
294 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 2, MARCH 1998

Runge–Kutta Neural Network for Identification
of Dynamical Systems in High Accuracy

Yi-Jen Wang and Chin-Teng Lin,Member, IEEE

Abstract—This paper proposes the Runge–Kutta neural net-
works (RKNN’s) for identification of unknown dynamical sys-
tems described by ordinary differential equations (i.e., ordi-
nary differential equation or ODE systems) in high accuracy.
These networks are constructed according to the Runge–Kutta
approximation method. The main attraction of the RKNN’s
is that they precisely estimate the changing rates of system
states (i.e., the right-hand side of the ODE_x = f(x)) directly
in their subnetworks based on the space-domain interpolation
within one sampling interval such that they can do long-term
prediction of system state trajectories. We show theoretically
the superior generalization and long-term prediction capability
of the RKNN’s over the normal neural networks. Two types of
learning algorithms are investigated for the RKNN’s, gradient-
and nonlinear recursive least-squares-based algorithms. Conver-
gence analysis of the learning algorithms is done theoretically.
Computer simulations demonstrate the proved properties of the
RKNN’s.

Index Terms—Contraction mapping, gradient descent, nonlin-
ear recursive least square, radial-basis function, Runge–Kutta
method, Vander Pol’s equation.

I. INTRODUCTION

NEURAL networks have been used widely for identifica-
tion of dynamical systems [1], [2]; including feedforward

networks [3], [4] and recurrent networks [5]–[9]. For both
kinds, the identified systems are usually considered as discrete-
time or first-order discretized systems described by ordinary
difference equations. There are several problems in using
such kinds of models for long-term prediction of the states
of unknown dynamical systems which can be described by
ordinary differential equations (ODE’s). First, the accuracy
of long-term prediction is usually not good, especially for
parallel-model prediction where the past predicted values
instead of real system outputs are referred by the networks for
future prediction. This is majorly because the network learns
the system states, instead of the changing rates of system states
(i.e., the right-hand side of ODE), through the input–output
training pairs, and thus cannot catch the long-term behavior
of the identified systems well. Second, larger approximation
errors are introduced in first-order discretizing the continuous
relationships of practical systems. Third, the proper order of
the neural identifier for identifying an ODE system is not easy
to know. Furthermore, the existing neural identifier can only
predict the system behavior well at fixed time interval (using

Manuscript received August 21, 1996; revised April 29, 1997 and November
27, 1997. This work was supported by the R.O.C. National Science Council
under Grant NSC87-2213-E-009-136.

The authors are with the Department of Electrical and Control Engineering,
National Chiao-Tung University, Hsinchu, Taiwan, R.O.C.

Publisher Item Identifier S 1045-9227(98)01812-8.

fixed regular sampling rate). This is not the nature of an ODE
system. Although a high-order discretization is more accu-
rate than the first-order discretization, the resulting ordinary
difference equations of the former are usually complex and
intractable.

In this paper, we present a class of feedforward neural
networks called Runge–Kutta neural networks (RKNN’s) for
precisely modeling an ODE system in the form of
with an unknown , where the state vector is assumed
to be measured noise-free. The neural approximation ofis
used in the well-known Runge–Kutta integration formulas [10]
to obtain an approximation of. With the designed network
structure and proposed learning schemes, the RKNN’s perform
high-order discretization of unknown ODE systemsimplicitly
(i.e., internally in the network) without the aforementioned
complexity and intractability problems. The main attraction of
the RKNN’s is that they can precisely estimate the changing
rates of system states (i.e., the right-hand side of ODE)
directly in their subnetworks based on the space-domain
interpolation within one sampling interval such that they can
do long-term prediction of system state trajectories and are
good at parallel-model prediction. Also, since the RKNN
models the right-hand side of ODE in its subnetworks directly,
some known continuous relationships (physical laws) of the
identified system can be incorporated into the RKNN directly
to speed up its learning. Such kind ofa priori knowledge is not
easy to be used directly in normal neural identifiers. Another
important feature of the RKNN is that it can predict the system
behavior at any time instant, not limited by fixed time step
(fixed sampling time) as the case in normal neural modeling.

An -order RKNN consists of identical subnetworks (each
with identical network structure and weights) connected in
the way realizing an -order Runge–Kutta algorithm. The
subnetwork is a normal neural network such as multilayer
perceptron network or radial basis function network. Each
subnetwork models the right-hand side of ODE directly, and
thus the RKNN can approximate an ODE system in high-order
accuracy. We verify theoretically the superior generalization
and long-term prediction ability of the RKNN’s over the nor-
mal neural networks by providing some quantitative measures
of the errors involved in the RKNN modeling. Associated with
the RKNN’s are two classes of learning algorithms derived by
the gradient-descent method and recursive least-square (RLS)
method, respectively. Especially, a class of RLS algorithms,
called nonlinear recursive least-square (NRLS) learning algo-
rithms, are derived to increase the learning rate and prediction
accuracy of the RKNN’s. The NRLS generalizes the original
RLS to nonlinear cases such that it can tune the parameters

1045–9227/98$10.00 1998 IEEE

WANG AND LIN: RUNGE–KUTTA NEURAL NETWORK 295

in the hidden layers of the RKNN’s (such as the centers
and variances of the radial basis function networks). Several
kinds of NRLS algorithms with different orders of prediction
accuracy are developed. The convergence property of the
NRLS algorithms applied to the RKNN’s is also studied
theoretically.

The rest of this paper is organized as follows. Section II
presents the structure of the proposed RKNN. In this section,
we also analyze the approximation and prediction accuracy
of the RKNN quantitatively in the training and generalization
phases, respectively. Section III derives the gradient learning
algorithms and the nonlinear recursive least-square learning
algorithms with different orders of prediction accuracy for
the RKNN’s. The convergence properties of these algorithms
are also analyzed theoretically in this section. Finally, the
long-term prediction capability of the proposed RKNN’s is
demonstrated on two application examples through extensive
computer simulations.

II. RUNGE–KUTTA NEURAL NETWORK (RKNN)

A. Problem Statement

Consider a nonlinear system described by the following
ODE:

(1)

with initial condition

where the state vector and time . Our
objective is to develop a neural network that can model an
ODE system precisely whose right-hand-side functionis
unknown such that it can do long-term prediction of the state
trajectory of the system described in (1). More notably,
the proposed network is expected to be aparallel-model
predictor; i.e., it uses only the initial system state, , to yield
long-term output, , which is highly accurate prediction of
the state over by feeding the past outputs of
the identifier back to itself recursively.

For further development, the following assumptions are
made.

1) State trajectory belongs to a bounded open domain
of denoted by ; i.e., .

2) The function is a continuous function and satisfies
the Lipschitz condition [11]; i.e., there is a constant
such that for any ,
where is any norm in . Except special indication,
the symbol represents 2-norm in this paper.

3) In the training phase, we can obtain some training state
trajectories , i.e., solution of (1), with different
initial states , where we assume the state vector

is measurable with no-noise at each time step.
4) The continuous system in (1) is time-invariant.

To predict the state trajectory of the unknown system
described by (1), a conventional and popular neural-network-
based approach [1], [3] is to construct a neural network,
say , that directly learns the system state trajectory,
i.e., . We denote such a

network as a direct-mapping neural network (DMNN). This
could be interpreted as a first-order discretization of the ODE
system in (1). Using the DMNN to do multistep prediction
(i.e., long-term prediction) of the system state trajectories has
some drawbacks. First, it cannot directly obtain the function
behavior of . Second, it is usually not easy to obtain
high accuracy for the multistep prediction of state trajectories.
Third, it cannot perform the prediction with variable step size;
i.e., the time step must be a constant value used in the
training phase. The last point may cause inconvenience for
using the neural identifier in practical applications sometimes.

In the next section, we shall propose a class of neural
networks, called RKNN’s, to attack the drawbacks of the
DMNN’s. We shall also develop learning algorithms for the
RKNN such that the function in (1) can be directly
approximated by the neural network, , and then the
state trajectory can be predicted by the solution of

with the same initial point, ,
where .

B. Structure of the RKNN

Before propose the RKNN, we first see a universal approx-
imation property of neural networks; for any system described
by (1) satisfying Assumptions 1)–4), there exists a neural
network such that the identification model described
by can do long-term prediction of the state
trajectory to any degree of accuracy. By the universal
approximation theory of neural networks [12], [13] and the
theory of ODE’s [14], [15], or according to the result in [16],
we have the following lemma.

Lemma 1: Given any solution trajectory of the
system described in (1) with , and a
function satisfying Assumption 2, for any there
exits a neural network such that the trajectory
corresponding to the system ,
satisfies , for all .

The above Lemma shows the existence of a neural network
that meets the required property, but it dose not indicate how
such a network can be obtained. We shall then try to construct
a neural network, RKNN, that fits Lemma 1. The RKNN is
motivated by the Runge–Kutta algorithm [10]. We construct
an -order RKNN to realize the computation flow of an-
order Runge–Kutta algorithm. For example, the structure of
a fourth-order RKNN is shown in Fig. 1, where the neural
network plays the role of the unknown function, ,
in Lemma 1. The input–output relationship of the fourth-order
RKNN is described by

(2)

where

296 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 2, MARCH 1998

Fig. 1. Structure of the fourth-order RKNN constructed by theNf (�) neural networks.

where the neural network , with input and weights
, can be the multilayer perceptron network or the radial basis

function network. It is noted that the four ’s in Fig. 1
are identical, meaning that they have the same structure and
use the same corresponding weights. Since thesubnetworks
of an -order RKNN are identical, only one subnetwork needs
to be realized in either software or hardware implementation.
Hence, the real network size of an-order RKNN is the same
as that of its constituent subnetwork.

With the supervised learning algorithms developed in the
next section, we can tune the weights,, of by
training the corresponding RKNN on the training trajectories
obtained from the identified system described in (1). When the
total prediction error is sufficiently small or the weight vector

converges to , we can obtain a RKNN, , which
approximates the continuous function of the system in
(1) accurately. It can be expected that the RKNN’s have
higher prediction accuracy than the DMNN’s according to
the property of Runge–Kutta algorithm [17], [18]. In the
followings, we shall show the degree of accuracy theoretically.

We now show quantitatively that the RKNN has higher
prediction accuracy and better generalization capability than
the conventional DMNN that uses a single in Fig. 1. In
the following analysis, we assume that is a -times
continuously differentiable function (i.e.,). To
simplify the accuracy analysis of the RKNN in the training
phase and generalization phase, we shall focus on the second-
order RKNN and consider one-dimensional input . The
following notation will be used frequently in the analysis:

as

which means that there exists a positive constantsuch that
as sufficiently close to zero.

Lemma 2: Consider one-step prediction of the system
at using a second-order RKNN

Suppose for all . Then
can approximate to the following accuracy:

Proof: The output of the system in (1) with initial
condition is

(3)

The output of the second-order RKNN with input is

(4)

The magnitude of the difference of the above two output values
is

(5)

From the assumption that for
all , we have

and thus

This completes our proof.

WANG AND LIN: RUNGE–KUTTA NEURAL NETWORK 297

Remark 1: For the DMNN , suppose
we obtain the network output accuracy to the third order (i.e.,

. This accuracy order is the
same as that of in the RKNN assumed in Lemma 2.
Since we usually estimate the continuous function
simply by a causal one-step prediction method,

, we can only achieve the first-order
approximation accuracy in predicting the continuous function

using the DMNN, i.e., .
Remark 2: Under the same assumptions made in Lemma

2, if and do not grow rapidly and is sufficiently
small, we can have . Hence
the one-step prediction accuracy of the second-order RKNN
is better than that of the DMNN.

Lemma 3: Suppose the DMNN and second-order RKNN
reach perfect approximation in the training phase, i.e.,

and for all ,
where are input–output training
pairs obtained from the system described in (1). Then in the
generalization phase, if we apply to the
inputs of the DMNN and second-order RKNN, the output
prediction errors of these two networks to the first-order in

and are, respectively,

and

Proof: The solution of the system described in (1) can
be written as

(6)

In generalization phase, we have

for . The last equality comes from (6). By the
assumption that , the DMNN’s output

with input is

Hence the DMNN’s prediction error to the first order in
and is

By the assumption that , the output of the
second-order RKNN is

Hence the second-order RKNN’s prediction error to the first
order in and is

(7)

This completes our proof.
Remark 3: From Lemma 3 and in the situation that

and fit to the same order of accuracy, it is clear that
the second-order RKNN has better generalization capability
than the DMNN and we can expect that this is even true for
the higher order RKNN’s.

III. L EARNING ALGORITHMS FOR THERKNN

In this section, we shall develop learning algorithms for the
RKNN. Consider an initial state and a trajectory

which is the solution of system
corresponding to the initial state . At each time step , we
get the sampling data,

, where is sufficiently small. We collect
for several different initial states (i.e., several

298 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 2, MARCH 1998

different trajectories) as training data of the RKNN. By the
learning algorithms developed in this section, the weightsof

in the RKNN are tuned such that the outputs
of the identified system , can
approximate the solution of

, for all in some fixed interval .

A. Gradient Learning Algorithms

The generalized gradient descent (backpropagation) rule can
be used to derive learning algorithms for the RKNN with
each subnetwork being the multilayer perceptron, radial
basis function network or other proper neural networks. In
this section, we shall develop gradient learning algorithms for
the fourth-order RKNN. The output of the fourth-order RKNN
with input is described in (2). The derivation of gradient
learning algorithms for other order RKNN’s can be done in
a similar way.

The derived gradient learning algorithm can propagate
the error gradients backward in the RKNN to minimize
the squared error, , at time
step . A recursive update rule is expressed as follows. We
consider as a function of and , and denote

and , where
is the input state vector at time stepand is the th
component of . Differentiating (2) with respect to the weight

, we have

(8)

where

Hence

(9)

We shall next derive and in the case that
is a radial basis function network (called theradial-basis-type

RKNN). With these derivatives, we can apply the formulas,
(8) and (9), to find the error gradient directions in the weight
space to update the weights. The same procedure can also be
used to derive the gradient learning algorithm for the RKNN
with the subnetwork being a multilayer perceptron.

In a radial-basis-type RKNN, the constituent subnetwork is
a radial basis function network

(10)

where is the input vector, indicates the th output
of is the total number of radial basis functions in

is the th element of the weight matrix
representing the connection weight from theth radial-basis-
function node to the th output node, and is the radial
basis function defined by

where is the center of a radial basis function, andis
the inverse of variance matrix of theth radial basis function.

Differentiating with respect to weights ,
we obtain as follows:

(scaler)

(vector)

(matrix)

(11)

Similarly, differentiating with respect to the state
, we obtain

...

...
(Matrix)

(12)

Substituting (11) and (12) to (8) and (9) recursively, we can
obtain the gradient directions of. Hence (8) can be used to
update the weights (including of the radial basis
function network in the RKNN.

B. Nonlinear Recursive least-square Learning Algorithms

Because the gradient update rule in (9) for the RKNN’s
is not a batch update method and it is difficult to choose
a proper learning constant, the total error’s convergent rate
of the gradient learning algorithms developed in the last
section is quite small. In this section, we shall develop
faster learning algorithms, thenonlinear recursive least-square
(NRLS) algorithms, for the RKNN’s. Like the nonlinear

WANG AND LIN: RUNGE–KUTTA NEURAL NETWORK 299

least-square method discussed in [19], the NRLS algorithms
generalize the conventional recursive least-square (RLS) algo-
rithms to nonlinear cases. The property comparison between
the gradient algorithms (i.e., the steepest descent method) and
RLS algorithms can be found in [20] and [21]. To minimize the
square error function , the steepest descent method finds
and follows the gradient vector to improve the approximation
accuracy as iteration number increasing. On the other hand, the
RLS method directly solves the roots of equation
to locate the local minimum points directly. It then transforms
the equation of into a regression model defined by

, where represents network weights andis the
regressor. Finally we can use a recursive algorithm to solve
the equation .

In the following sections, we shall derive three different
NRLS algorithms for the RKNN’s for different accuracy levels
and scopes of tunable parameters in . Again, we focus
on the radial-basis-type RKNN’s in the following derivation.

1) Zero-Order NRLS Learning AlgorithmWhen proper ra-
dial basis functions of in the RKNN have been chosen
(i.e., the centers and inverse variance matrices have
been decided and fixed), we only need to tune the weights

on the links connecting the radial-basis-functions nodes
to the output layer of . In this section, we

shall develop the first NRLS algorithm of the RKNN, called
the zero-order NRLS learning algorithm, for this learning task.
Assume we are given training trajectories

from the system with
. From (10), we define

(13)

where is the output of the RKNN. According to (10) and
the RKNN structure described in (2), the output of the
RKNN with input at time step can be written as

(14)

where is the th radial basis function, is the connection
weight between the node to the output node of , and

are the outputs of the subnetworks in the
RKNN defined by (2). In Appendix, we derive the regression
form of in (14) such that we can solve
the connection weights ’s using the nonlinear least-square
method in [19].

With the regression form, , of
derived in Appendix and according to the RLS method, we find

that minimization of (13) is equivalent to finding the solution
of the following equations in the least-square sense:

...

...

...

...

...

...

(15)

If we let

then (15) can be expressed as
. Notice that the problem of solving (15) is a nonlin-

ear least-square problem, because the regression matrix
is a function of parameter .

Analogous to the derivation of the nonlinear least-square
method in [19], we combine the fixed point method in [22]
and the RLS algorithm to find the solution of (15) in the
least-square sense. We denote this method as the zero-order
NRLS algorithm for the RKNN’s. This algorithm is listed
as follows.

Step 1) Choose initial weights and set .
Step 2) Substitute into the regression matrix to get

.
Step 3) Use RLS algorithm to solve

to get the solution .
Step 4) Let .
Step 5) If the sequence converges, then stop; other-

wise, set and go to Step 2).

The sufficient conditions for the convergence of the nonlin-
ear least-square method are given in [19]. We shall now study
the convergence property of the above zero-order NRLS learn-
ing algorithm by showing that the radial-basis-type RKNN’s
own the required sufficient conditions in [19]. First, let us see
some definitions and lemma that will be used in our proof [22].

Definition 1: Let be an operator mapping into .
Then is called a fixed point of , if .

Definition 2: Let be a neighborhood of
defined by . Then an operator

is said to be a contraction mapping in
, if there exits a constant such that

for all , where
is a contraction factor.
Lemma 4: Let be an operator from to . Assume
is a contraction mapping with the contraction factor in

, where . Then the sequence
converges to a fixed point .

The proof of the above lemma can be found in [22]. The fact
in Lemma 4 is also given in [22, Th. 6.2.2].

We shall then study and prove the convergence property
of the proposed zero-state NRLS learning algorithm applied
to the radial-basis-type RKNN’s. To simplify the analysis, we
consider the second-order RKNN with single state variable,

300 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 2, MARCH 1998

i.e., . According to the structure of the second-order
RKNN, we have

If we neglect the term and substitute the above equation
to (15), then we have

...

...
(16)

where ,
and

where .
If we let

...

...

be an matrix and

...

be an matrix, then (16) becomes

Let . Then we have

...

If is nonsingular, the above equation has the
least-square-sense solution

... (17)

Next if we can show is
a contraction mapping, then according to Lemma 4, we can
find the solution by substituting to the above equation
recursively. To show this, we first take a variation vector, ,
in the neighborhood of and find the following difference:

(18)

where where
Then we have the following lemma.
Lemma 5: Let

, where is defined by (19), shown at
the bottom of the page, and are the training data.
If in the neighborhood of for all

, then
has a fixed point, , in the neighborhood of .

Proof: Let .
Consider the following equation:

(20)

By (18), we know that for any close to and for the th
diagonal component of , we have

, where . If we take
the maximum norm of each diagonal element of, we have

where Hence by Definition
2, (20) is a contraction mapping and by Lemma 4 or by
Theorem 6.2.2 in [19], has a fixed point in the neighborhood
of . This completes the proof.

If is nonsingular, then because is a function
of , (17) is a contraction mapping for sufficiently small.
Again, by Lemma 4 it is sure that will converge to a fixed
point . Although the convergence property of Lemma 5 is
proved for the second-order RKNN’s, it can be expanded to the
fourth-order RKNN’s or even higher order RKNN’s directly.

2) First-Order NRLS Learning AlgorithmDue to the non-
linearity of the radial basis function network with respective to
the center vector and inverse variance matrix , it cannot
put into the regression form such as (15) with respective to
and . Hence the zero-order NRLS algorithm derived in the

(19)

WANG AND LIN: RUNGE–KUTTA NEURAL NETWORK 301

above section cannot be applied directly to tune the center and
variance of the radial basis function subnetwork in the RKNN.
In this section, we shall derive another NRLS algorithm that
can update output weights, centers, and variances of the radial
basis functions simultaneously. This algorithm is called the
first-order NRLS learning algorithm. The key point is to let
the problem of minimizing

be approximated by minimizing , which is the
square error between the desired output and the output of
linearly approximated neural network at the weight
parameters at time step , where is a radial-basis-
type RKNN. If we let be the first-order approximation
of then we have

(21)

where denotes the parameters (including the output
weights, center vectors, and variances) of the radial basis
functions.

By using the similar techniques in Section III-B1, we can
solve the following equation to minimize (21):

...

...

...

...

(22)
in the least-square sense and update the parameters by

(23)

where is the least-square solution of (22).
To compute the term in (22), we need to use the

recurrent algorithm described in (8) to obtain the regression
form of (22). When converges to a vector is an
approximated solution which minimizes, where is the
approximated square error of (13).

3) Second-Order NRLS Learning AlgorithmSimilar to the

concept in Section III-B2, let be the second-order approx-
imation of described by (13). Its accuracy will be better
than the accuracy of which is the first-order approximation

of (13). With , we can derive a second-order NRLS learning
algorithm that can also tune the output weights, centers, and
variances of the radial-basis-type RKNN’s simultaneously.

The second-order approximation of is

(24)

The regression form of (24) at theth time step is

...

...

...

...
(25)

The solution of (25) can be obtained by repeatedly using the
fixed point method described in Section III-B1. Let
denote a solution of (25) in the least-square sense at theth
time step, and then updatein the next time step by

If converges to , then is the least-square solution
of (13). Notice that in (24) can be the output weights,
centers, or variances of a radial basis function subnetwork

.
The use of the second-order NRLS learning algorithm for

training the RKNN has some computation problems. If we
want to obtain the second-order derivative of , we
need to compute the coupled term and the second

derivative for ; i.e., . This will increase the computation
complexity and loading. In the simulations of the next section,
we shall neglect the coupled terms. We shall also compare the
approximation accuracy of the first and second-order NRLS
learning algorithms by the simulations.

IV. SIMULATIONS

In this section, we shall apply the RKNN’s to model two
ODE systems with unknown structures. From the simulations,
we shall demonstrate some good properties of the RKNN
including its high accuracy in long-term prediction, and good
prediction power even for adaptively changing time step. In
modeling ODE systems,a priori knowledge about the structure
of the modeled systems, if available, can be incorporated into
the RKNN to speed up the learning and simplify the network
structure (e.g., small node number). Such knowledge can be
possibly obtained from nature’s physical law. The learning
algorithms developed in Section III will be used to train the
RKNN’s in the following two examples. The subnetwork
of the RKNN’s in the following simulations will be the radial
basis function network. The initial centers of the radial basis
functions are chosen to be uniformly distributed in the input
space, and the variances are decided by equally overlapping
principal.

Example 1: Consider a second-order system, known as
Vander Pol’s equation

with

(26)

302 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 2, MARCH 1998

Fig. 2. Predicted trajectories of the RKNN(� � �) with time steph = 0:09 and desired trajectories(�) in Example 1, where the initial conditions
are (2;�1) and (�2;1).

where . Assume that we do not know the structure
(equation) of this system, but we can measure the position
and velocity noiselessly at each time step, where
second. Let denote a solution of
(26) at time step , where . Let
be the set of collected trajectories, whose initial states are
uniformly distributed in the region of space. Using

as a training set to train the parameters of , four
of which constitute the RKNN, we can obtain a RKNN that
approximates Vander Pol’s system described by (26) for any
initial condition belongs to .

For representation clarity, let be denoted by and
by , then . Here the

network can be considered as a mapping from to
, and network will identify the variable

, where

is the weighted sum of radial basis functions’s.
In the simulations, the training setcontains 41 training tra-

jectories whose initial states are uniformly distributed
in a square region . In the training
phase, we first use the gradient learning algorithm to tune the
parameters , , , , until the error between training
trajectories and the RKNN output trajectories cannot be further
reduced. We then fix ’s and ’s, and use the zero-order
NRLS algorithm to tune the weights to converge to the
solution, . The use of NRLS algorithm can further reduce
the errors between the desired values and RKNN outputs over
the whole training set .

To compare the prediction accuracy of the RKNN and
DMNN, we use a DMNN, , to do the same mod-
eling task. The used is also a radial basis func-
tion network, which has the same number of nodes as the

of the RKNN in the above simulations. After
training the using the same procedure for training
the RKNN (i.e., gradient learning followed by zero-order
least-square learning), we test the long-term parallel-model
prediction capability of the trained RKNN and DMNN in
the generalization phase. In this phase, the two networks are
test on a collection of different initial states distributed in.
Table I lists the average root-mean-square (rms) errors of long-
term prediction over 100 time steps under the test initial states.
The results indicate that the RKNN has much better long-
term prediction capability than the DMNN. Fig. 2 shows the
predicted trajectories of the RKNN using time step
in the generalization phase, instead of used in the
training phase. As shown in Fig. 3, the trained DMNN cannot
correctly predict the trajectories with time step . This
illustrates that the RKNN can perform the prediction well even
with variable time-step size.

Example 2: In this example, we apply the RKNN to model
the trajectory of a vertically falling body. Assume a radar
had tracked and recorded two different scenarios trajectories,

, of a falling body starting at two different initial
conditions, where the trajectory indicates the falling
body’s altitude position and vertical velocity at
time ; i.e., is a trajectory in the
space. These variables are defined in Fig. 4. In the simulations,
we assume that the trajectory data are governed by the

WANG AND LIN: RUNGE–KUTTA NEURAL NETWORK 303

TABLE I
COMPARISON OF RMSPREDICTION ERRORS OF THERKNN AND DMNN OVER 100 TIME STEPS FOR THEVANDER POL’S SYSTEM IN EXAMPLE 1

Fig. 3. Predicted trajectories of the DMNN(� � �) with time steph = 0:09 and desired trajectories(�) in Example 1,where the initial conditions
are (2;�1) and (�2;1).

following system equations:

(27)

where (drag coefficient),
(air density), with two initial conditions as

ft ft/s) and (
ft ft/s).

Under the assumption that the knowledge about (27) is
unknown, the problem is to design an RKNN, ,
where , which can be used to approximate the
system described in (27) and predict the long-term behaviors

304 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 2, MARCH 1998

Fig. 4. Geometry of the falling body problem in Example 2.

of falling trajectories with different initial conditions. In this
example, we shall demonstrate two RKNN’s constructed by
two neural networks, and , respectively. The
network is constructed according to the physical law of
falling body; that is, the drag force is proportion to the square
of velocity. Its structure is shown in Fig. 5(a). The second
network is a normal radial basis function network
shown in Fig. 5(b). We use the first-order and second-order
NRLS learning algorithms developed in Section III to tune the
weights and variances of radial basis functions simultaneously
until the outputs of the RKNN converge to the training
trajectories . To compare the prediction accuracy
of the RKNN and DMNN, we use a DMNN as shown
in Fig. 5(c) to do the same learning task. The DMNN has the
same structure as .

In the prediction tests, we test the three trained networks,
two RKNN’s and one normal radial basis function network, on
three different initial conditions around the region of training
trajectories . Using the same training data and
same training method (the zero-order NRLS algorithm), the
rms of prediction errors on each case is listed in Table II.
Notice that, in Table II, the trajectories with initial points
(200, 16) and (300, 20) are training trajectories, and that
with initial point (300, 15) and that with initial points (200,
21) and (300, 22) are interpolative and extrapolative testing
trajectories, respectively. The results show that has
better extrapolation and interpolation capability than
and , and is more accurate than .

We next use the first-order and second-order NRLS learn-
ing algorithms to tune the weights and variances of the
RKNN with simultaneously. The results are shown
in Table III, in which we compare the long-term predic-
tion accuracy of different learning algorithms for the RKNN
with , including gradient learning algorithm, zero-order
NRLS, first-order NRLS, and second-order NRLS learning
algorithms. As compared to Table II, we find that the higher-
order NRLS schemes improve the prediction power of the
RKNN greatly, especially in the divergence case with initial

(a)

(b)

(c)

Fig. 5. Structures of the RKNN’s and DMNN used to predict the behavior
of a falling body in Example 2. (a) The network constructed by the physical
law of falling body. (b) The normal radial basis function network. (c) The
direct-mapping neural network.

TABLE II
COMPARISON OF RMSPREDICTION ERRORS OF THERKNN’s

AND DMNN USING THE SAME ZERO-ORDER NRLS
LEARNING ALGORITHM IN EXAMPLE 2 (UNIT �103 FT)

condition ft, ft/s). In
this case, the RKNN constructed by and trained by
the zero-order NRLS algorithm cannot predict the trajectory
successfully. Figs. 6 and 7 show the long-term predicted
trajectories of the RKNN with trained by the first and
second-order NRLS learning algorithms, respectively. Fig. 8
shows the prediction capability of the RKNN with
trained by the zero-order NRLS algorithm. It is observed that
due to thea priori knowledge incorporated in the RKNN with

, the RKNN can predict well even using the simple
gradient learning algorithm followed by the zero-order NRLS
learning algorithm.

V. CONCLUSION

In this paper, we constructed an RKNN for identification
of ODE systems with unknown right-hand-side functions. We
also derived two classes of learning algorithms for training
the RKNNs; gradient learning algorithms and NRLS learning
algorithms. The NRLS is a generalization of the recursive
least-square algorithm to nonlinear cases such that it can tune
the parameters in the hidden layers of the RKNN’s (such as the

WANG AND LIN: RUNGE–KUTTA NEURAL NETWORK 305

Fig. 6. Predicted trajectories of the RKNN withN2

f (x) trained by the first-order NRLS algorithm in Example 2.

Fig. 7. Predicted trajectories of the RKNN withN2

f (x) trained by the second-order NRLS algorithm in Example 2.

centers and variances of the radial-basis-type RKNN) fastly.
The convergence property of the proposed NRLS algorithms
applied to the RKNN’s was studied theoretically. The RKNN’s
have several good properties. 1) Since the RKNN estimates the
derivative (changing rate) of system states (i.e., the right-hand
side of ODE’s) directly in their subnetworks based on space-
domain interpolation instead of time-domain interpolation, it

can do long-term prediction of the identified system behavior
well and is good at parallel-model prediction. 2) With the de-
signed structure and proposed learning schemes, the RKNN’s
perform high-order discretization of ODE systems with un-
known right-hand-side functionsimplicitly (i.e., internally in
the network) while keeping the simplicity and tractability of
the first-order discretization scheme. 3) The RKNN is shown

306 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 2, MARCH 1998

Fig. 8. Predicted trajectories of the RKNN withN1

f (x) trained by the zero-order NRLS algorithm in Example 2.

TABLE III
COMPARISON OF RMSPREDICTION ERRORS OF THERKNN WITH N2

f (x) TRAINED BY DIFFERENT LEARNING ALGORITHMS IN EXAMPLE 2 (UNIT �103 FT)

theoretically and experimentally to be superior to normal
neural networks in generalization and long-term prediction
capability for the same network size and training procedure.
4) The RKNN needs no tapped delay line or internal memory
for identifying memoryless systems, and thus without the
problems of deciding the length or size of the tapped delay
line or internal memory existent in normal neural identifier.
5) Since the RKNN models the right-hand side of ODE in
its subnetworks directly, some known continuous relationship
(physical laws) of the identified system can be incorporated
into the RKNN to cut down the network size, speed up its
learning, and enhance its long-term prediction capability. 6)
The RKNN can predict the system behavior at any time instant,
not limited by fixed time step (fixed sampling time) as the case
in normal neural modeling. Although the algorithm derivation
and theory proof focused on the fourth-order or second-order
RKNN’s in this paper, they can be generalized to any-order
RKNN’s directly. In future works, we shall focus on the real
parameter aggregates instead of the unstructured parameter
set . From this point of view and because of some of the
parameters have matrix form, it would be interesting to use
Kronecker products (tensor products) and matrix calculus in

the developments in order to get a more compact notation [23].

APPENDIX

This appendix derives the regression form of
in (14). Equation (14) can be written as

WANG AND LIN: RUNGE–KUTTA NEURAL NETWORK 307

Hence we obtain the nonlinear regression form,
, of expanded by radial basis functions

as

where

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
helpful suggestions in improving the quality of the final
manuscript.

REFERENCES

[1] W. T. Miller, R. S. Sutton, and P. J. Werbos,Neural Networks for
Control. Cambridge, MA: MIT Press, 1990.

[2] K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop, “Neural
networks for control systems: A survey,”Automatica, vol. 28, no. 6,
pp. 1083–1112, Nov. 1992.

[3] K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical system using neural networks,”IEEE Trans. Neural Networks,
vol. 1, pp. 4–27, 1990.

[4] Y. Ichikawa and T. Sawa, “Neural network application for direct feed-
back controllers,”IEEE Trans. Neural Networks, vol. 3, pp. 224–231,
1992.

[5] P. S. Sastry, G. Santharam, and K. P. Unnikrishnan, “Memory neural
networks for identification and control of dynamical systems,”IEEE

Trans. Neural Networks, vol. 5, pp. 306–319, 1994.
[6] R. J. Williams, “Adaptive state representation and estimation using

recurrent connectionist networks,” inNeural Networks for Control, W.
T. Miller, R. S. Sutton, and P. J. Werbos, Eds. Cambridge, MA: MIT
Press, 1990.

[7] A. G. Parlos, K. T. Chong, and A. F. Atiya, “Application of recurrent
multilayer perceptron in modeling complex process dynamics,”IEEE
Trans. Neural Networks, vol. 5, pp. 255–266, 1994.

[8] P. J. Werbos, “Backpropagation through time: What it does and how to
do it,” in Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[9] S. W. Piche, “Steepest descent algorithms for neural network controllers
and filters,”IEEE Trans. Neural Networks, vol. 5, pp. 198–212, 1994.

[10] J. D. Lambert,Computation Methods in O.D.E. New York: Wiley,
1973, ch. 4.

[11] F. Caller and C. Desoer,Linear System Theory. New York: Spring-
Verlag, 1992.

[12] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,”Neural Networks, vol. 3, pp.
551–560, 1989.

[13] J. Park and I. W. Sandberg, “Universal approximation using radial-basis-
function networks,”Neural Computa., vol. 3, pp. 246–257, 1991.

[14] I. G. Petrovski,Ordinary Differential Equations. Englewood Cliffs,
NJ: Prentice–Hall, 1966.

[15] E. D. Sontag,Mathematical Control Theory: Deterministic Finite-
Dimensional Systems. New York: Spring-Verlag, 1990.

[16] E. B. Kosmatopoulos, M. M. Polycarpou, M. A. Christodoulou, and P.
A. Ioannou, “High-order neural-network structures for identification of
dynamical systems,”IEEE Trans. Neural Networks, vol. 6, pp. 422–431,
1995.

[17] J. Stoer and R. Bulirsch,Introduction to Numerical Analysis, 2nd ed.
New York: Springer-Verlag, 1993.

[18] V. Lakshmikantham and D. Trigiante,Theory of Difference Equations:
Numerical Methods and Applications. Boston, MA: Academic, 1988.

[19] R. Fletcher,Practical Methods of Optimization, 2nd ed. Chichester,
U.K.: Wiley, 1987.

[20] S. Haykin,Neural Networks. New York: Macmillan, 1994, ch. 7.
[21] G. C. Goodwin and K. S. Sin,Adaptive Filtering Prediction and Control.

Englewood Cliffs, NJ: Prentice-Hall, 1984, ch. 3.
[22] P. Linz, Theoretical Numerical Analysis. New York: Wiley, 1979, pp.

126–136.
[23] A. Weinmann, Uncertain Models and Robust Control. New York:

Springer-Verlag, 1991, ch. 4 and 5.

Yi-Jen Wang was born in Taipei, Taiwan, R.O.C.,
in 1958. He received the B.S. degree from Fu-Jen
Catholic University, Taiwan, in 1981, and the M.S.
degree from the National Tsing-Hua University,
Taiwan, in 1983, both in applied mathematics. He
is currently working toward the Ph.D. degree at the
Department of Electrical and Control Engineering,
National Chiao-Tung University, Taiwan.

From 1983 to 1993 he was an Assistant Re-
searcher in the Chung-Shan Institute of Science
and Technology (CSIST), Taiwan. His current re-

search interests include neural networks, optimal control, and digital signal
processing.

Chin-Teng Lin (S’88–M’91) received the B.S. de-
gree in control engineering from the National Chiao-
Tung University, Taiwan, R.O.C., in 1986 and the
M.S.E.E. and Ph.D. degrees in electrical engineering
from Purdue University, West Lafayette, IN, in 1989
and 1992, respectively.

Since August 1992, he has been with the College
of Electrical Engineering and Computer Science,
National Chiao-Tung University, Hsinchu, Taiwan,
R.O.C., where he is currently a Professor of Electri-
cal and Control Engineering. His current research

interests include fuzzy systems, neural networks, intelligent control, hu-
man–machine interface, and video and audio processing. He is the coauthor
of Neural Fuzzy Systems—A Neuro-Fuzzy Synergism to Intelligent Systems
(Englewood Cliffs, NJ: Prentice-Hall, 1996) and the author ofNeural Fuzzy
Control Systems with Structure and Parameter Learning(Singapore: World
Scientific, 1994).

Dr. Lin is a member of Tau Beta Pi and Eta Kappa Nu. He is also a
member of the IEEE Computer Society, the IEEE Robotics and Automation
Society, and the IEEE Systems, Man, and Cybernetics Society.

