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Multigrid computation for curve fitting in the 
wavelet domain 

- 
- 

Wen-Jen Ho and Wen-Thong Chang 

A multi-layer multigrid algorithm for curve fitting in the wavelet 
domain is presented. This algorithm is achieved by applying a 
wavelet transform to each grid of the conventional multigrid 
structure. Using a wavelet transform, the convergent rate in each 
grid is improved and the total system can converge more quickly. 
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Introduction: Curve fitting is widely used to derive a smooth curve 
from some known control points. The procedure of curve fitting 
commonly consists of three steps: the first step is to specify the 
known control points [xk, yk]; the second step is to calculate the 
smooth curve [x (t) ,  y (t)] to fit these control points; the third step 
is to sample the resultant curve for rendition. In this Letter, we 
emphasise the second step and discuss a fast algorithm. In curve 
fitting, the desired curve [x ( t ) ,  y (t)] is usually confined by an 
energy function E such as 

E = J’[(z”(t))’ + ( y ” ( t ) ) ’ ]  dt  

+ P C [ ( z . ( t k )  - Z k I 2  + ( Y ( t k )  - Yk)’I (1) 
k € C  

- 
- 

= 1/’1.”(t)l2dt + P C ( X ( t k )  - 2 k I 2  

+ [ / Ie”( t ) l2d t  + P C ( Y ( t k )  - Y k Y  ] 
k E C  

(2) 

= E, + E1, ( 3 )  

k E C  

where x” ( t )  denotes the second derivative of x ( t )  with respect to 
t. C is the set of control points. The first term of eqn. 1 specifies 
how smooth the curve is; the second term specifies how well a 
curve fits the control points [xk, yk] .  The parameter p determines 
the relative strength between these two factors. The function E 
considers both the x and y directions simultaneously, where E, 
confines the curve along the x direction and E, along the y direc- 
tion. Since both of the terms are non-negative and independent, 
minimisation of E can be carried out by minimisation of E, and 
Ey,, separately. Since E, and E,, have the same form, only the min- 
hsa t ion  of E, is considered. The same method can be applied to 
the minimisation of E,. 

A parametric method has been proposed in [l] to discretise the 
form of eqn. 1. Suppose N bases are considered to expand the 
curve and that the cubic spline @(t) is chosen as the basis function; 
that is, x ( t )  = Zz ’  v,@(t - i). Substitution of this form into E, will 
lead to the quadratic energy function: 

1 
-?AV - vTb + c 
2 

where v is a column vector containing the variables v, to be solved 
and A is a real symmetric matrix called the stiffness matrix, b and 
c are the associated column vector and constant. According to the 
Euler-Lagrange formula, optimisation of this quadratic function 
results in a linear equation system: 

That is, the solution x ( t )  of the curve fitting problem can be 
derived by a linear system. In this Letter, we present an efficient 
method to solve such a linear system, especially when A is sparse 
due to the fmite support of the basis. 

(4) 

A v = b  (5) 

Multi-resolution wavelet transform: The basic idea of our method 
is to apply the multi-resolution wavelet transform [2] to the 

conventional multigrid algorithm [3] when solving the linear sys- 
tem. The purpose of such a transform is to increase the connectiv- 
ity among the elements in v. Since the signal in one-layer of the 
multigrid is a lowpass version of its upper layer signal, the appli- 
cation of the transform to each layer can be implemented with a 
tree-structured filter bank. With a tree-structured transform, the 
vector v is transformed into its wavelet components {vJ, w , , ~ ~  - J l } ,  

where the signal v, is the low frequency component and the details 
w , , ~ = ~ - ~ )  are the high frequency components. We denote the dis- 
crete wavelet transform as v = R i ,  with i containing the wavelet 
components {vJ, w,,~=~-~)}. The matrix R is the QMF matrix 
describing the synthesis filtering in the QMF structure. With this 
transform, the quadratic energy function in eqn. 4 can be rewritten 
as i(R?)T A@?) - (R?)T b + c and the subsequent linear system 
will be 

A v = b  ( 6 )  

where 9 RT AR and 9 R%. The vector b is decomposed into 
{ b I ,  z/, 0=1 - I) 1. 

Multigrid computation: Consider the case of a two-grid algorithm 
with J = 1. Eqn. 6 can be described as the following block matrix 
form: 

AV1 VI AV, WI 

[A,,, AWIW1l [:I = [::I (7) 

If the synthesis filters of the QMF filter banks are chosen as the 
decimation and interpolation fdters in the conventional multigrid, 
then the submatrix equation: 

Avlvlvi = bi ( 8 )  

directly implements the desired coarse grid equation in the conven- 
tional two-grid algorithm. It can be seen that in the wavelet 
domain, the conventional coarser grid structure is already inherent 
in the matrix equation eqn. 7 .  From this fact, we know that eqn. 7 
possesses a hierarchical structure suitable for two-grid implemen- 
tation. Both eqns. 7 and 8 implement the two-layer multigrid in 
the wavelet domain. The desired solution can be obtained by 
transforming ? back to v by v = R i .  The extension of the two-grid 
structure to a multigrid _structure can be carried out by further 
splitting the submatrix A,,, ,  using a tree-structured QMF with 
more than one stage. The advantage of such an approach is that 
the interpolation and decimation operation used in the multigrid 
transform can be done together with the wavelet transform. Also, 
with the use of a tree-structured QMF, the wavelet transform for 
each grid can be achieved with only one operation of the wavelet 
transform in the original finest grid. Thus, this structure success- 
fully combines the advantages of the multi-resolution transform 
and the multigrid for best computational gain. 
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Fig. I Curves generated with three different methods after 21 WUs 

a Gauss-Seidel method 
b Multigrid method 
c Our proposed method 
d Final convergent curve 
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Experiment: One numerical experiment is shown to demonstrate 
the performance of the proposed algorithm with a three-stage tree- 
structured (J  = 3) biorthogonal fdter bank. The impulse responses 
of the filter bank are h,, (z) = 1, h, (z) = +(- 1 + 22 - z2), go (2) = 
i ( z - 1  + 2 + 2) and g, ( z )  = T I ,  respectively. Filters h, and h, repre- 
sent the analysis filters; filters go and g, represent the synthesis fd- 
ters. The value of p is set at 10 and the Gauss-Seidel is used as the 
iterative algorithm [4]. For the multigrid computation, the V-cycle 
computation strategy is used [3]. The computation complexity is 
normalised with respect to the number of non-zero elements in the 
system matrix. To consider the computation complexity, one work 
unit (WU) is defined as the cost of performing one iteration of 
eqn. 5 on th_e finest grid. For example, the number of non-zero 
elements of A with J = 3 is - 2.16 times_that for A with J = 0. So, 
the cost of performing one iteration of A on the finest grid is 2.16 
WUs. The curves generated with the proposed method after 21 
WUs are shown in Fig. IC. For comparison, the curves generated 
with eqn. 5 (single-grid) and with the conventional multigrid are 
also shown in Fig. la and b, respectively. Fig. Id shows the fmal 
convergent curve (after 200 WUs with the proposed method). The 
shape of the curve depends on the placement of the control points 
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Fig. 2 Convergence status corresponding to Fig. 1 

a Outer curve of character B in x-direction 
b Outer curve of character B in y-direction 
c Inside curve of character B in x-direction 
d Inside curve of character B in y-direction 
(i) Gauss-Seidel 
(ii) multigrid 
(iii) proposed method 

and is beyond the scope of this Letter. This example clearly indi- 
cates that the convergence rate in solving the linear system can be 
improved by our proposed computation structure. The conver- 
gence status of the energy for these different methods are plotted 
in Fig. 2. In this Figure, the logarithm of the energy is used to 
denote the convergence status. As shown in Fig. 2, our proposed 
method performs better than the multigrid method, which in turn 
performs better than the single grid method. 

Conclusion: A multi-resolution multi-layer algorithm is proposed 
to solve the linear equation for the curve fitting problem. The con- 
vergent rate improvement in generating the parametric curve has 
been shown. The algorithm is very general and can be applied to 
problems with a similar linear property. 
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Signal-adapted wavelet filter bank design 

Susu Yao 

A method for designing wavelet fdter banks that are adapted to 
the given signal is proposed. The method is based on optimising a 
certain cost function with constraint conditions. Gradient-descent 
optimisation techniques are not adequate for the minimisation of 
such a cost function. Evolutionary programming is used to resolve 
ths  difficult optimisation problem. Simulation results are given. 

Introduction: Wavelet-type multiresolution transforms have been 
introduced recently in digital speech and image coding [l]. The 
wavelet transform of a given signal may be interpreted as the 
decomposition of a signal into a set of frequency channels which 
have equal bandwidth on a logarithmic scale. The wavelet decom- 
position can be realised using orthonormal multirate fdter banks 
[2, 31. This Letter is mainly concerned with the problem of 
designing optimal wavelet fdter banks that are adapted to the 
given signal, in the sense that they maximise the energy of the pro- 
jection of the signal on the low frequency band. In other words, 
this problem is based on optimising a certain cost function with 
the constraint conditions. Because the cost function is not strictly 
convex or concave, generally having a number of local minima, it 
is difficult to use gradient-descent optimisation techniques to min- 
imise the cost function. To resolve ths  problem, a kind of guided 
random technique called evolutionary programming is used in our 
approach. The design method of orthogonal wavelet fdter banks 
and results are presented in this Letter. 

Discrete orthogonal wavelet Jilter banks: Discrete orthogonal com- 
pactly supported wavelets of support size equal to or less than N, 
where N is an integer, are completely characterised by a lowpass 
filter H with impulse response {hk}  (+Vi2 I: k I: N/2)) and high- 
pass fdter G with impulse response { g k }  (-(,Vi2 + 1 2 k 5 Ni2)). 
The impulse response of fdter G is related to the impulse response 
of fdter H by g, = (-l)l-kh,-k 

Let H(o) and G(o) be the Fourier transform of {hk}  and {gk} , 
respectively. H(o) is defined by 

00 

H ( w )  = hkeCwk (1) 
k = - m  

and G is the quadrature mirror fdter of H, G(w) = cimH(o+~). 
They satisfy the following two orthogonality conditions: 

IH(O)I = 1 IH(7r)I = 0 (2) 

lH(w) /2  + IH(w + .)I2 = 1 (3) 

and 

or equally 

(4) 

Any square integrable signal f can be decomposed into approxi- 
mation and detail signals in multiresolution analysis space, as 
introduced by Mallat [2]. Assuming that A,,J represents the 
approximation signal of the original signal at resolution j ,  the 
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