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Runge—Kutta Neural Network for Identification
of Dynamical Systems in High Accuracy

Yi-Jen Wang and Chin-Teng Linviember, IEEE

Abstract—This paper proposes the Runge-Kutta neural net- fixed regular sampling rate). This is not the nature of an ODE
works (RKNN's) for identification of unknown dynamical sys- system. Although a high-order discretization is more accu-
tems described by ordinary differential equations (i.e., ordi- o than the first-order discretization, the resulting ordinary

nary differential equation or ODE systems) in high accuracy. diff - f the f I | d
These networks are constructed according to the Runge—Kutta dIT€rence equations of the former are usually complex an

approximation method. The main attraction of the RKNN's intractable.
is that they precisely estimate the changing rates of system In this paper, we present a class of feedforward neural

states (i.e., the right-hand side of the ODEx = f(x)) directly  networks called Runge—Kutta neural networks (RKNN'’s) for

in their subnetworks based on the space-domain interpolation : ; . .
within one sampling interval such that they can do long-term precisely modeling an ODE system in the formsof= f(x)

prediction of system state trajectories. We show theoretically With an unknown f, where the state vectax is assumed
the superior generalization and long-term prediction capability to be measured noise-free. The neural approximatiofi isf

of the RKNN’s over the normal neural networks. Two types of used in the well-known Runge—Kutta integration formulas [10]
learning algorithms are investigated for the RKNN's, gradient- 15 optain an approximation aof. With the designed network

and nonlinear recursive least-squares-based algorithms. Conver- structure and proposed learning schemes. the RKNN's perform
gence analysis of the learning algorithms is done theoretically. prop g ’ p

Computer simulations demonstrate the proved properties of the high-order discretization of unknown ODE systeimplicitly
RKNN's. (i.e., internally in the network) without the aforementioned
Index Terms—Contraction mapping, gradient descent, nonlin- complexity and intractability problems. The main attraction of

ear recursive least square, radial-basis function, Runge—Kutta the RKNN’s is that they can precisely estimate the changing
method, Vander Pol's equation. rates of system states (i.e., the right-hand side of ODE)

directly in their subnetworks based on the space-domain
interpolation within one sampling interval such that they can
do long-term prediction of system state trajectories and are
N EURAL networks have been used widely for identificagood at parallel-model prediction. Also, since the RKNN
tion of dynamical systems [1], [2]; including feedforwarqyodels the right-hand side of ODE in its subnetworks directly,
networks [3], [4] and recurrent networks [5]-{9]. For bothsome known continuous relationships (physical laws) of the
kinds, the identified systems are usually considered as discréigmtified system can be incorporated into the RKNN directly
time or first-orde_r discretized systems described by (_)rdin?tré(speed up its learning. Such kinda@priori knowledge is not
difference equations. There are several problems in usiggsy (o be used directly in normal neural identifiers. Another
such kinds of models for long-term prediction of the stateg, oriant feature of the RKNN is that it can predict the system
of unknown dynamical systems which can be described Bhayior at any time instant, not limited by fixed time step
ordinary differential equations (ODE's). First, the accuracfiyed sampling time) as the case in normal neural modeling.
of long-term predict_ion is usually not good, especially for A ,-order RKNN consists of identical subnetworks (each
parallel-model prediction where the past predicted valuggy, igentical network structure and weights) connected in
instead of real system outputs are referred by the networks {RE way realizing ann-order Runge—Kutta algorithm. The
future prediction. This is majorly because the network lears,, o ~twork is a normal neural network such as multilayer
the SySte”P states, inst_ead of the changing rates O_f system Stﬁ'&?éeptron network or radial basis function network. Each
(|.e_.,_the rlght-hand side of ODE), through the InpUt_OUtp"étubnetwork models the right-hand side of ODE directly, and
trammg pairs, and thus cannot catch the long-term b.eha\./mrus the RKNN can approximate an ODE system in high-order
of the |deqt|f|ed syste.ms' well. Secqnd, Igr_ger approxmau%curacy. We verify theoretically the superior generalization
errors are mtroduced_ln first-order dlS(_:retlzmg the continuoys | long-term prediction ability of the RKNN's over the nor-
relat|onsh|ps of_pracncgl sy_ste_ms. Third, the proper order al neural networks by providing some quantitative measures
the neural identifier for identifying an ODE system is not eas f the errors involved in the RKNN modeling. Associated with
to know. Furthermore, the existing neural identifier can ontie RKNN’s are two classes of learning algarithms derived by
predict the system behavior well at fixed time interval (usinlg]e gradient-descent method and recursive least-square (RLS)
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in the hidden layers of the RKNN’s (such as the centergetwork as a direct-mapping neural network (DMNN). This
and variances of the radial basis function networks). Sevecaluld be interpreted as a first-order discretization of the ODE
kinds of NRLS algorithms with different orders of predictiorsystem in (1). Using the DMNN to do multistep prediction
accuracy are developed. The convergence property of {e., long-term prediction) of the system state trajectories has
NRLS algorithms applied to the RKNN’s is also studieGome drawbacks. First, it cannot directly obtain the function
theoretically. behavior of f(-). Second, it is usually not easy to obtain
The rest of this paper is organized as follows. Section High accuracy for the multistep prediction of state trajectories.
presents the structure of the proposed RKNN. In this sectiorhird, it cannot perform the prediction with variable step size;
we also analyze the approximation and prediction accuragy. the time steph must be a constant value used in the
of the RKNN quantitatively in the training and generalizatiofyaining phase. The last point may cause inconvenience for
phases, respectively. Section IIl derives the gradient learninging the neural identifier in practical applications sometimes.
algorithms and the nonlinear recursive least-square learningy, the next section, we shall propose a class of neural
algorithms with different orders of prediction accuracy fohetworks, called RKNN's, to attack the drawbacks of the
the RKNN'’s. The convergence properties of these algorithragnN's. We shall also develop learning algorithms for the
are also analyzed theoretically in this section. Finally, th8xnN such that the functionf(-) in (1) can be directly
long-term prediction capal_)ility of the proposed RKNN'’s i%pproximated by the neural networky;(-), and then the
demonstratgd on 'two application examples through extensiye, trajectoryx(f) can be predicted by the solution of
computer simulations. y(t) = Ny(y(t)) with the same initial pointy(0) = xo,

Il. RUNGE-KUTTA NEURAL NETWORK (RKNN) wherey(t) € R™.

B. Structure of the RKNN

Before propose the RKNN, we first see a universal approx-
ﬂwation property of neural networks; for any system described
by (1) satisfying Assumptions 1)-4), there exists a neural

x(t) = f(x(¢)) (1) network N;(-) such that the identification model described
by y(¢t) = N;(y(¢)) can do long-term prediction of the state

trajectory x(¢) to any degree of accuracy. By the universal

x(0) = xo approximation theory of neural networks [12], [13] and the

where the state vectat(t) € %™ and timet e [0,7]. Our theory of ODE's [14], [15], or according to the result in [16],
objective is to develop a neural network that can model d¥¢ have the following lemma.
ODE system precisely whose right-hand-side functjpis =~ Lemma 1: Given any solution trajectory(t;x,) of the
unknown such that it can do long-term prediction of the stafystem described in (1) witko € D,t € [0,7], and a
trajectoryx(t) of the system described in (1). More notablyfunction f(-) satisfying Assumption 2, for any > 0 there
the proposed network is expected to beparallel-model exits a neural networkV,(-) such that the trajectory(¢;xo)
predictor; i.e., it uses only the initial system staté)), to yield corresponding to the system = N;(y(?)),y(0) = xo,
long-term outputy(#), which is highly accurate prediction of satisfies||y(t;xo) — x(#:;Xo)|| < &, forall 0 <t < T..
the statex(¢) overt¢ € [0,7] by feeding the past outputs of The above Lemma shows the existence of a neural network
the identifier back to itself recursively. that meets the required property, but it dose not indicate how
For further development, the following assumptions amuch a network can be obtained. We shall then try to construct
made. a neural network, RKNN, that fits Lemma 1. The RKNN is
1) State trajectory(t) belongs to a bounded open domairmnotivated by the Runge—Kutta algorithm [10]. We construct
of ®™ denoted byD; i.e., x(t) € D,t € [0,T]. an n-order RKNN to realize the computation flow of an
2) The functionf(x) is a continuous function and satisfie®rder Runge—Kutta algorithm. For example, the structure of
the Lipschitz condition [11]; i.e., there is a constdnt a fourth-order RKNN is shown in Fig. 1, where the neural
such that]| f(x) — f(y)|| £ k|lx —y|| for anyx,y € D, network N,(-) plays the role of the unknown functiorfy-),
wherel|-|| is any norm inR™. Except special indication, in Lemma 1. The input—output relationship of the fourth-order

A. Problem Statement

Consider a nonlinear system described by the followinI
ODE:

with initial condition

the symbol||-|| represents 2-norm in this paper. RKNN is described by
3) In the training phase, we can obtain some training state ) 1
trajectoriesx(t; xq), i.€., solution of (1), with different y(i+1) =y@)+ gh(ko +2k; +2k2 +ks)  (2)

initial statesxy € D, where we assume the state vectgfhere
x(t) is measurable with no-noise at each time step
4) The continuous systerfi(-) in (1) is time-invariant.

To predict the state trajectory of the unknown system k; = N; <y(i)+1hk0;w>
described by (1), a conventional and popular neural-network- 2
based approach [1], [3] is to construct a neural network, ky = Ny <y(i)+1hk1'w)
say Ny(-), that directly learns the system state trajectory, 2

i.e., x(ih;xo) = Np(x((i — 1)h);x0). We denote such a ks = N(y(i) + hko;w)
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Fig. 1. Structure of the fourth-order RKNN constructed by tNe(-) neural networks.

where the neural networK ;(x; w), with inputx and weights Proof: The output of the system in (1) with initial
w, can be the multilayer perceptron network or the radial basiendition z(¢) is
function network. It is noted that the fol¥,(x;w)’s in Fig. 1

are identical, meaning that they have the same structure an@(i +1)

use the same corresponding weights. SincexitBabnetworks

of ann-order RKNN are identical, only one subnetwork needs = (¢) + &|.¢:) - h + %x -h? 4 O(h®)
to be realized in either software or hardware implementation. h;(gf
Hence, the real network size of arorder RKNN is the same Ry AN L n-ojy (s 3
as that of its constituent subnetwork. = (i) + f(@) - h+ 2 Oz (i) x(i) + O
With the supervised learning algorithms developed in the K2 o f
next section, we can tune the weights, of N;(x;w) by = (i) + f(z(i)) - h+ 2 B2 - fz(D) + O(h®).
training the corresponding RKNN on the training trajectories Flati)
obtained from the identified system described in (1). When the (3)

total prediction error is sufficiently small or the weight vector

w converges ta*, we can obtain a RKNNV¢(x;w*), which  The output of the second-order RKNN with inptii) is
approximates the continuous functigifx) of the system in

(1) accurately. It can be expected that the RKNN's havey(i + 1)

higher prediction accuracy than the DMNN’s according to h
the property of Runge-Kutta algorithm [17], [18]. In the = (&) + 5 [Np(a(0)) + Ny (2(0) + ANy (2(2)))]
followings, we shall show the degree of accuracy theoretically. . . h2 ON; .

We now show quantitatively that the RKNN has higher = 2(i) + Ny(z(@)h+ 5= Ny((i)) +O(h?).
prediction accuracy and better generalization capability than ()
the conventional DMNN that uses a singh in Fig. 1. In (4)

the following analysis, we assume th#{x) is a n-times

continuously differentiable function (i.ef(x) € C*(D)). To The magnitude of the difference of the above two output values
simplify the accuracy analysis of the RKNN in the traininds

phase and generalization phase, we shall focus on the second-

order RKNN and consider one-dimensional inpyt). The |z(i + 1) — y(i + 1)]]

following notation will be used frequently in the analysis: . . hof .
= A /) = Ny(a@) + 55| - 1)
g(h) = O(h?) ash — 0
- DO NG| + 00, ©
which means that there exists a positive consférguch that ()

llg(x)|| < Kh? ash sufficiently close to zero. _ . . s
Lemma 2: Consider one-step prediction of the systerfifom the assumption thiity(i + 1) — 2(i + 1)[| = O(r°) for
@(t) = f(z(t)) atz(i) = z(ih) using a second-order RKNN all (i) € D, we have

i+ 1) = ) + S INF) + Nyali) + N @) Hf (@) g (@)= | Nrtel@)+5 Vo <>>H\
= O(h?)
Supposd|y(i+1) —z(i+1)|| ~ O(h®) for all (i) € D. Then and thus

Ny can approximatef to the following accuracy:

[ (et + 3stetan) = (et + vt )| |1 (sti+ 5wt} = 85 (a0 5@ )| = 002

= O(h?). This completes our proof. O
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Remark 1: For the DMNN y(i + 1) = Ny(x(¢)), suppose with input z(i) + A is

we obtain the network output accuracy to the third order (i.e.,
lly(i + 1) — z(i + 1)|| = O(h®)). This accuracy order is the
same as that ofV;(-) in the RKNN assumed in Lemma 2.
Since we usually estimate the continuous functif(x(¢))
simply by a causal one-step prediction methgdy(i)) =
%(Nf(a:(i)) — z(i)), we can only achieve the first-order

approximation accuracy in predicting the continuous functigd 7 1

f(z(2)) using the DMNN, i.e.||f(z(¢)) — f(x(4))|| = O(h).

Remark 2: Under the same assumptions made in Lemma
2, if % and %ﬁ do not grow rapidly andh is sufficiently
small, we can havd{f(z(i)) — Ny(x(i))|| = O(h?). Hence
the one-step prediction accuracy of the second-order RK
is better than that of the DMNN.

G(i +1) = Np(z(i) + A)

ON;

= Np(ali) + 5

A+ O(A?),
2(i)

Hence the DMNN's prediction error to the first order in

epMNN = Y(i+ 1) — g(i + 1)

P ]A.
T z(i) T | 5()

'%\‘y the assumption thaV,(x(:)) = f(x(¢)), the output of the
f

Lemma 3: Suppose the DMNN and second-order RKNl\fecond-order RK}':IN 1S
reach perfect approximation in the training phase, i.qg(iJrl) :y(i)+§[Nf(y(i))+Nf(y(i)+h.Nf(y(i)))]

Np(z(i)) = z(i + 1) and Np(z(2)) = f(z(:)) for all 4,

where (z(z),z(: + 1)) € D x D are input-output training o |1 . 1 .
pairs obtained from the system described in (1). Then in the =y())+h 2Nf(y(L)) + 2Nf(y(L))
generalization phase, if we applyi) = z(¢) + A to the
inputs of the DMNN and second-order RKNN, the output 1Ny N () - B O(R2
> : , £(y(@) - h+ O(h7)
prediction errors of these two networks to the first-order in 2 x|,
A and h are, respectively,
. . 1INy .
: = (D) +h- [N @)+ 575 Nw) b
€ = 1+% _% A Ty
DMNN = O O " O(hg)
1,,0N
and = y(i) + b [Np(a(i) + 2)] + 5h?
y(3)
a ON .
er = | L= 20 Np(y(@)) + O(R°)
ox Jz O
; ; f
Proof: The solution of the system described in (1) can =a(@)+ L +h- | fx() + oz | . 'A]
be written as #(@)
o RN f(z(@) + O(A™R™)
. . . 1 . 552 ¢ :
w(i+1) = 2(@) + f(z@)h + gé - fla(@D)h? + O(R?). 20 9xly
(i)

6) Hence the second-order RKNN's prediction error to the first
order inA and A is

In generalization phase, we have erinn = y(i + 1) — Gt +1)

y(i+1) =x(t) + A+ f(y(2) - h af INy
10f =\ as o WA ¥ (7
+ 22 fy(i)) - 1P+ O(R®) =(0) =(0)
v(®) This completes our proof. O
=2(i) + A+ f(z() - h+ of AR Remark 3: From Lemma 3 and in the situation th%fg‘?f
0 o) and % fit % to the same order of accuracy, it is clear that
190f ) of 5 5, the second-order RKNN has better generalization capability
28r]| .. <f($(z)) T arl| .. & )7+ O(h%) than the DMNN and we can expect that this is even true for
v(®) 8;(2) the higher order RKNN's.
:a:(i)+A+f(a:(i))-h+a— -A-h
L) lll. LEARNING ALGORITHMS FOR THERKNN
1of f(z(i)h? + O(A™R™) In this section, we shall develop learning algorithms for the
20z =(i) RKNN. Consider an initial statexo € D and a trajectory

. af x(t;x0) which is the solution of systenx(t) = f(x(¢))
=z(i+ )+ L+ ozl . corresponding to the initial state,. At each time step, we

=(%) get the sampling data(i; xo) = x(ih;x0),i =0, -+, [+ ] =
for n > 1, m > 2. The last equality comes from (6). By theL. — 1, where h is sufficiently small. We collectx(z;xo)

assumption thatV;(x(i)) = x(i + 1), the DMNN’s output for several different initial statesx¢ € D (i.e., several

‘A h 4 O(A"R™)
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different trajectories) as training data of the RKNN. By th&KNN). With these derivatives, we can apply the formulas,
learning algorithms developed in this section, the weights (8) and (9), to find the error gradient directions in the weight
N;(x;w) in the RKNN are tuned such that the output$; x,) space to update the weights. The same procedure can also be
of the identified systeny(t) = N;(y(t);w),y(0) = x¢, can used to derive the gradient learning algorithm for the RKNN
approximate the solutiom(¢;xo) of x(¢) = f(x(t)),x(0) = with the subnetworkV,(y;w) being a multilayer perceptron.
Xp, for all ¢ in some fixed interval0, 7). In a radial-basis-type RKNN, the constituent subnetwork is

a radial basis function network

A. Gradient Learning Algorithms

N
The generalized gradient descent (backpropagation) rule can[Vs (Y () = Y Widi(y (i) ti, 1), k=1,---,m

be used to derive learning algorithms for the RKNN with =1

each subnetworkV; being the multilayer perceptron, radial (10)

be_lsis function network or other proper nel_JraI networks. Wherey(i) € R™ is the input vectork indicates thésth output
this section, we shall develop gradient learning algorithms f8'f N;(-), NV is the total number of radial basis functions in
the fourth-order RKNN. The output of the fourth-order RKNNN '

. a1 is the (k,)th el t of th ight matri
with input y(¢) is described in (2). The derivation of gradien}ef( ): Wia s the (k, [)th element of the weight malrixy

) . , presenting the connection weight from thie radial-basis-
learning algorithms for other order RKNN's can be done IRinction node to thekth output node, ang(.) is the radial
a similar way. '

basis function defined b
The derived gradient learning algorithm can propagateaSIS tnction cefined by

the error gradients backward in the RKNN to minimize  ¢;(y(i); t;,00) = exp{—[(¥ (i) — t:)" ou(y (i) — t)] }

the squared errorf = ||x(i + 1) — y(i + 1)||?, at time _ _ _ _

stepi. A recursive update rule is expressed as follows. \Weheret; € R is the center of a radial basis function, ands
considerN; (y(i); ) as a function ofy(¢) andw, and denote the inverse of variance matrix of tfith radial basis function.
Wy () = ) ang g, () = w where y(i) Differentiating NV s with respect to weights = [Wi, t;, o1,

. . Iy (i) . . i . :
is the input state vector at time stépand w; is the jth we obtainW,,(-) as follows:

component ofu. Differentiating (2) with respect to the weight I[N (y (i) Hi() k=j
wj, we have —8le :{0 kA (scaler)
i I[N (v ()] .
Iy(itl) _ 1h<% Lok o Oka %) 8) SN (0Dl =2WudiQou(y (i) —t1) (vector)
8wj 6 8wj 8wj 8wj 8wj atl
I[N s (y ()] , ) ) .
where AR — (- )y () -6 (matr)
dkg ) dw 11
0. = y(y(w)m— 11
8ki o ’ Ok 1 Similarly, diﬁgrentiatinng(y(i)) with respect to the state
a—wj =¥y <y(L) + §hk0,w> a—wj . Qh y('L), we obtain
, 1 ow ONy
ok N Ok, 1 (=2 Wi (Vo (v (i) — t,)T
a—w%: y<y(z)+§hk1; )a—wl§ 21_1 11(/)10 J( (t) J)
j . é . — . (Matrix)
+ W, <Y(L) + §hk1; w) o N 1
ks ok =237 Wi (Do (v (0) — £5)7
— =V 1)+ hko;w)— - h 12
1 dw Substituting (11) and (12) to (8) and (9) recursively, we can
+ P ¥(0) + §hk2vw @ obtain the gradient directions @&. Hence (8) can be used to
update the weights (including Wy, #;, o;) of the radial basis
Hence function networkV,(-) in the RKNN.
oE . . Jy(i+1)
dw; —2x(i+1) -y(+1) dw; B. Nonlinear Recursive least-square Learning Algorithms
_ . . 1. [ dkg dk; Because the gradient update rule in (9) for the RKNN's
=—2x(i+1)-y(i+1) 8h<$j +28_wj is not a batch update method and it is difficult to choose
ok, ks a proper learning constant, the total error's convergent rate
+ 25 + $> 9)  of the gradient learning algorithms developed in the last
J J

section is quite small. In this section, we shall develop
We shall next derivel’y, and ¥, in the case thalV,(y;w) faster learning algorithms, thrnlinear recursive least-square
is a radial basis function network (called thadlial-basis-type (NRLS) algorithms, for the RKNN's. Like the nonlinear
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least-square method discussed in [19], the NRLS algorithriegat minimization of (13) is equivalent to finding the solution
generalize the conventional recursive least-square (RLS) algh-the following equations in the least-square sense:
rithms to nonlinear cases. The property comparison between T
the gradient algorithms (i.e., the steepest descent method) and| ¢ (x(0); W) Wi x(1) = x(0)
RLS algorithms can be found in [20] and [21]. To minimize the : : :
square error functio’(w), the steepest descent method finds
and follows the gradient vector to improve the approximation
accuracy as iteration number increasing. On the other hand, the
RLS method directly solves the roots of equatf@;@f}2 =0
to locate the local minimum points directly. It then transformﬁ we let
the equation ofugf2 = 0 into a regression model defined by
T (Hw =0, wherew represents network weights argds the d? = [x(1) — x(0),x(2) —x(1), -, x(L) — x(L — 1)]
regressor. Finally we can use a recursive algorithm to solveﬁ( 0),- -+, x(L — 1); W)
the equationg? (-)w = 0. KD X ’

In the following sections, we shall derive three different = [B(x(0); W), -+, p(x(L — 1); W)]*
NRLS algorithms for the RKNN'’s for different accuracy levels
and scopes of tunable parameters\if(-; ). Again, we focus then (15) can be expressed 2&(0), - -, x(L — 1); W)W =
on the radial-basis-type RKNN's in the following derivation.d- Notice that the problem of solving (15) is a nonlin-

1) Zero-Order NRLS Learning Algorithriéhen proper ra- €a7 least-square problem, becaus_e the regression matrix
dial basis functions ofV;(-) in the RKNN have been chosen&(%(0),---.x(L — 1);W) is a function of parametefV'.
(i.e., the centers, and inverse variance matrices(-) have Analogogs to the derlva.tlon of t.he non_lmear Ieast_—square
been decided and fixed), we only need to tune the weighf§thod in [19], we combine the fixed point method in [22]
W on the links connecting the radial-basis-functions nod&§d the RLS algorithm to find the solutidf™ of (15) in the
¢;(-1t;,8) to the output layer ofV,(-). In this section, we Ieast-square_ sense. We denote this method as th_e z_ero-order
shall develop the first NRLS algorithm of the RKNN, calledRLS algorithm for the RKNN's. This algorithm is listed
the zero-order NRLS learning algorithm, for this learning tasRS follows.

ST -1 W) ] Wy =) —x(L - 1)
(15)

Assume we are given training trajectori¢(i;xo) | ¢ = Step 1) Choose initial weightd’ (0) = W, and seti = 0.
0,--+,L —1,%9 € D} from the systemx(t) = f(x(t)) with Step 2) Substitutd¥ (i) into the regression matrix to get
x(0) = xo. From (10), we define L(x(0), -+, x(L — 1); W(1)).
L Step 3) Use RLS algorithm to solv&(x(0),---,x(L —
_1 : : 1); W(4))W = d to get the solutioriV = W*.
EW)=:Z i) —y(4))? 13 v
W) =3 ;(X(L) y(@) 13 Step 4) LetW(i+1) = W~

) ) Step 5) If the sequencld/ (i) converges, then stop; other-
wherey (i) is the output of the RKNN. According to (10) and wise, seti = i + 1 and go to Step 2).

the RKNN structure described in (2), the output) of the

o ) . The sufficient conditions for the convergence of the nonlin-
RKNN with inputx(¢ — 1) at time step — 1 can be written as g

ear least-square method are given in [19]. We shall now study
n(& the convergence property of the above zero-order NRLS learn-
y(@) =x(i—-1)+ E{Z Wign(x(i — 1)) ing algorithm by showing that the radial-basis-type RKNN’s
=1 own the required sufficient conditions in [19]. First, let us see
N ) ho some definitions and lemma that will be used in our proof [22].
+ 22 Wign <X('L -+ §k0(l - 1)) Definition 1: Let 7" be an operator mapping™ into R,
l;} Thenx € ®™ is called a fixed point of, if x = T'x.
. h. . Definition 2: Let B(z,r) be a neighborhood ot € R®™
+2) Widn <X(" D4k~ 1)> defined byB(z,r) = ~({x |)||x —z|| < r}. Then an operator
Aizl T :R™ — R™ is said to be a contraction mapping in
. . B(z,r), if there exits a constand < 6 < 1 such that
+ ;Wm(x“ —DHRkeG=D) e C || < 6)lx — xo| for all x1,%, € Bz, ), where
(14) # is a contraction factor.

Lemma 4: Let 7" be an operator fronk™ to R™. Assume
where¢; is thelth radial basis functionl¥; is the connection 7’ is a contraction mapping with the contraction factor 1 in
weight between the; node to the output node d¥,(-), and B(xo,), wherer > ro = 2 |lxo—Txo||. Then the sequence
ko, ki, ko are the outputs of théV,(-) subnetworks in the x, = T'x,_1, n = 1,2,--- converges to a fixed poin¢*.

RKNN defined by (2). In Appendix, we derive the regressiomhe proof of the above lemma can be found in [22]. The fact

form of y(¢) — x(¢ — 1) in (14) such that we can solvein Lemma 4 is also given in [22, Th. 6.2.2].

the connection weight8/;’s using the nonlinear least-square We shall then study and prove the convergence property

method in [19]. of the proposed zero-state NRLS learning algorithm applied
With the regression formp(x(i—1); W), of y(:)—x(¢—1) to the radial-basis-type RKNN’s. To simplify the analysis, we

derived in Appendix and according to the RLS method, we firtbnsider the second-order RKNN with single state variable,
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i.e., x(t) € R. According to the structure of the second-ordelf £%(x)£(x) is nonsingular, the above equation has the
RKNN, we have least-square-sense solution

W= [£F (L))

z(i+1) 1
) h ) ] 1+hM(2(0),W) 0 0
= (i) + 5 ANs (@) W) + Ny (i) | o 0 Yo (17)
+ AN (2 (@); W); W)} 0 0 TMGI=O
o M), T, /. Next if we can show( + D(W;z(0),---,x(L —1))~! is
= () + 2 {¢ (@)W + @7 (2()W a contraction mapping, then according to Lemma 4, we can
find the solutionW™* by substitutingi¥ to the above equation
+ haNf &7 (z(D)W + O(h?) 3. recursively. To show this, we first take a variation vecti',
dz (z(3),W) in the neighborhood oV ® and find the following difference:
1 1
If we neglect theD(h?) term and substitute the above equation L+ M(z(i), WHh ~ 1+ M(z(), WO
to (15), then we have N
_ oz + _ wo
¢* (z0) + hM (39, W) T (x0) = ch(x(L))(Wj Wj)
. j=1
h- E W=ys (16) < fea(@(@)), -+ en(@@)] - W - WO (18)
: where wherd|A;|| = [|z(3) — ¢4,
ST (xr1) + WM (zp—1, W) (2L-1) Then we have the following lemma.
Lemma5:Let c(z(i); WH, W% = [er(z(d)),---,

wherey? = (z(1) —2(0), z(2) — z(1), - -, x(L) —x(L - 1)),

and en(z(i))], where ¢ (z(4)) is defined by (19), shown at

the bottom of the page, and(i) are the training data.

M(z(i), W) = LON; If Jle(z(@))|| < 1 in the neighborhood ofi#° for all
2 0% {(u(),w) i=0,--,L—1, then{I + D(z(0), -, (L — 1); W)}~
N has a fixed point}¥*, in the neighborhood of¥°.
=Y Wiexp{~|lz(d) - t;5, } Proof: Let S(W) = [I + D(«(0),--,a(L — 1))]"~.
j=1 Consider the following equation:
o ald) ~ 1) W =3(W). (20)
wherelz(i) — tjllo, = [[(2(2) — ¢;) o3 (x(i) — t;)]]-
If we let By (18), we know that for any% * close tol¥° and for the;ith
o7 (x(0)) diagonal component o&, we have[S(W)]; — [S(W?)]; <
_ ezl - [|[W+ — WO, wherei € 0,---, L — 1. If we take
L(z(0),---,x(L-1))=h- j the maximum norm of each diagonal elementyfwe have
S ((L— 1)) ISV F) = SWO)oo < KW = WO
be anL x N matrix and wherek = max{c(0), - - -, c(x(L — 1))}. Hence by Definition
D(W;z(0),- -, z(L —1)) 2, (20) is a contraction mapping and by Lemma 4 or by
M(z(0), W) 0 0 Theorem 6.2.2 in [19]3 has a fixed point in the neighborhood
— . ) of W°. This completes the proof. O
- 0 - 0 If £7L is nonsingular, then becausg¢z()) is a function
0 0 M(z(L-1),W) of h, (17) is a contraction mapping for sufficiently small
be anL x L matrix, then (16) becomes Again, by Lemma 4 it is sure tha¥’ will converge to a fixed
[I + D(W;z(0),---,z(L - 1))] point W*. Although the convergence property of Lemma 5 is

proved for the second-order RKNN'’s, it can be expanded to the

X L(@(0), -+, 2(L = 1)W = ya. fourth-order RKNN’s or even higher order RKNN's directly.

Let x = (2(0), -+, 2(L — 1)). Then we have 2) First-Order NRLS Learning AlgorithnDue to the non-
W 0 0 linearity of the radial bagis function .network wi.th r_espective to
_ ) the center vectot; and inverse variance matrix, it cannot
L)W = 0 : 0 Yd . : : )
! put into the regression form such as (15) with respectivg to
0 0 1+hM(z(L—1),W) and o;. Hence the zero-order NRLS algorithm derived in the

e 18P g (2(i) — )
(14 350, WitemI1850F o (i) — 1) - ) (1 + 3250, WPe 120 oy (2 (i) — t5) - h)

en(z(i)) = (29)
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above section cannot be applied directly to tune the center aftte regression form of (24) at thgh time step is
variance of the radial basis function subnetwork in the RKNN. (%2 4 AwDZ_RZBH

In this section, we shall derive another NRLS algorithm that O ow? J1x(0),w (k)

can update output weights, centers, and variances of the radial :
basis functions simultaneously. This algorithm is called the :
first-order NRLS learning algorithm. The key point is to let (Bﬁ +Aw<’)2_R23
the problem of minimizingg(w) = £ 37| (x(i) — Rp(x(i — O O
1);w))? be approximated by minimizing’(w), which is the
square error between the desired outp{if and the output of
linearly approximated neural netwoRg(-; w) at the weight :
parameterss(k) at time stepk, whereRp(-) is a radial-basis- x(L) — Rp(x(L — 1); w(k))
type RKNN. If we let £(w) be the first-order approximation
of E(w) then we have

Aw

)|x(L),w(k)
x(1) = Rp(x(0); w(k))

= f . (25)

The solution of (25) can be obtained by repeatedly using the
fixed point method described in Section IlI-B1. Lé&t*(k)
denote a solution of (25) in the least-square sense akitine
time step, and then updatein the next time stef: + 1 by

~ 1 ) )
Ew) =35> |%(0) = Ba(x(i = 1); (k) Wk +1) = w(k) + Ao (k).
ORp(x(1 — 1);w) 2 If {w(k)} converges ta*, thenw™ is the least-square solution
- I -~ ‘(k)(w —w(k)) (1) o (13). Notice thatw in (24) can be the output weights,

centers, or variances of a radial basis function subnetwork
Ng(-).

) ) The use of the second-order NRLS learning algorithm for
where w(k) denotes the parameters (including the outpytaining the RKNN has some computation problems. If we

weights, center vectors, and variances) of the radial bagjgnt to obtain the second-order derivative Biz(+), we
funct|on§. o . _ _ need to compute the coupled terg@x% and the second
By using the similar techniques in Section Ill-B1, we CaQqiyative forw: i.e., @Rz This will increase the computation

solve;}f;g following equation to minimize (21): complexity and loading. In the simulations of the next section,
B

T2 (0 ot x(1) — Rp(x(0); w) we sha_ll ne_glect the coupled terms. We shall also compare the
o ) approximation accuracy of the first and second-order NRLS
Aw = learning algorithms by the simulations.
9RG L) = Ru(x(L - 1);
2.5 x(L—1)w(k) (L) = Ra(x( Jiw) 22) IV. SIMULATIONS
in the least-square sense and update the parameters by In this section_, we shall apply the RKNN's to model t.WO
. ODE systems with unknown structures. From the simulations,
w(k+1) =wk) + Aw (23) we shall demonstrate some good properties of the RKNN
where Aw* is the least-square solution of (22). including its high accuracy in long-term prediction, and good

To compute the terrﬁ% in (22), we need to use theprediction power even for adaptively changing time step. In
recurrent algorithm described in (8) to obtain the regressigodeling ODE systems, priori knowledge about the structure
form of (22). Whenw(k) converges to a vectar*,w* is an of the modeled systems, if available, can be incorporated into
approximated solution which minimize&, where E is the the RKNN to speed up the learning and simplify the network
approximated square error of (13). structure (e.g., small node number). Such knowledge can be

3) Second-Order NRLS Learning Algorith@imilar to the possibly obtained from nature’s physical law. The learning
concept in Section 111-B2 lef! be the second-order approx_algorithms developed in Section Il will be used to train the
imation of E described by (13). Its accuracy will be betteRKNN'S in the following two examples. TheV; subnetwork

than the accuracy af which is the first-order approximation of the RKNN’s in the following simulations will be the radial

of (13). With £, we can derive a second-order NRLS Iearnin?&s's function network. The initial centers of the radial basis

X . ctions are chosen to be uniformly distributed in the input
algorithm that can also tune the output weights, centers, asndace and the variances are decided by equally overlanpin
variances of the radial-basis-type RKNN's simultaneously. pace, y equaly ppIng

X I . principal.
The second-order approximation &fis Example 1: Consider a second-order system, known as

é(w) _ %Z (i) — Rpp(x(i — 1); w(k)) — 8513 Vander Pol's equation
2 : v i(6) = (1= y7(0)3(8) + (1) = 0
- Aw — E(Aw)Ta Rg Aw (24) with
2 ow? | . _ 2 (0) —
w(k) y(0) =wo, (0) = wo (26)
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Fig. 2. Predicted trajectories of the RKNN--) with time steph = 0.09 and desired trajectories—) in Example 1, where the initial conditions
are (2,—1) and (—2,1).

where0 <t < T'. Assume that we do not know the structure To compare the prediction accuracy of the RKNN and
(equation) of this system, but we can measure the positiorDMNN, we use a DMNN,Nf(xl,a;Q), to do the same mod-
and velocityy noiselessly at each time stéfp, whereh = 0.1  eling task. The usedV;(z1, ) is also a radial basis func-
second. Lety(ih;yo, vo), 9(th;yo,vo) denote a solution of tion network, which has the same number of nodes as the
(26) at time stept = th, wherei = 17"'7_L%J' Let S N(x1,0) of the RKNN in the above simulations. After
be_ the set_of_collectfad trajectpnes, whoge initial statgs a ining theNf(.’L'l,.’L'Q) using the same procedure for training
uniformly distributed in the regiorD of (y,4) space. Using the RKNN (i.e., gradient learning followed by zero-order

S as a training set to train the parameters /6f(-), four .
of which constitute the RKNN, we can obtain a RKNN thateast-square learning), we test the long-term parallel-model

approximates Vander Pol's system described by (26) for aRjediction capability of the trained RKNN and DMNN 'in
initial condition belongs taD. the generalization phase. In this phase, the two networks are

For representation clarity, lgi(t) be denoted by, (#) and teston a collection of different initial states distributedin
y(t) by z1(t), then Ny(-) = Ny(z1,22). Here theNy(-) Table |lists the average root-mean-square (rms) errors of long-
network can be considered as a mapping fram,z2) to term prediction over 100 time steps under the test initial states.
(Ny(21,22),21), andNy(-) network will identify the variable The results indicate that the RKNN has much better long-
4(t), where term prediction capability than the DMNN. Fig. 2 shows the
predicted trajectories of the RKNN using time step= 0.09
in the generalization phase, instead /of= 0.1 used in the
training phase. As shown in Fig. 3, the trained DMNN cannot
correctly predict the trajectories with time step= 0.09. This
is the weighted sum of radial basis functiofss. illustrates that the RKNN can perform the prediction well even
In the simulations, the training sstcontains 41 training tra- with variable time-step size.
jectories whose initial statés;, x2) are uniformly distributed Example 2: In this example, we apply the RKNN to model
in a square regio = [-3,3] x [-2,2] € R2. In the traiNiNg  yha (rajectory of a vertically falling body. Assume a radar

phase, we first use the gradient learning algorithm to tune tHSd tracked and recorded two different scenarios trajectories,

parameter$V;, t1;, t2;, o1, 02; Until the error between training 9 . . : -
trajectories and the RKNN output trajectories cannot be furth”gr (t)_’_S (), of a falling bo_dy staritmg gt t_WO different |n_|t|al
reduced. We then fix,’s and o;’s, and use the zero-ordercond't'ons’ where the trajector§*(¢) indicates the falling

NRLS algorithm to tune the weightd; to converge to the POdy’s altitude positions;(¢) and vertical velocityx(t) at
solution, W*. The use of NRLS algorithm can further reducdme t; i.e., S*(t) = (z{(t), z5(t)) is a trajectory in theR?
the errors between the desired values and RKNN outputs ogeace. These variables are defined in Fig. 4. In the simulations,
the whole training sefS. we assume that the trajectory data are governed by the

N
Ny(xy,22) = Z Wigi(x1, x25t145,t2, 014, 02:)

=1
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TABLE |
CoMmPARISON OF RMSPREDICTION ERRORS OF THERKNN AND DMNN OveR 100 TiME STEPS FOR THEVANDER PoL's SYSTEM IN ExamPLE 1
Initial condition RKNN (Ny()) DMNN (N4(-))

(1, T2) Velocity error | Position error | Velocity error | Position error
( 0.5, 0.5) 0.0040 0.0030 0.0201 0.0144
(-0.5, 0.5) 0.0018 0.0015 0.0128 0.0089
(-0.5, -0.5) 0.0007 0.0007 0.0587 0.0429
( 0.5, -0.5) 0.0016 0.0013 -0.0025 0.0020
( 1.0, 1.0) 0.0016 0.0011 0.0088 0.0060
(-2.0, -2.0) 0.0052 0.0041 0.0107 0.0081
(2.0,2.0) 0.0027 0.0021 0.0089 0.0069
(2.5,-1.0) 0.0136 0.0093 0.0305 0.0255
(-2.5, 1.0) 0.0194 0.0135 0.0341 0.0223
(-0.2, 0.3) 0.0012 0.0007 0.0106 0.0097
(0.2,-0.3) 0.0035 0.0026 0.0124 0.0105
(-0.2,-0.3) 0.0032 0.0022 0.0554 0.0405
(0.2,0.3) 0.0023 0.0015 0.0506 0.0370
(0.1, 0.0) 0.0055 0.0049 0.1149 0.1318
(-0.1, 0.0) 0.0049 0.0045 0.0629 0.0625
(0.0,0.1) 0.0079 0.0055 0.0908 0.0739
( 0.0,-0.1) 0.0077 0.0054 0.0795 0.0681
(-0.1,0.5) 0.0012 0.0010 0.0045 0.0031
(2.0,2.0) 0.0027 0.0021 0.0089 0.0069
(-1.0, -0.5) 0.0018 0.0014 0.0201 0.0162
4

2L

;‘:;’
<

oF
2

-4

4 T T 4 T

2L .
21 _
-4 1 )

-4 2 0 4

x1(t)

Fig. 3. Predicted trajectories of the DMNN - -) with time steph = 0.09 and desired trajectories—) in Example 1,where the initial conditions

are (2,—1) and (—2,1).

following system equations:

(200 x 10® ft, 16 x 10® ft/s) and 2(0),z3(0)) = (300 x
103 ft,20 x 108 ft/s).

&1 = —x2(t),

‘1 B 2(t) MNa2(t (27) Under the assumption that the knowledge about (27) is

&2 = —erexplear (1))22(t) unknown, the problem is to design an RKNR(t) = N (x),
wherec; = 3 x 1072 (drag coefficient),c, = —5 x 10> Wwherex = (x;,x2), which can be used to approximate the

(air density), with two initial conditions(x}(0),x3(0)) as system described in (27) and predict the long-term behaviors
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Fig. 4. Geometry of the falling body problem in Example 2. X 2(1) X, (i+1)

of falling trajectories with different initial conditions. In this
example, we shall demonstrate two RKNN'’s constructed by (c)

two neural netWOkavN} (x) and NJ% (x), respectively. The Fig 5. structures of the RKNN's and DMNN used to predict the behavior
networkN}(x) is constructed according to the physical law off \; f,?"fi;ﬁntg’ﬂﬁé’; E()t()?n-}ﬂ: r2u-) r(r?])aIT?:d?jt\gvgglfscgjr:]scttrilécr:]tendeg\)llotrf;e (rgwﬂ:::l
falling body; that is, the drag force is proportion to the squa iy - : :

of velocity. Its structure is shown in Fig. 5(a). The seconolIreCt mapping neural netuwork
network N7(x) is a normal radial basis function network
shown in Fig. 5(b). We use the first-order and second-order
NRLS learning algorithms developed in Section Il to tune the

weights and variances of radial basis functions simultaneoushy

TABLE 1
COMPARISON OF RMSPREDICTION ERRORS OF THERKNN's
AND DMNN UsING THE SAME ZERO-ORDER NRLS
LEARNING ALGORITHM IN EXaMPLE 2 (UNIT x 103 FT)

. - T'nitial point KNN RKNN DMNN
until the outputs of the RKNN converge to the training m(;a Eo)m I}Vl(z) N(z) M(z)
trajectoriesS(t), S2(¢). To compare the prediction accurac { 205’ 221 Y (7 75f 126 ) | (17 31 248)[(8 95f 2.34)

3 ) .75, 1. 3, 2. .95, 2.
pf the RKNN and DMNN, we use a DMNNWV?(x) as shown (200,16) |(0.28,0.09 )| (0.33,0.21)(2.36,0.50)
in Fig. 5(c) to do the same learning task. The DMNN has tre( 300,15 ) | (2.19,0.31) | ( 2.54, 0.42 ) | ( 909, 50.0 )
same structure ad'f(x). _ (300,20 ) |(0.25,0.10) | (0.54,021)](1.04,0.60)

In the prediction tests, we test the three trained networksy 300, 22) | (39.4,4.70 ) | ( 560, 47.2 ) | ( 47.0, 9.30 )
two RKNN'’s and one normal radial basis function network, o

three different initial conditions around the region of training,qition (1(0), 23(0)) = (300 x 103 ft, 22 x 103 fi/s). In

trajectories S* (), 5%(¢). Using the same training data andyis case. the RKNN constructed by2(«) and trained by
ini - : J

same training method (the zero-order NRLS algorithm), thge sero-order NRLS algorithm cannot predict the trajectory
rms of prediction errors on each case is listed in Table liuccessfully. Figs. 6 and 7 show the long-term predicted
Notice that, in Table Il, the trajectories with initial pointSyajectories of the RKNN withV#(z) trained by the first and
(200, 16) and (300, 20) are training trajectories, and thglcond-order NRLS learning algorithms, respectively. Fig. 8
with initial point (300, 15) and that with initial points (200,gn0ws the prediction capability of the RKNN WitN}(a:)
21) and (300, 22) are interpolative and extrapolative testigined by the zero-order NRLS algorithm. It is observed that
trajectories, respectively. The results show thaf(x) has qye to thea priori knowledge incorporated in the RKNN with
better extrapolation and interpolation capability thafij(x) N}(z), the RKNN can predict well even using the simple
and N}(x), and N7(x) is more accurate thaiv?(.X). gradient learning algorithm followed by the zero-order NRLS

We next use the first-order and second-order NRLS leafgarning algorithm.
ing algorithms to tune the weights and variances of the
RKNN with N7(z) simultaneously. The results are shown
in Table I, in which we compare the long-term predic- In this paper, we constructed an RKNN for identification
tion accuracy of different learning algorithms for the RKNNof ODE systems with unknown right-hand-side functions. We
with NJ%(a:), including gradient learning algorithm, zero-ordealso derived two classes of learning algorithms for training
NRLS, first-order NRLS, and second-order NRLS learningne RKNNSs; gradient learning algorithms and NRLS learning
algorithms. As compared to Table I, we find that the higheglgorithms. The NRLS is a generalization of the recursive
order NRLS schemes improve the prediction power of tHeast-square algorithm to nonlinear cases such that it can tune
RKNN greatly, especially in the divergence case with initighe parameters in the hidden layers of the RKNN's (such as the

V. CONCLUSION
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Fig. 6. Predicted trajectories of the RKNN Wiﬂq‘?(x) trained by the first-order NRLS algorithm in Example 2.
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Fig. 7. Predicted trajectories of the RKNN wit’h‘?(x) trained by the second-order NRLS algorithm in Example 2.

centers and variances of the radial-basis-type RKNN) fastlyan do long-term prediction of the identified system behavior
The convergence property of the proposed NRLS algorithmell and is good at parallel-model prediction. 2) With the de-
applied to the RKNN'’s was studied theoretically. The RKNN'signed structure and proposed learning schemes, the RKNN'’s
have several good properties. 1) Since the RKNN estimates pegform high-order discretization of ODE systems with un-
derivative (changing rate) of system states (i.e., the right-hakiown right-hand-side functionsnplicitly (i.e., internally in

side of ODE’s) directly in their subnetworks based on spacthie network) while keeping the simplicity and tractability of
domain interpolation instead of time-domain interpolation, the first-order discretization scheme. 3) The RKNN is shown
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Fig. 8. Predicted trajectories of the RKNN Witrh'}(x) trained by the zero-order NRLS algorithm in Example 2.

TABLE 11l

30

CoMPARISON OF RMSPREDICTION ERRORS OF THERKNN wiITH N}(x) TRAINED BY DIFFERENT LEARNING ALGORITHMS IN EXAMPLE 2 (UNIT x 103 FT)

Initial point | Gradient+Zero-order | First-order | Second-order
(z1,23) NRLS NRLS NRLS

( 200, 21) (17.3,2.48) (108,154 )| (12.8,1.82)

( 200, 16 ) (0.33,0.21) (0.15,0.05 )| ( 0.06, 0.02 )

( 300, 15 ) (2.54,0.42 ) (3.30,0.44 ) | ( 4.00, 0.59 )

( 300, 20 ) (0.54,0.21) (0.27,0.05 )| (0.17,0.04 )

( 300, 22) ( 560, 47.2 ) (49.0,4.57 ) | ( 52.0,4.90)

theoretically and experimentally to be superior to normahe developments in order to get a more compact notation [23].
neural networks in generalization and long-term prediction
capability for the same network size and training procedure.
4) The RKNN needs no tapped delay line or internal memory This appendix derives the regression formy¢f) —x(i —1)

for identifying memoryless systems, and thus without th@ (14). Equation (14) can be written as
problems of deciding the length or size of the tapped delay .

line or internal memory existent in normal neural identifie?.’(z)
5) Since the RKNN models the right-hand side of ODE in

its subnetworks directly, some known continuous relationship~ ¢

(physical laws) of the identified system can be incorporated

into the RKNN to cut down the network size, speed up its ﬁko(i —1)
learning, and enhance its long-term prediction capability. 6) 2

The RKNN can predict the system behavior at any time instant,

not limited by fixed time step (fixed sampling time) as the case
in normal neural modeling. Although the algorithm derivation

and theory proof focused on the fourth-order or second-order

RKNN's in this paper, they can be generalized to angrder

RKNN's directly. In future works, we shall focus on the real

parameter aggregates instead of the unstructured parameter — ¢

setw. From this point of view and because of some of the

parameters have matrix form, it would be interesting to use ﬁd)l(x(i — 1) + hka(i — 1))

Kronecker products (tensor products) and matrix calculus in

—-x(i—1)
h

N

=1

APPENDIX

+ " Win(x(i — 1) + hka(i — 1))

Z Wigi(x(i — 1)) +2 Z Wign <X(i - 1)
=1 1=1

) + 2;:;%@ <x(i 1+ gkl(i _ 1))

}

Wl{%d)l(x(i —1)+ 2y, <x(i 1)+ ki - 1))

<x(i 1+ gkl(i _ 1))

}
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h 2h h Trans. Neural Networksvol. 5
s i &b i s i . . 5, pp. 306-319, 1994.
+ WQ{ 6¢2(X(L 1)+ 6 g2\ x(i — 1)+ QkO(L 1) [6] R. J. Wiliams, “Adaptive state representation and estimation using
9l b recurrent connectionist networks,” Meural Networks for ControIW.
. . T. Miller, R. S. Sutton, and P. J. Werbos, Eds. Cambridge, MA: MIT
+ 52 <X('L —D+Ski(i- 1)) Press, 1990.

[7] A. G. Parlos, K. T. Chong, and A. F. Atiya, “Application of recurrent
h . . multilayer perceptron in modeling complex process dynamitSEE
+ —¢a(x(i — 1) + hko(i = 1)) p + -+ Trans. Neural Networksvol. 5, pp. 255-266, 1994.
6
[8] P. J. Werbos, “Backpropagation through time: What it does and how to
h . 2h . do it,” in Proc. IEEE vol. 78, no. 10, pp. 1550-1560, 1990.
+ Wi son(x(i = 1)) + —pa(x(i — 1) [9] S.W. Piche, “Steepest descent algorithms for neural network controllers
6 6 and filters,”|EEE Trans. Neural Networkwol. 5, pp. 198-212, 1994.
h 2h h [10] J. D. Lambert,Computation Methods in O.D.E New York: Wiley,
+ —koli — 1IN+ =Nl x(i — 1)+ =ki(i — 1 1973, ch. 4.
2 o ) 6 on | x( ) 2 i ) [11] F. Caller and C. Desoet,inear System Theory New York: Spring-
Verlag, 1992.
i 4 4 12] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
T(X(t — - . [ X .
+ 6¢A( (L 1) + th(L 1)) networks are universal approximatordyeural Networks vol. 3, pp.
. . . . 551-560, 1989.
Hence we obtain the nonlinear regression forx(¢ — [13] J.Park and I. W. Sandberg, “Universal approximation using radial-basis-
1); W), of y(i) — x(i — 1) expanded by radial basis functions_ function networks,'Neural Computa.vol. 3, pp. 246-257, 1991.
b as [14] 1. G. Petrovski,Ordinary Differential Equations Englewood Cliffs,
J NJ: Prentice—Hall, 1966.
(,i)T(x(i _ l)W) [15] E. D. Sontag,Mathematical Control Theory: Deterministic Finite-
’ Dimensional Systems New York: Spring-Verlag, 1990.
h . . [16] E. B. Kosmatopoulos, M. M. Polycarpou, M. A. Christodoulou, and P.
=93z </)1 (X('L - 1)) + 2</)1 X('L - 1) A. loannou, “High-order neural-network structures for identification of
6
dynamical systems[EEE Trans. Neural Networksol. 6, pp. 422—431,
h. . , h. . 1995.
+-ko(i —1) ) +24 [ x(i — 1)+ ke (i — 1) [17] J. Stoer and R. Bulirschintroduction to Numerical Analysi2nd ed.
2 2 New York: Springer-Verlag, 1993.
h [18] V. Lakshmikantham and D. Trigiant&heory of Difference Equations:
+ ¢ (x(L — 1) + th(i — 1)) Jrre, = </)N(X(i — 1)) Numerical Methods and Applications Boston, MA: Academic, 1988.
6 [19] R. Fletcher,Practical Methods of Optimizatigni2nd ed. Chichester,
h U.K.: Wiley, 1987.
. g — v g . g [20] S. Haykin,Neural Networks New York: Macmillan, 1994, ch. 7.
+2¢x <X(L 1) + 2 kO(L 1)> + 20 <X(L 1) [21] G. C. Goodwin and K. S. Sirdaptive Filtering Prediction and Control
Englewood Cliffs, NJ: Prentice-Hall, 1984, ch. 3.

+ gkl(i - 1)) + dn(x(i — 1)+ ko (i — 1))} } [22] i’éé_irlé,gheoretical Numerical Analysis New York: Wiley, 1979, pp.
[23] A. Weinmann, Uncertain Models and Robust ControlNew York:
where Springer-Verlag, 1991, ch. 4 and 5.
N
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