5}, {(7, 1),(7,2)}, {(8, 1),(8,2)}, {(9, 1),(9,2)}, {(10, 1),(10,2)}, {(11, 1),(11,2)}, 
{(12, 1),(12,2)}, {(13, 1),(13,2)}}. 

We can now consider (Si, PI, L l ) to be a MPC of order m - 5 (mod 8) where m >/21. 
Without loss in generality we can consider LI = (1,2, 3, 4, 5, 6) and $1 = { 1,2, 3, 4, 5, 6} U 
X U Y ,  where X={7,8 ,9 ,10,11,12,13}.  Now set S 2 = { 1 , 2 , 3 , 4 , 5 , 6 } U ( Z x  {1,2}), 
Z = X  U Y, and define a collection of 4-cycles P2 as follows: 
(1) Define a copy of (S~, P~ ) on { 1,2, 3, 4, 5, 6} U (Z x { 1 }) and place these 4-cycles 

in P2; 
(2) place the 27 4-cycles in (2) tbr the case m = 13 above in P2; 
(3) let oc EX and let ({oc} U Y,P[) be a 4-cycle system and for each 4-cycle ( e , f ,  9, 

h) E P2*, place the three 4-cycles ((e, 2), ( f ,  2), (g, 2), (h, 2)), ((e, 2), ( f ,  l ), (g, 2), 
(h, 1)), and ((e, l ) , ( f ,Z) , (g ,  1),(h, 2)) in P2; and 

(4) partition the complete bipartite graph with parts ( X \ { e c } ) x  {2} and Y x {1}, 
(ii) {1,2,3,4,5,6} U((X\{oc})  x {1}) and Y × {2}, and (iii) (X\{oo}) x {2} and 
Y × {2} into 4-cycles and place these 4-cycles in P2. 

Combining (1) - (4)  gives a MPC (S2,P2,L2) of order 2 m - 6  with leave the union 
of the leave in part (2) of the m = 13 case along with {(y, 1),(y, 2)] y E Y}. 
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Lemma 3.1 can be used to extend (S2,P2,L2) to a MPC of order 2t for every 
2 t~>2m-  6. [] 

Lemma 5.4. A M P C  of order m -  7 (mod 8) can be embedded in a MPC of order 
2t i f  and only i f  2t >>. 2m - 4. 

Proof. Let ($1 ,P1 ,L1 ) be a MPC of order m ~- 7 (mod 8) with leave a 5-cycle. Then any 
MPC of order 2t containing (Sj,PI) can use at most 2 edges of  Li in the leave. Hence 
2 t~>2m-4 .  We begin by handling the case m = 7  separately. Let (S1,P1,Lt) be a 
MPC of order 7, where Sj = { 1,2, 3, 4, 5, 6, 7} and L~ = (1,3, 4, 5, 2). Let X = {5, 6, 7}, 
$2 = {1,2,3,4} U(X x {1,2}), and define a collection of  4-cycles P2 as follows: 
(1) Define a copy of(S1,Pi,Lj)  on {1,2,3,4} U(X x {1}), with leave (1,3,4,(5, 1),2) 

and place these 4-cycles in P2; and 
(2) place the following six 4-cycles in P2 : ((6,2),(7,2),3,  1),(4,(5, 1),2,(5,2)), ((6,2), 

(5,2),(7,2),(5,  1)), ( (7,2) ,4 ,(6,2) ,2) , (1,(5,2) , (6,  1),(7,2)), and ((5,2),3,(6,2),  
(7, 1)). 

Then (S2,P2,L2) is a MPC of order 10 with leave the 1-factor 

L2 = {{ 1,2}, {3, 4}, {(5, 1 ), (5, 2)}, {(6, 1 ), (6, 2)}, {(7, 1), (7, 2)}}. 

We now consider (S1,P1,L1) to be a MPC of order m ~-7 (mod 8) where m ~> 15. With- 
out loss in generality we can consider L j = ( 1, 3,4, 5, 2) and $1 = { 1,2, 3, 4} U X U Y, 
where X = {5, 6, 7}. Let $2 = { 1,2, 3, 4) U (Z x { 1,2}), Z = X U Y, and define a collec- 
tion of 4-cycles P2 as follows: 
( 1 ) Define a copy of (Sj, P1 ) on { 1, 2, 3, 4} U (Z x { 1 }) and place these 4-cycles in P2; 
(2) place the six 4-cycles in (2) in the case m = 7 above in P2; 
(3) let ({5 } U Y, P~*) be a 4-cycle system and for each 4-cycle (e, f ,  9, h) E P2*, place 

the three 4-cycles ((e, 2), ( f ,  2), (9, 2), (h, 2)), ((e, 2), ( f ,  1 ), (9, 2), (h, 1 )), and ((e, 1 ), 
(f ,2),( ,q,  1),(h,2)) in P2; and 

(4) partition the complete bipartite graph with parts (i) (X\{5})  x {2} and Y x {1}, 
(ii) {1 ,2 ,3 ,4)U {(6, 1),(7,1)) and Y x {2}, and (iii) {(6,2),(7,2)} and Y x {2) 
into 4-cycles and place these 4-cycles in P2. 

Combining (1), (2), (3), and (4) gives a MPC (S2,P2,L2) of order 2m - 4 with 
leave the union of the leave in part (2) of the m : 7 case along with {{(y, 1), (y,2)} [ y 
E Y}. Lemma 3.1 can be used to extend (S2,P2,L2) to a MPC of order 2t for every 
2t >~ 2m - 4 .  D 

6. Odd into odd 

We will show that a MPC of odd order m can always be embedded in a MPC of 
order m + 2 ,  with the one exception when m - 5 ( m o d 8 )  and the leave is a pair of 
disjoint triangles. In this case the best possible result is m + 4. Combining this with 



H.-L. Fu, CC LindnerlDiscrete Mathematics 183 (1998) 103-117 113 

Lemma 3.1 shows that a MPC of odd order m can be embedded in a MPC of order 
m + 2t for every t>~l, except when m = 5 ( m o d g )  and the leave is a pair of disjoint 
triangles. In this case we can obtain an embedding of size m + 2t for every t >7 2. 

The necessary conditions are transparent in every case except m = 5 ( m o d g )  with 
leave a pair of disjoint triangles. A routine computation takes care of this. We will 

break the proof into four parts. 

Lemma 6.1. A M P C  of" order m -= 1 (mod 8) can be embedded in a M P C  of  order 

m + 2 .  

Proof. Let (Si, P1,LI = 4)) be a MPC of order m -= 1 (mod 8). Let $2 = {~x~l, cxD2} U $1 
and define a collection of 4-cycles P2 as follows: (1) P~ C_ P2; and (2) partition the 
complete bipartite graph with parts {~x~1,~2} and $1 \{~}  (where ~ is any element 
in SI) into 4-cycles and place these 4-cycles in ~ .  

Then ($2, P2,L2) is a MPC of order m + 2 with leave the triangle C x:, cxD1, oc2). [] 

Lemma 6.2. A M P C  of  order m-= 3 (rood 8) can be embedded in a M P C  q{" order 

m + 2 havino each of  the three possible leaves, except Jor the case m = 3. In this case 

only a bowtie is possible. 

Proof. We break up the proof into three parts depending on the leave. Trivially, only 
a bowtie is possible when m ~ 3. So we assume that m >~ 1 1 in what follows. 

Leave a bowtie. Let (S1,PI,LI) be a MPC of order m_=3(modg) with leave the 
triangle (a, b, c). Let $2 = {vet, ~2} U St and define a collection of 4-cycles as follows: 
(1) P1 C_P2; and (2) partition the complete bipartite graph with parts {oc l ,~2}  and 
Sl \ {a}  into 4-cycles. Then ($2, Pz,L2) is a MPC of order m + 2 with leave the bowtie 

( ~ l ,  ~x~2,a), (a,b,c). 
Leave 2 disjoint triangles. Exactly the same as the bowtie case except partition the 

complete bipartite graph with parts {~x:,, oc2} and Si \{d}, d $ {a, b, e}, into 4-cycles. 
The leave is then the pair of disjoint triangles (~xzl,~x~2,d) and (a,b,c). 

Leave a 6-cycle. Let (SI,P1,LI) be a MPC of order m ~ 3 ( m o d g )  with leave the 
triangle (a,b,c). Let S 2 : { c x : L , ~ 2 } U S I ,  d # e E S , \ { a , b , c } ,  and define a collection 
of 4-cycles as follows: 

(1) P1 C_P2; 
(2) (OCl,CXD2,a,c) and (ool,e, cx~2,b)EP2; and 
(3) partition the complete bipartite graph with parts { ~ 1 , ~ 2 }  and S l \ {a ,b , c ,d , e}  

into 4-cycles and place these 4-cycles in P2. Then (S2,Pz,L2) is a MPC of order 
m + 2 with leave the 6-cycle (<x~l,a,b,c, cx~2, d). 

Combining the above three constructions completes the proof. [] 

Lemma 6.3. A M P C  of  order m-= 5 (mod 8) with leave a bowtie or 6-cycle can be 

embedded in a M P C  of  order m + 2. I f  the leave is a pair of  disjoint trianoles it can 
be embedded in a M P C  q[" order m + 4. 
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Proof. Quite naturally we break the proof up into three cases depending on the leave. 
Leave a bowtie. Let (S1,Pi,Ll) be a MPC of order m = 5 (mod8) with leave the 

bowtie (a,b, cx~), (c,d, cxz). Set $2 = { ~ l ,  e~2} US1 and define a collection of 4-cycles 
as follows: (1) Pl C_P2; (2) place the two 4-cycles (CX~l,e~,c,d) and (cx~2, e~,a,b) in 
P2; and (3) partition the complete bipartite graph with parts {cxD1, cxD2} and Sl \{cx~, a, c} 
into 4-cycles and place these 4-cycles in P2. Then ($2, P2,L2) is a MPC of order m + 2 
with leave the 5-cycle (cx~l, b, cx~, d, cx~2 ). 

Leave a 6-cycle. Let (S1,P1,LI) be a MPC of order m - 5  (mod8) with leave the 
6-cycle (a ,b ,e ,d ,e , f ) .  Set $2 = {cx~l,cxD2} USl and define a collection of 4-cycles as 
follows: (1) PI _CP2; (2) place the two 4-cycles (oc2,c,d,e) and (e~ l , e , f ,a )  in P2; 
and (3) partition the complete bipartite graph with parts {~l,cxz2} and S l \ { c , e , f }  
into 4-cycles and place these 4-cycles in P2. Then ($2, P2,L2) is a MPC of order m + 2 
with leave the 5-cycle (CX~l,O<~2,a,b,c). 

Leave two disjoint triangles. Let (SI,P1,L1) be a MPC of order m = 5 ( m o d 8 )  with 
leave the pair of disjoint triangles (1,2,3) and (4,5,6). Let $2 = {a,b,c,d} US1 and de- 
fine a collection of 4-cycles P2 as follows: (1) P1 C_P2; (2) the seven 4-cycles (a, 1,3,b), 
(c,4,6,d), (a, 3,d,4), (1,b, 5,d), (c, 3,2, 1), (b,4,5,6), and (a,2, c, 6)EP2; and (3)par- 
tition the complete bipartite graph with parts S1\{1,2,3,4,6} and {a,c} into 4-cycles 
and place these 4-cycles in P2; and (4) partition the complete bipartite graph with 
parts $1\{1,3,4,5,6} and {b,d} into 4-cycles and place these 4-cycles in P2. Then 
(S2,P2,L2) is a MPC of order m + 4 with leave the empty set (= a 4-cycle system). 

Putting the above three arguments together completes the proof of the lemma. [] 

Lemma 6.4. A M P C  of order m ~ 7 (mod 8) can be embedded in a M P C  of order 
m + 2 (4-cycle system). 

Proof. Let (Si, P1, L l ) be a MPC of order m = 7 (mod 8) with leave L l = (a, b, c, d, e). 
Let $2 = {e~l, ~2} t_JSl and define a collection of 4-cycles as follows: (1) P1 C_ P2; 
(2) place the three 4-cycles (~ l ,a ,b , c ) ,  (~2 ,a ,e ,d) ,  and (~ l , e~2 ,e ,d )  in P2; and 
(3) partition the complete bipartite graph with parts {~,cx~2} and Sl\{a,b,c}  into 
4-cycles and place these 4-cycles in P2. Then (S2,P2,L2) is a MPC of order m + 2 
(= a 4-cycle system) with leave the empty set. [] 

We can now combine Lemmas 6.1, 6.2, 6.3, and 6.4 along with Lemma 3.1 into the 
following corollary. 

Corollary 6.5. A M P C  of odd order m can be embedded in an M P C  of  order m + 2t 
with all possible leaves for every t >~ 1 with the following exceptions. I f  m : 3 and 
t = 1 only a bowtie is possible. I fm  - 5 (rood 8) with leave a pair of  disjoint triangles, 
the embedding is all m + 2t for every t >12 (all possible leaves). 

Proof. The proof is immediate in all cases except for m = 5 (rood 8) with leave a pair 
of disjoint triangles. In this case we first obtain an embedding of size m + 4 and then 
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go up by  2s us ing a leave other than a pair o f  disjoint tr iangles when  m + 2 t -  5 

(rood 8). [] 

7. Summary of embeddings as a partial 4-cycle system 

Combin ing  the results in Sections 2 - 6  gives the fol lowing theorem. 

Theorem 7.1. The necessary conditions to embed a M P C  o f  order m (considered as 

partial  4-cycle sys tem)  in a M P C  o f  order n are sufficient. 

Table 1 

m = i  

(mod 8) 

Necessary and sufficient conditions for a M P C  of order m (considered 

as a partial  4-cycle system) to be embedded in a MPC of order n 

all even n > _ _ m + 2  

all n---- 1 (mod 8) _> m +  z - 1 (rood 8) where z is the 

smallest possible integer such that  (~) >_ t. 

a l l n _ = 3  ( m o d 8 )  > _ m + x - - 3 ( m o d 8 )  where z is the 

smallest positive integer such that  (~) _> t - 1. 

m e v e n  a l l n = - 5  ( m o d 8 )  > _ _ m + x = 5 ( m o d 8 )  where z is the 

smallest positive integer such that  (~) _> t - 2 (all possible leaves). 

a l l n - 7  (rood 8 ) _ > m + x - 7 ( m o d 8 )  where z is the 

smallest positive integer such that  (3 -> t - 1. 

all even n >_ 2m 

1 all odd n >__ m + 2 (all possible leaves for n - 5 (rood 8)) 

all even n :> 2m - 2 

3 all odd n >_ m + 2 (all possible leaves for n = 5 (rood 8) except for 

n = 5, when only a bowtie is possible) 

all even n > 2m - 4 if the leave is a bowtie or pair of disjoint 

triangles, and all even n _> 2m - 6 if the leave is a 6-~ycle. 

5 all odd n > m + 2 if the leave is a bowtie or a pair of disjoint 

triangles, and all odd n >_ m + 4 if the leave is a pair of 

disjoint t r iangles (all possible leaves for n --- 5 (mod 8)) 

all even n > 2 r n -  4 

7 all odd m -t- 2 (all possible leaves for n - 5 (mod 8)). 
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Table 1 gives a quick easy to read summary of  all of  the embeddings for MPCs 

considered as partial 4-cycle systems; i.e., the leave is not necessarily preserved. 

8. Embeddings with the leave preserved 

As mentioned in Section 2, there are two types of  Doyen-Wi l son  theorems for 

MPCs: one where the MPC is considered as a partial 4-cycle system (and so we don ' t  

care i f  we keep the leave) and the other where the leave is preserved. The second type 

o f  embedding follows immediately from the first with just  a few observations. In the 

case where the leave is preserved, the only possibilities are even into even and odd 

into odd. The following table summarizes the Doyen-Wi lson  Theorem for MPCs with 

the leave preserved. 

The following lemma along with Theorem 7.1 is all that is necessary to verify the 

information in Table 2. 

Lemma 8.1. A M P C  o f  odd order m can be embedded in a M P C  o f  order m + 8t 

with the leave preserved for  every t >~ 1. 

Proof. In the proof  of  Theorem 2.1 replace ( {ec}UX,  CI)  with a MPC ({oc}UX, 
P],L] ). [] 

Theorem 8.2. The inJormation in Table 2 & correct. 

Proof .  The necessary conditions are transparent. The case where m is even follows 

from the remark after the proof  o f  Lemma 3.1. The case m -  1 (mod 8) is identical 

with the case m - = l ( m o d 8 )  in Theorem 7.1. I f  m - 3 ( m o d 8 )  Lemma 8.1 gives an 

embedding for all n - 3 (mod 8). I f  m = 3 only a bowtie is possible for n = m + 2 = 5. 

Table 2 

m = i Necessary and sufficient conditions for a MPC of order m to 

(mod 8) be embedded in a MPC of order n with the leave preserved. 

even all even n > m + 2 

1 all odd n > m + 2 (all possible leaves for n - 5 (mod 8) 

all m --= 3 (mod 8) and all n = 5 (mod 8) (with leaves a bowtie 

3 or 2 disjoint triangles, except  when n = 5 where only a bowtie 

is possible) 

5 all n --_ 5 (rood 8) 

7 all n -- 7 (rood 8) 
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I f  m = 3 ( m o d 8 ) ~ > l l ,  L e m m a  6.2 gives an embedding  o f  order  m + 2 ~ 5 ( m o d S )  

with the leave preserved into a M P C  with leave a bowtie  or two disjoint  triangles. 

L e m m a  8.1 extends this to all n _ = 5 ( m o d S ) > ~ m  + 2. The cases m = 5  or 7 ( r o o d S )  

fo l low immedia te ly  f rom L e m m a  8.1. [] 
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