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Logical features are abstract representations of images at
various levels of detail. Some logical features such as spa-The image retrieval based on spatial content is an attracting

task in many image database applications. The 2D strings pro- tial-location and spatial-relation [18] may be synthesized
vide a natural way of constructing spatial indexing for images from primitive features, whereas others can only be ob-
and support effective picture query. Nevertheless, the 2D string tained through considerable human involvement. Spatial
is deficient in describing the spatial knowledge of nonzero sized constraint is a significant logical feature and is our focus
objects with overlapping. In this paper, we use an ordered in this article.
labeled tree, a 2D C-tree, to be the spatial representation for The intelligent image database system (IIDS) [4] pro-
images and propose the tree-matching algorithm for similarity

vides high-level object-oriented search and supports spatialretrieval. The distance between 2D C-trees is used to measure
query. The spatial reasoning is based on a data to structurethe similarity of images. The proposed tree comparison algo-
called 2D string [3] which preserves the objects’ spatialrithm is also modified to compute the partial tree distance
knowledge embedded in images. Each symbolic picturefor subpicture query. Experimental results for verifying the
can be represented by a 2D string and a picture query caneffectiveness of similarity retrieval by 2D C-trees matching are
also be specified by a 2D string. The problem of imagepresented.  1998 Academic Press

retrieval then becomes a problem of 2D string subsequence
matching [15]. Lee and Hsu [13] proposed 2D C-string

1. INTRODUCTION representation for nonzero sized objects with a set of spa-
tial operators and a more efficient cutting mechanism. All

Content-based image retrieval plays a principal activity the spatial relations among objects with efficient segmenta-
in many application areas, such as picture archiving and tion are preserved with 2D C-string representation. The
communication systems, geographic information systems, problems of how to infer the spatial relations between
biomedical, education, and home entertainment systems pictorial objects from a given 2D C-string in spatial reason-
[1]. In a content-based image retrieval system, it is required ing and similarity retrieval are solved by using the ranking
to effectively and efficiently retrieve information from the mechanism [14].
image repositories. Such a system helps users retrieve rele- In general, similarity retrieval is needed when users can-
vant images based on their content [8, 20]. Current ap- not express queries in a precise way. The target of similarity
proaches [6, 9, 18, 21] to content-based image retrieval retrieval for images is to retrieve the images that are most
differ in terms of image features extracted, the level of similar to the query image. The similarity between two
abstraction manifested in the features, and the desired patterns or pictures can be measured on the basis of the
degree of domain independence. There are two major cate- maximum-likelihood or minimum-distance criterion [12].
gories of features: primitive and logical. Primitive, or low The similarity based upon the minimum-distance criterion
level, image features such as object colors [6] and bound- has been proposed using the techniques of 2D string match-
aries can be extracted automatically or semi-automatically. ing defined in terms of longest common subsequence [3].

However, the 2D string representation is deficient in de-
scribing the spatial knowledge of the nonzero sized objects* Corresponding author.

E-mail: fjhsu@info4.csie.nctu.edu.tw. with overlapping. The similarity retrieval based on 2D
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C-strings investigated by Lee and Hsu instead adopts the
maximum-likelihood approach in terms of maximum de-
gree of object-pairs clique [14]. All the spatial relationships
between object pairs, which is O(N2) for N objects in an
image, need to be reasoned first. The algorithm for similar-
ity retrieval based on 2D C-strings actually finds a maxi-
mum clique and becomes an NP-complete problem.

In this paper, we use a transformed structure of the 2D
C-string, called 2D C-tree [10], to be the spatial representa-
tion for images and propose the tree-matching algorithm

FIG. 1. A symbolic image and a query sketch.for similarity retrieval. The 2D C-tree is an ordered labeled
tree, which preserves the complete spatial knowledge
among objects without spatial operators. The structural
tree representation plays a significant role in retrieving

relation. The operator ‘‘:’’ denotes the ‘‘in the same setimages by tree-matching. We briefly review the 2D string
as’’ relation. The symbolic picture f1 in Fig. 1a may beindexing approach in the next section. In Section 3 the
represented as the 2D string (A 5 D : E ,, B ,, C, A ,,basic structure of a 2D C-tree and a sample image represen-
B 5 C ,, D : E) or as (A 5 DE ,, B ,, C, A ,, B 5 C ,,tation are introduced. The metric for tree distance compu-
DE), where the symbol ‘‘:’’ can be omitted and is omitted.tation is defined in Section 4. Then we propose a specific

The 2D string representation is also suitable for formu-tree-matching algorithm to solve the problem of image
lating picture queries. In fact, we can imagine that theretrieval in Section 5. The image retrieval algorithm is
query can be specified graphically, by drawing an iconicmodified to compute the partial tree distance for subpicture
image on the screen of a computer. The graphic representa-query. This work is explored in Section 6. Simulation re-
tion, called an icon sketch, can be translated into 2D stringsults for verifying the effectiveness of similarity retrieval
representation. For example, we may want to retrieve im-by 2D C-trees matching are presented in Section 7. Also,
ages satisfying a certain icon sketch q1 as in Fig. 1b. Thenan experimental project applying the proposed algorithms
q1 can be translated into the 2D string (A 5 E ,, C, A ,,to video information system is described in Section 8. Fi-
C ,, E). This query string is a substring of the 2D stringnally, conclusions are summarized in the last section.
representation of the example image f1 . The problem of
image retrieval then becomes the problem of 2D string

2. 2D STRING INDEXING APPROACHES
subsequence matching.

However, the spatial operators of 2D strings are notGiven a physical image at the pixel level, the objects and
sufficient to give a complete description of spatial knowl-their relative positions within the image can be extracted by
edge for images of arbitrary complexity. The 2D G-stringusing various image processing and understanding tech-
representation were proposed to handle more types ofniques [17]. Although this task is computationally expen-
relations between pictorial objects [2], but they are notsive, it is performed only at the time of inserting images
economic for complex images in terms of storage spaceinto the database. Moreover, this task may be carried out
efficiency and navigation complexity. Lee and Hsu [13]in an automated fashion or in a human-assisted semi-auto-
proposed 2D C-string representation with a set of spatialmated fashion, depending on the domain and the complex-
operators and a more efficient cutting mechanism. Theyity of the images. A symbolic image is then obtained by
employed a characteristic set of spatial operators illus-associating a name with each of the domain objects thus
trated in Table 1 to give a complete description for imagesidentified. An image composed of a set of graphic icons
of arbitrary complexity.that represents the symbolic objects is named an iconic

Basically, the 2D C-string approach performs a cut toimage. The idea of representing physical images by iconic
handle the cases of objects with partly overlapping. Theimages is similar to the representation of documents by
global operators ‘‘,’’ and ‘‘u,’’ which are employed in theindex terms in bibliographic information systems. We use
original 2D string approach, handle the cases of nonover-the terms image, symbolic image, and iconic image inter-
lapping. The extended operators ‘‘5,’’ ‘‘[,’’ ‘‘%,’’ and ‘‘],’’changeably in this article.
called the local operators, and a pair of separators ‘‘( )’’The 2D string approach for spatial indexing was initially
handle the cases of overlapping. The picture f2 in Fig. 2aproposed by Chang et al. [3] to represent iconic images.
is similar to f1 in Fig. 1a, except that the objects in f2 areThree spatial relation operators ‘‘,,’’ ‘‘5,’’ and ‘‘:’’ are
nonzero sized objects as opposed to point objects in f1 . Theemployed in 2D strings. The operator ‘‘,’’ denotes the
2D C-string representation of the picture f2 is (A]D[EzBzC,‘‘left-right’’ or ‘‘below-above’’ spatial relation. The opera-

tor ‘‘5’’ denotes the ‘‘at the same spatial location as’’ AzB%CzD%E). It is noted that all the objects in f2 keep
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TABLE 1
The Definition of Characteristic Spatial Operators

Notation Condition Meaning

A , B Ae , Bb A disjoints B.
A u B Ae 5 Bb A is edge to edge with B.
A 5 B Ab 5 Bb , and Ae 5 Be A is the same as B.
A [ B Ab 5 Bb , and Ae . Be A contains B and they have the

same begin-bound.
A ] B Ab , Bb , and Ae 5 Be A contains B and they have the

same end-bound.
A % B Ab , Bb , and Ae . Be A contains B and they do not

FIG. 3. The signed 2D C-trees of image f2 .have the same bound.
A / B Ab , Bb , Ae , Be A is partly overlapping with B.

Note. The notations Ab and Ae (Bb and Be) denote the values of begin-
and end-bounds of objects A and B, respectively. sponding association graph and becomes an NP-complete

problem although there are some polynomial time algo-
rithms for the average case. Therefore we explore a more

intact without cutting because the case of partly overlap- efficient representation and a matching algorithm to solve
ping does not happen. the problem of image similar retrieval.

The 2D C-string is efficient in the representation and
manipulation of images, but it is not suitable in image 3. 2D C-TREE
retrieval based on 2D string subsequence matching. For
example, we use a query sketch q2 as in Fig. 2b, which is The 2D C-tree is an ordered labeled tree. We first intro-
a subpicture of f2 . The 2D C-string of the query image, duce the basic structure of a 2D C-tree. The 2D C-tree
(A%E ,, C, A ,, C ,, E) of q2 , is quite different in representation still employs the sparse cutting mechanism
the format from the 2D C-string of f2 , due to the spatial to handle the case of symbolic images with partly overlap-
operators. The string q2 is not a substring of the string f2 ping objects [10]. The cutting mechanism performs only
any longer. The operators are needed to handle the global essential cuttings to get rid of the ambiguity incurred due
and local relations among symbolic objects in a 2D C- to partly overlapping. After cutting, an image is partitioned
string and cannot be omitted. to some portions between two cuttings. All the portions

Although the inference of the spatial relations between are sequentially linked to a root, R, which is initialized to
objects from a given 2D C-string in spatial reasoning can represent the margin or boundary of the area covered by
be solved by using the ranking mechanism [14], the compu- a given image.
tation of object ranks in a 2D C-string is somewhat compli- The original 2D C-tree representation, called the signed
cated. Moreover, all the spatial relationships of objects 2D C-tree, is proposed with associated spatial operators.
pairs, which is O(N2) for N objects in an image, are required Each node with label, or symbol name, represents an object
to be reasoned first by adopting the 2D longest common in the image. The link connecting two nodes, called the
subsequence algorithm [15]. The algorithm for similarity signed link, is signed with the relation operator. For the
retrieval actually finds a maximum clique of the corre- ordered subtree rooted at node S with n immediate descen-

dants in the ordering s1 , s2 , . . . , sn , S, being the parent,
actually contains the local body consisting of all its immedi-
ate child-nodes s1 , s2 , . . . , sn . The relation operator be-
tween node S and its first child-node s1 is surely a local
operator that indicates the ensemble relationship between
S and the local body consisting of all its child-nodes s1 , s2 ,
. . . , sn . The relation operators between node S and other
child-nodes si (2 # i # n) are definitely global operators
that indicate the sibling relation between the child-node
si (2 # i # n) and the prior child-node si21 of node S. The
signed 2D C-trees of f2 are constructed as shown in Fig. 3.

However, a tree with signed links is somewhat unusual
for general applications. The empty-node and set-node are
employed in order to remove the relation operator fromFIG. 2. A symbolic image with nonzero sized objects and a

query sketch. the signed link according to the basic definition of the
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deleting. Inserting s as a child of r will make s become the
parent of a consecutive subsequence of the current children
of r.

These editing operations can be represented as a R b,
where a is either L (null) or a label in tree T1 and b is
either L or a label in tree T2 . We call a R b a relabel
operation if a ? L and b ? L, a delete operation if b 5
L, and an insert operation if a 5 L. Let D be a cost function
which assigns a nonnegative real number, referred as
D(a R b), to each editing operation a R b. The cost

FIG. 4. The General 2D C-trees of image f2 . can vary in different operations on different nodes. For
example, a higher node in a tree has a greater weight
than a lower one. Nevertheless, the cost of each editing
operation on any node is set equal for simplicity in thisoperators. An empty-node is a pseudo node which is la-
paper.beled ‘‘«’’ and can be of various sizes. The relation operator

The cost function D of each editing operation is con-of the signed link can be removed by inserting some suit-
strained to be a distance metric [5]. That is,able empty-nodes. When the relation operators are

stripped off from a signed 2D C-tree, each node of the (i) D(a R b) $ 0, D(a R a) 5 0, positivity;
transformed tree has at least two child-nodes, except the

(ii) D(a R b) 5 D(b R a), symmetry;node that originally connects to its single child-node by
(iii) D(a R c) # D(a R b) 1 D(b R c),the ‘‘5’’ operator. The ‘‘5’’ operator possesses the commu-

triangle inequality.tation law, which is different from other relation operators
of the 2D C-tree. The objects which are connected with
the ‘‘5’’ operator have the same begin-bound and end-
bound. For the reasoning of spatial relationship among the
nodes of the 2D C-tree, a special set-node is introduced
for treating a set of lineage that each node has single child-
node. A set-node is a multilabel node consisting of objects
that have the same begin-bound and end-bound. The de-
tailed transformation rules are investigated in [10]. The
sample symbolic image f2 in Fig. 2a is represented in a
General 2D C-tree as shown in Fig. 4.

4. TREE METRIC

Ordered labeled trees are trees whose nodes are labeled
and in which the left to right ordering among siblings is
significant. The distance and/or similarity of such trees
have many applications in computer vision, pattern recog-
nition, programming compilation, and natural language
processing [7]. The distance between two ordered trees is
considered to be the weighted number of editing opera-
tions required to transform one tree to another. Many
algorithms have been developed for ordered labeled tree
matching and comparison [23]. Currently the best algo-
rithm for computing the editing distance was presented by
Zhang and Shasha [22]. In this section we introduce the
distance metric between trees to be the basis for presenting
an elegant tree-matching algorithm in image retrieval.

Three kinds of editing operations of a labeled tree [23]
are considered and illustrated in Fig. 5. Relabeling a node
s means changing the label on s. Deleting a node s means
making the children of s become the children of the parent

FIG. 5. Three editing operations on labeled tree.of s and then removing s. Inserting is the complement of



RETRIEVAL BY MATCHING 2D C-TREES 91

Let E be a sequence e1 , e2 , . . . , ek of editing operations.
An E-derivation from tree A to tree B is a sequence of
trees A0 , A1 , . . . , Ak such that A 5 A0 , B 5 Ak , and
Ai21 R Ai , via editing operation ei for 1 # i # k. Then
the cost function D can be extended to the sequence of
editing operations by letting

D(E) 5 ouEu
i51 D(ei). (1)

The editing distance between two trees is defined as
minimum cost of the editing sequence that transforms one

FIG. 6. The 2D C-tree f2X of Fig. 4a with postorder numbering.tree to the other. Formally the editing distance between
trees T1 and T2 is defined as

d(T1 , T2) 5 min hD(E) u E is an editing sequence
(2) tree. Since the nodes of a 2D C-tree may be empty-nodes

from T1 to T2 j. or set-nodes, we must make a small but significant modifi-
cation of the tree-matching algorithm developed by Zhang

The editing sequence can be treated as a mapping that and Shasha [22].
is a graphical specification of editing operations applied to Suppose that A is a node in tree T1 . N(A) denotes the
the nodes in the two ordered trees. Suppose that we have number of labels of node A. If A is an empty-node, A has
a numbering mechanism, for example, the postorder num- a special label ‘‘«’’ and N(A) is one. If A is a set-node,
bering for a tree. Let T [i] be the ith node of tree T in N(A) must be more than one. For an editing operation
the postorder numbering. Formally, we define a triple (M, A R B, where B is a node in tree T2 , the cost function
T1 , T2) to be a mapping from T1 to T2 , where mapping M needs to be re-examined:
is the set of integer pairs (i, j) satisfying:

(1) The cost of a delete operation AR L, D(A R L),
(1) 1 # i # uT1u, 1 # j # uT2u; is defined as N(A). That is, D(A R L) 5 N(A).
(2) For two pairs of (i1 , j1) and (i2 , j2) in M, (2) The cost of an insert operation L R B, D(L R B),

is defined as N(B). That is, D(L R B) 5 N(B).(a) i1 5 i2 if and only if j1 5 j2 (one-to-one),
(3) The cost of a relabel operation A R B, D(A R B),(b) T1[i1] is to the left of T1[i2] if and only if T2[ j1] is

is defined as the larger of two numbers N(A/B) andto the left of T2[ j2] (sibling order preserved ),
N(B/A). Let N(A/B) represent the number of labels of(c) T1[i1] is an ancestor of T1[i2] if and only if T2[ j1]
node A which are differentiated from those of node B.is an ancestor of T2[ j2] (ancestor order preserved).
That is, D(A R B) 5 max {N(A/B), N(B/A)}. If one of

(3) Let lca(i1 , i2) represent the least common ancestor
them is an empty-node, the cost is the number of labels of

node of i1 and i2 . For three pairs of (i1 , j1), (i2 , j2), and
the other node.

(i3 , j3) in M, T1[lca(i1 , i2)] is a proper ancestor of T1[i3] if
These cost functions defined above are still under theand only if T2[lca( j1, j2)] is a proper ancestor of T2[ j3].

constraints of distance metric. In the following some nota-Let M be a mapping from T1 to T2 . Let I and J be the
tions on trees are illustrated in Fig. 6 using the tree f2X ofsets of unmatched nodes in T1 and T2 , respectively. We
Fig. 4a with postorder numbering in the parenthesis aswill use M instead of (M, T1, T2) if there is no confusion.
an example:Then we can define the cost of M:

(1) T [i]. The ith node in the tree T according to the
D(M) 5 o(i,j)[M D(T1[i] R T2[ j]) 1 oi[I D(T1[i] R L) (3) left-to-right postorder numbering. (Ex. The label of T [2]

is E.)1 oj[J D(L R T2[ j]).

(2) u(i). The number of the leftmost leaf descendant
Hence, of the subtree rooted at T [i]. When T [i] is a leaf node,

u(i) 5 i. (Ex. u(4) 5 2; i.e., E is the leftmost leaf descendant
d(T1 , T2) 5 min hD(M) u M is a mapping from T1 to T2j. (4) of D.)

(3) ­(i). The depth of T [i]; it is the number of nodes5. STRUCTURAL IMAGE RETRIEVAL
on the path from the root of tree T to node T [i], excluding
T [i]. (Ex. ­(2) 5 3; i.e., the depth of E is 3.)Now, we begin to introduce the tree matching algorithm

for image retrieval. The 2D C-tree is an ordered labeled (4) P(i). The set of all the predecessors of T [i]. Also,
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Pk(i) denotes the kth level predecessor of T [i], where the LEMMA 3. Let ip [ P(i) and jp [ P( j). If u(ip) ? u(i),
or u( jp) ? u( j), thenlevel is counted from node T [i] backward to the root.

P(i) 5 {Pk(i) u 1 # k # ­(i)}. (Ex. P(2) 5 {4, 5, 8}; i.e., the
ForestDist(u(ip) . . i, u( jp) . . j) 5 min {predecessors of E are D, A, and R.)

ForestDist(u(ip) . . i 2 1, u( jp) . . j) 1 D(T1[i] R L),(5) T [i . . j]. An ordered subforest of tree T induced
ForestDist(u(ip) . . i, u( jp) . . j 2 1) 1 D(L R T2[ j]), (9)by the nodes numbered from i to j inclusive. If i . j, then
ForestDist(u(ip) . . u(i) 2 1, u( jp) . . u( j) 2 1)

T [i . . j] 5 B. (Ex. T [2 . . 6] includes E, «, D, A, and B.)
1 TreeDist(i, j)}.

(6) Forest(i). An ordered subforest T [1 . . i]. (Ex.
Forest(4) includes «, E, «, and D.) Lemma 3 considers the distance between two forests.

The forest T1[u(ip) . . i] (T2[u( jp) . . j]) is led by the leftmost(7) Tree(i). A subtree of T rooted at T [i]. T [u(i) . .
leaf node of a tree Tree(ip) (Tree( jp)) containing the consid-i] will be referred to as Tree(i). (Ex. Tree(4) is equivalent
ered node T1[i] (T2[ j]) and concluded at T1[i] (T2[ j]). Theto T [2 . . 4].)
distance between T1[(u(ip) . . i] of T1 and T2[(u( jp) . . j] of(8) Size(i). The number of nodes in Tree(i). (Ex.
T2 is the minimum of the three possible editing mappingSize(4) 5 3.)
costs: delete T1[i] from T1 , insert T2[ j] into T2 , or substitute

(9) ForestDist(i9 . . i, j9 . . j). The distance between two the subtree Tree(i) of T1 by Tree( j) of T2 .
subforests T1[i9 . . i] in T1 and T2[ j9 . . j] in T2 . We use

For proofs of Lemmas 1, 2, and 3, refer to [22].an abbreviated notation ForestDist(i, j) for the distance
The algorithm to compute the tree distance uses a dy-between T1[1 . . i] and T2[1 . . j] (see below).

namic programming style [16]. From Lemma 3 we observe(10) TreeDist(i, j). The distance between the subtree
that to compute TreeDist(ip, jp) we need in advance almostTree(i) rooted at i in T1 and the subtree Tree( j) rooted at
all values of TreeDist(i, j) where T1[ip] is the root of aj in T2 (see below).
subtree containing T1[i] and T2[ jp] is the root of a subtree

The following three lemmas are necessary for the tree containing T2[ j]. This suggests a bottom-up procedure for
distance computation algorithm. computing all subtree pairs.

ALGORITHM 1. The computation of TreeDist(x, y).LEMMA 1. Let ip [ P(i) and jp [ P( j). Then

Input: Two subtrees, Tree(x) rooted at x in tree T1 and(i) ForestDist(B, B) 5 0. (5)
Tree(y) rooted at y in tree T2 .(ii) ForestDist(u(ip) . . i, B) 5 ForestDist(u(ip) . . i 2 1,

Output: The distance TreeDist(x, y).
B) 1 D(T1[i] R L). (6)

Begin
(iii) ForestDist(B, u( jp) . . j) 5 ForestDist(B, u( jp) . . ForestDist(B, B) 5 0;

j 2 1) 1 D(L R T2[ j]). (7) for i :5 u(x) to x
ForestDist(u(x) . . i, B) 5 ForestDist(u(x) . . i 2Case (i) requires no editing operation and is assigned 0
1, B) 1 N(i);for initialization. In (ii), the distance corresponds to the

for j :5 u(y) to ycost of deleting a node T1[i] from a forest T1[u(ip) . . i].
ForestDist(B, u(y) . . j) 5 ForestDist(B, u(y) . .The forest T1[u(ip) . . i] is led by the leftmost leaf node of
j 2 1) 1 N( j);a tree Tree(ip) containing node T1[i] in T1 and concluded

for i :5 u(x) to xat T1[i]. In (iii), the distance corresponds to the cost of
for j :5 u(y) to yinserting a node T2[ j] into a forest T2[u( jp) . . j 2 1] in T2 .

if u(i) 5 u(x) and u( j) 5 u(y), then
LEMMA 2. ForestDist(u(i) . . i, u( j) . . j) 5 TreeDist ForestDist(u(x) . . i, u(y) . . j) 5 min{

(i, j) 5 min { ForestDist(u(x) . . i 2 1, u(y) . . j) 1 N(i),
ForestDist(u(x) . . i, u(y) . . j 2 1) 1 N( j),

ForestDist(u(i) . . i 2 1, u( j) . . j) 1 D(T1[i] R L), ForestDist(u(x) . . i 2 1, u(y) . . j 2 1) 1
ForestDist(u(i) . . i, u( j) . . j 2 1) 1 D(L R T2[ j]), (8) max {N(A/B), N(B/A)}};
ForestDist(u(i) . . i 2 1, u( j) . . j 2 1) 1 D(T1[i] R T2[ j])}. TreeDist(i, j) 5 ForestDist(u(x) . . i, u(y) . . j);

else
ForestDist(u(x) . . i, u(y) . . j) 5 min {Lemma 2 computes the distance between two subtrees

rooted at T1[i] in T1 and T2[ j] in T2 , respectively. Consider ForestDist(u(x) . . i 2 1, u(y) . . j) 1 N(i),
ForestDist(u(x) . . i, u(y) . . j 2 1) 1 N( j),the mapping of two roots, T1[i] and T2[ j]. The distance

between Tree(i) of T1 and Tree( j) of T2 is the minimum ForestDist(u(x) . . u(i) 2 1, u(y) . . u( j) 2
1) 1 TreeDist(i, j)};of the three possible editing mapping costs: delete T1[i]

from T1 , insert T2[ j] from T2, or relabel T1[i] as T2[ j]. End;
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are n images in the database, P1 , P2 , . . . , Pn , and a query
image Q. The most similar image(s) to Q is

{Pi u d(Pi , Q) is the minimum of d(Pk , Q), 1 # k # n}.

6. SUBPICTURE QUERY

Subpicture query is useful when a user cannot express
queries in a precise way [5]. Sometimes we may ask ‘‘pleaseFIG. 7. The 2D C-trees of query sketch q2 .
retrieve images that contain this specific subpicture,’’ or
‘‘I want some images that have some part like this query
sketch.’’ For example, the query image q2 in Fig. 2b is a
subpicture of f2 in Fig. 2a. An approximate-tree-by-For two 2D C-trees, T1 and T2 , rooted at R1 and R2 ,
example (ATBE) system [19] developed by Wang et al.respectively, the distance between them, denoted by d(T1 ,
manipulates the inexact query by approximate tree match-T2), is computed as the value of TreeDist(R1 , R2). We can
ing. But the cutting and pruning operations that removeuse the algorithm to compute the distance of 2D C-trees
all the descendants of a node are somehow not suitable forfor solving the picture query problem. Consider two pic-
subpicture query. The tree distance computation algorithmtures, P1 and P2 . Two 2D C-tree representations of P1
proposed in the previous section not only can support a(P2), T1x (T2x), and T1Y (T2Y) along x-coordinate and y-
simple measure for similarity retrieval, but also it can becoordinate, respectively, are constructed. We define the
modified for a subpicture query. In essence, we adopt thedistance between P1 and P2 as follows.
tree-matching algorithm and modify the cost functions of

DEFINITION 1. The distance between two pictures P1 editing operations as required.
and P2 , d(P1 , P2), is d(T1x , T2x) * d(T1Y , T2Y). If d(T1x ,

(1) The cost of delete operation is weighted zero. Delet-
T2x) is zero, then define d(P1 , P2) 5 d(T1Y , T2Y). On the

ing a symbol from a reference image means that this symbolcontrary, if d(T1Y , T2Y) is zero, then define d(P1 , P2) 5
does not appear in the query image. For subpicture query,d(T1X , T2X).
the symbols existing in the reference image may not be
expressed in the query image or specified subpicture. InWe use the example picture f2 in Fig. 2a and query sketch
such a case, the superfluous symbols in reference imageq2 in Fig. 2b to demonstrate the computation of picture
can be ignored on purpose when they do not appear indistance. The 2D C-trees of f2 and q2 along x-coordinate
the query image and are allowed to delete with zero cost.axis are in Figs. 4a and 7a correspondingly. The editing
The cost of editing operation A R L is weighted zero; i.e.,distance between these two trees is the cost of editing
D(A R L) 5 0.operations required to transform f2x to q2x . At least two

editing operations are needed. That is, D(D R L) and (2) The cost of an insert operation L R B, i.e., D(L R
D(B R «). So the tree distance of d( f2x , q2x) is 2. Three B), is not changed because all the symbols of the query
delete operations, D(B R L), D(D R L), and D(« R L), image should be considered. That is, D(L R B) 5 N(B).
are needed between f2Y in Fig. 4b and q2Y in Fig. 7b along (3) The cost of a relabel operation A R B, i.e., D(A R
y-coordinate. That is, the cost of d( f2Y , q2Y) is 3. Finally, B), is slightly changed and is defined as the number of
the distance of d( f2 , q2) is 6. unmatched symbols in B, which do not appear in A. That

Moreover, in [22] Zhang and Shasha had defined an is, D(A R B) 5 N(B/A). One special case is for B 5 «.
LR–keyroots set of tree T, LR–keyroots(T ), to efficiently The cost of D(A R «) is redefined to be 0 because the
reduce the computation time of tree distance. The com- symbol(s) in A can be viewed as an empty-node in B.
plexity of the algorithm is O(uT1u * uT2u * min(depth(T1),
leaves(T1)) * min(depth(T2), leaves(T2))). Let depth(T1) Obviously, the newly defined cost functions, called par-

tial cost functions, of editing operations do not obey thedenote the depth of the tree T1 and leaves(T1) denote the
number of leaf nodes of the tree T1 . In general, the fast symmetry constraint of distance metric. Although the de-

lete operation is not the inverse function of insert operationalgorithm takes O(n4) for computing the editing distance
between two trees consisting of n nodes. The parallel algo- any more, the constraint of a distance metric is not our

major concern for subpicture query. The partial cost func-rithm is the time of complexity O(uT1u * uT2u) by using
O(min(uT1u, uT2u) * leaves(T1) * leaves(T2)) processors. tions directly affect computation of the tree distance, based

upon the lemmas in the previous section. In Lemma 1, theWhile all the tree distances between the query image
and the images in the database have been computed, the second sentence ForestDist(u(ip) . . i, B) is always zero

because D(T1[i] R L) 5 0. In Lemma 2 and Lemma 3, themost similar image can be obtained. Suppose that there
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second value of the first statement in the minimum group, We use the example picture f2 in Fig. 2a and query sketch
q2 in Fig. 2b to demonstrate the computation of partiali.e., D(T1[i] R L), is removed because the delete operation

is weighted zero also. Consequently, the algorithm of par- distance. The 2D C-trees of f2 and q2 are in Fig. 4 and Fig.
7, correspondingly. For computing the partial tree distancetial tree distance is modified as follows.
between f2x and q2x , the first editing D(D R L) is a delete

ALGORITHM 2. The computation of PartialTreeDist operation having zero weight. The second editing D(B R
(x, y).

«) is a special case of relabel operation also weighted zero.
So the tree distance of c( f2x , q2x) is 0 for x-coordinateInput: Two subtrees, Tree(x) rooted at x in tree T1 and
direction. The costs of three delete operations, D(B R L),Tree(y) rooted at y in tree T2 .
D(D R L), and D(« R L), needed for transforming fromOutput: The distance PartialTreeDist(x, y).
f2Y to q2Y along y-coordinate are all weighted zero. ThatBegin
is, the cost of c( f2Y , q2Y) is 0 also. Finally, the distance ofForestDist(B, B) 5 0;
c( f2 , q2) is 0. It means that q2 is a subpicture of f2 withfor i :5 u(x) to x
distance zero.ForestDist(u(x) . . i, B) 5 0;

Analogously, the most similar image(s) that contains afor j :5 u(y) to y
query subpicture Q from P1 , P2 , . . . , and Pn isForestDist(B, u(y) . . j) 5 ForestDist(B, u(y) . .

j 2 1) 1 N( j);
for i :5 u(x) to x hPi u c(Pi , Q) is the minimum of c(Pk , Q), 1 # k # n}.

for j :5 u(y) to y
if u(i) 5 u(x) and u( j) 5 u(y), then 7. SIMULATION RESULTS

ForestDist(u(x) . . i, u(y) . . j) 5 min{
ForestDist(u(x) . . i 2 1, u(y) . . j), For verifying the effectiveness of similarity retrieval by
ForestDist(u(x) . . i, u(y) . . j 2 1) 1 N( j), 2D C-trees matching, a test consisting of 10 simulation
ForestDist(u(x) . . i 2 1, u(y) . . j 2 1) 1 pictures is evaluated. A symbolic image with random spa-
N( j/i)}; tial relationship among objects can be generated by ran-

PartialTreeDist(i, j) 5 ForestDist(u(x) . . i, dom generation of quadruple-values. Table 2 shows 10
u(y) . . j); random generated objects A through J with the bounds

else on x-axis and y-axis, respectively.
ForestDist(u(x) . . i, u(y) . . j) 5 min{ We construct 10 simulation pictures, P1 , P2 , . . . , and

ForestDist(u(x) . . i 2 1, u(y) . . j), P10 . Without loss of generality, assume P1 contains single
ForestDist(u(x) . . i, u(y) . . j 2 1) 1 N( j), object, the first object (A). P2 contains the first two objects
ForestDist(u(x) . . u(i) 2 1, u(y) . . u( j) 2 (A and B), and so on. The tenth picture P10 contains all
1) 1 PartialTreeDist(i, j)}; 10 objects. Fig. 8 depicts the symbolic images P3 and P4 .

End; It is interesting to find out that P3 is a subpicture of P4 .
It could be foreseen that a picture with less objects is aThen, we can use the partial tree-matching algorithm
subpicture of a picture with more objects in this experi-to compute the distance of 2D C-trees for solving the
ment; i.e., Pi is always a subpicture of Pj , for i # j.subpicture query problem. Let c(T1 , T2) represent the par-

Then these 10 pictures are represented in 2D C-trees,tial tree distance between trees T1 and T2 . The partial
respectively. The 2D C-trees of P3 , referred to as T3X anddistance between P1 and P2 is defined as follows.
T3Y , are shown in Fig. 9 and the 2D C-trees of P4 in Fig. 10.

For illustrating the computations of tree distances amongDEFINITION 2. The partial distance between two pic-
tures P1 and P2 , g(P1 , P2), is g(T1x , T2x) * c(T1Y , T2Y). If these 10 pictures, the 2D C-tree representation is expressed

by a recursive sentence a(a1a2a3 . . . . an) for a node a,c(T1x , T2x) is zero, then define c(P1 , P2) 5 c(T1Y , T2Y).
On the contrary, if c(T1Y , T2Y) is zero, then define c(P1, which has n immediate descendants in the ordering a1 , a2 ,

a3 , . . . , and an . For example, T3X in Fig. 9 is representedP2) 5 c(T1X , T2X).

TABLE 2
The Simulation Data of Ten Objects

Label A B C D E F G H I J

x-axis 131, 347 165, 358 31, 641 192, 572 5, 358 80, 346 119, 470 213, 584 420, 610 364, 600
y-axis 167, 415 20, 332 217, 363 9, 241 36, 156 431, 466 208, 509 48, 50 355, 467 14, 545
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FIG. 8. P3 is a subpicture of P4 .

FIG. 10. The 2D C-trees of P4 .as R(C(«A(«B)B«)). Note that R, « and the bracket [ ]
denote the root of tree, an empty-node and a set-node,
respectively. The 2D C-trees of the 10 simulation pictures
are constructed and listed in Fig. 11. the objects of Pi excluding the ith object. The distance

In the sample database, there are 10 generated pictures, between Pi and Pj is always smaller than the distance be-
P1 , P2 , . . . , and P10 , as reference pictures. We also use Pi , tween Pi21 and Pj . For two pictures Pk and Pk11 containing
1 # i # 10, as query picture to validate the correctness of more objects than Pj , the distance between Pk and Pj is
the matching algorithm. Listed in Table 3 is the exact query always smaller than the distance between Pk11 and Pj . The
and we compute the tree distance d(reference, query). above statements confirm that the computation of tree
Table 4 shows the subpicture query and we compute the distances is suitable for measuring the similarity between
partial tree distance c(reference, query). two pictures. The smaller the distance between two pic-

There are some interesting observations in the simula- tures is, the more similar the two pictures are.
tion results: (3) It seems apparent that the partial tree distances in

Table 4 are not symmetric. The values of the lower-triangle(1) Table 3 shows that the tree distance computation
strictly obeys the constraints of distance metric. That is,
for any Pi , Pj , and Pk ,

(i) d(Pi , Pj) $ 0, and d(Pi , Pi) 5 0 (positivity),

(ii) d(Pi , Pj) 5 d(Pj , Pi) (symmetry),

(iii) d(Pi , Pk) # d(Pi , Pj) 1 d(Pj , Pk) (triangle in-
equality).

(2) For any Pj ,

(i) if i , j, then d(Pi , Pj) , d(Pi21 , Pj);

(ii) if k . j, then d(Pk , Pj) , d(Pk11 , Pj).

Pj contains the first j objects. Pi contains the first i objects
and is a subset of objects of Pj if i , j. Pi21 contains all

FIG. 11. The 2D C-tree representations of 10 simulation pic-
tures.FIG. 9. The 2D C-trees of P3 .
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TABLE 3
The Tree Distance Result of Comparing Ten Simulation Pictures

Reference
d

Query P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 0 9 42 110 169 255 418 594 750 1044
P2 9 0 12 56 100 168 304 456 594 858
P3 42 12 0 16 54 96 204 330 475 713
P4 110 56 16 0 16 40 120 220 345 551
P5 169 100 54 16 0 8 54 126 221 391
P6 255 168 96 40 8 0 20 70 143 285
P7 418 304 204 120 54 20 0 15 63 165
P8 594 456 330 220 126 70 15 0 20 88
P9 750 594 475 345 221 143 63 20 0 24
P10 1044 858 713 551 391 285 165 88 24 0

are almost the same as those of the tree distances in Table 8. PROTOTYPE SYSTEM
3. And the values of the upper-triangle are almost zero

We apply the above mechanisms to implement an inter-because the costs of delete operations are weighted zero.
active video information system in our experimental proj-Basically, the partial tree distance computation obeys the
ect [11]. We capture 48 streams from ‘‘The Lion King’’distance metric except symmetry constraint due to the par-
cartoon produced by The Walt Disney Company and storetial cost functions defined. Note that some very small non-
the video data in AVI file format. Each stream takes aboutzero values appearing in the upper-triangle happen when
99 s and consists of about 1500 frames. Some key imagethe cutting causes some objects being segmented.
frames are identified in a human-assisted fashion for each(4) The value in the upper-triangle of Table 4 represents
of the video streams. Notes that this work can be benefitedthe partial tree distance between one (reference) picture
from the motion analysis of recorded scene. These keywith more objects and another (query) picture with less
images become representative of the streams. There areobjects, i.e., c(Pj , Pi) for two pictures Pj and Pi , j . i.
351 key images in our experiment and some are listed inSince this value is zero or very closer to zero, Pi is viewed
Fig. 12. For this popular animation, 78 roles are chosen toas a subpicture of Pj . For example, c(P4 , P3) 5 0 implies
be the objects, which are also extracted in human-assistedthat P3 is a subpicture of P4 with zero cost. The result
fashion. These objects are represented by a set of designedcomplies with the fact of the simulation.
icons in the system. The objects and their bounding rectan-
gles within images are also extracted after capturing theThe above evidences validate the accountability of our

tree-matching algorithms and the effectiveness of similarity image from the source video. Each image containing about
five objects in average is constructed into two 2D C-treesretrieval by 2D C-trees matching.

TABLE 4
The Partial Tree Distance Result of Comparing Ten Simulation Pictures

Reference
c

Query P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 0 0 0 0 0 0 0 0 0 0
P2 9 0 0 0 0 0 0 0 0 0
P3 42 12 0 0 1 1 1 1 1 1
P4 110 56 16 0 3 2 2 2 2 2
P5 169 100 48 12 0 0 0 0 1 1
P6 255 168 96 36 8 0 0 0 1 1
P7 418 304 204 112 54 20 0 0 1 1
P8 594 456 330 209 126 70 15 0 2 2
P9 750 594 475 345 221 143 63 20 0 0
P10 1044 858 713 532 391 285 165 88 24 0
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FIG. 12. Some key frames of the 48 streams collected.
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FIG. 13. An example query image.

along x- and y-axis directions independently and these 2D knowledge of the nonzero sized objects with overlapping.
The similarity retrieval of images using 2D C-stringsC-trees are stored associated with the source AVI file. The

number of objects within each image implies the number adopted the maximum-likelihood approach defined in
terms of maximum degree of object-pairs clique. The algo-of nodes in its corresponding 2D C-trees.

The system supports single image query and frame se- rithm for similarity retrieval based on 2D C-strings actually
finds a maximum clique and becomes an NP-completequence query. The system allows users to draw a query

image by assembling object icons designed or use a before- problem though polynomial algorithm for average case
is available.hand query template consisting of a sequence of query

frames. An example query image is shown in Fig. 13. Two In this paper, we use an ordered labeled tree, 2D C-
tree, to be the spatial representation for an image and2D C-trees of each image in the query sequence is con-

structed first. Then, for each stream of video database, we propose the tree-matching algorithm for similarity re-
trieval. The algorithm provides a simple fast comparisoncompute the partial distances between the stream and the

query sequence. An approximate sequence matching for computing tree distance among images. The computa-
tion of distance between 2D C-trees can be used to measure(ASM) mechanism can compute the subsequence matching

distance. The stream with minimum distance represents the similarity of images with spatial constraint. This ap-
proach provides an effective and efficient mechanism forthe most similar stream for the query sequence. A result

of the query template in Fig. 13 is shown in Fig. 14. Our similarity retrieval in image databases. The tree distance
comparison algorithm is also modified to compute the par-initial results validate the effectiveness of similarity re-

trieval by 2D C-trees matching. tial tree distance for subpicture query. We also validate
the accountability of our tree-matching algorithms for simi-
larity retrieval by simulation results. Moreover, the meth-9. CONCLUSIONS
odology of similarity retrieval is utilized in video sequence

Similarity retrieval is one of the attracting functions of an matching in our video information retrieval project be-
image database system that distinguishes it from traditional ing executed.
database systems. The goal is to retrieve the images that
are similar to the query image. The similarity retrieval APPENDIX: LIST OF SYMBOLS
based upon the minimum-distance criterion had been pro-
posed in the techniques of 2D string matching defined in Ab the begin-bound of object A

Ae the end-bound of object Aterms of longest common subsequence. However, the 2D
string representation is deficient in describing the spatial R the root of a 2D C-tree
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FIG. 14. A result of the query template in Fig. 13.

Size(i) the number of nodes in Tree(i)si the ith immediate descendant of node S
« empty-node uT u the number of nodes in the tree T

depth(T ) the depth of the tree TT a rooted tree
T [i] the ith node of tree T in the postorder num- leaves(T ) the number of leaf nodes in the tree T

Pi the ith picture in the databasebering
e1 . . ek the editing operations d(P1 , P2) the tree distance between two pictures P1

and P2D the cost function of editing operation
d(T1 , T2) the tree distance between tree T1 and tree T2 c(P1 , P2) the partial distance between two pictures P1

and P2lca(i, j) the least common ancestor node of T [i] and
T [ j]

N(T ) the number of symbols in tree T REFERENCES
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