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The Ergodicity Analysis of Two-Dimensional
Discrete Wavelet-Based fBm Fields

Bing-Fei Wu and Yu-Lin Su

Abstract—The correspondence explores the ergodicity property of
the two-dimensional (2-D) discrete wavelet transform for a fractional
Brownian motion (fBm) field that consists of one approximation image
and three detail images. In this correspondence, the decorrelation and
ergodicity of the three detail images of fBm fields are shown to be
achieved.

Index Terms—Ergodicity, fractional Brownian motion (fBm), wavelet.

I. INTRODUCTION

An important problem that has appeared in the applications of
stochastic processes is the estimation of various statistical parameters
in terms of real data. Most parameters are expressed as the moment
values, which are obtained by the ensemble averages. Fortunately,
for many stationary stochastic processes, we can substitute the time
averages for the unknown ensemble averages [10, p. 246], [15,
p. 316]. The time average will tend to the ensemble average as
the averaging interval goes to infinity when the stochastic process
is ergodic. Practically, it is very difficult to check the ergodicity
properties of nonstationary processes in most cases. Therefore, we
usually assume that the ensemble averages of nonstationary processes
may be approximated by their time averages. The fractional Brownian
motion (fBm) processes are used in a wide range of research such
as 1=f -type noises, fractals, image textures, etc. [3], [4], [6], [9],
[12], [16], where the calculation problems of the fBm processes are
not mentioned and solved. Actually, fBm processes do not have the
ergodic properties checked by the ergodicity theorem described in
Papoulis [10, pp. 246–251] or Stark [15, pp. 316–322].

The ergodicity properties of the one-dimensional discrete wavelet
transform (1-D DWT) of an fBm process will be stated as follows.
Suppose thatBH [n] is a sampled fBm process with parameter
H; 0<H < 1: From [5] and [16], the 1-D DWT of the fBm
process is wide-sense stationary (WSS) and decorrelated, i.e.,
the autocorrelation function of the wavelet coefficient decays as
Rd(B )(m1; k1;m2; k2) � O(j2

�m k1 � 2
�m k2j

2(H�M)
)

for j2
�m k1 � 2

�m k2j> jK1 + K2j, where M is the
vanishing moment of the wavelet function, the wavelet
function  (t) has a finite support given by the interval
[�K1; K2]; K1 and K2> 0; Rd(B )(m1; k1;m2; k2) �

Efdm (BH)[k1]d
�

m (BH)[k2]g, and dm(BH)[k] denotes the
wavelet coefficient ofBH [n] at the resolutionm: With these results
applied to the theorem of ergodicity in [10, pp. 247–251], we
conclude that the wavelet coefficient is mean ergodic. Since the
fBm process has Gaussian distribution, the wavelet coefficient of
the fBm is also correlation ergodic.

In this work, the results above are extended to the case of two-
dimensional (2-D) fBm fields. The 2-D DWT herein are based on
the perfect reconstruction-quadrature mirror filter (PR-QMF) structure
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[1], [8]. The 2-D DWT includes one approximation image, which is
defined as

Am+1F [kx; ky] =

1

n =�1

1

n =�1

� h[nx � 2kx]h[ny � 2ky]AmF [nx; ny] (1)

and three detail images, i.e., horizontal(HHH), vertical (VVV ), and
diagonal(DDD) detail images, which are defined as

D
HHH
m+1F [kx; ky] =

1

n =�1

1

n =�1

h[nx � 2kx]g

� [ny � 2ky]AmF [nx; ny]; (2)

D
VVV
m+1F [kx; ky] =

1

n =�1

1

n =�1

g[nx � 2kx]h

� [ny � 2ky]AmF [nx; ny]; and (3)

D
DDD
m+1F [kx; ky] =

1

n =�1

1

n =�1

g[nx � 2kx]g

� [ny � 2ky]AmF [nx; ny] (4)

wherem � 0;m; kx; ky 2 ZZZ; F [kx; ky] denotes a 2-D field, and
h[k] and g[k] satisfy the QMF constraint [1], [8].

The contribution of this work is that the three detail images of
2-D fBm fields are shown to have the property of decorrelation and
ergodicity that will be certified in this work. Therefore, the ensemble
average can be replaced by the time average for the moment values
that are presented by the numerical simulation.

The main results of this work are shown in Section II. Section III
presents the numerical results. The conclusions are given in Section
IV.

II. M AIN RESULTS

A. 2-D fBm Fields

First, we summarize some properties of 2-D random fields derived
from Rosenfeld [14, pp. 38–39]. Letfff(~r; !i) be a random variable,
where the position vector~r is given in thexy plane, and!i is an
outcome in the sample space. Henceforth, we will denotefff(~r; !i)

by fff(~r) (or fff(x; y)). It is understood that this represents a family
of 2-D functions with each function corresponding to an outcome!i
[14, p. 39].

We wish to represent the functionfff(~r) by its samplesfff(~rij) (or
denoted byfff [i; j]), where~rij are the points on a sampling lattice
as defined by

~rij � i~r1 + j~r2; i; j 2 ZZZ (5)

and~r1 and~r2 are the given basis vectors in thexy plane [14, pp.
75–77]. From the definitions of mean ergodic and correlation ergodic
[14, pp. 45–46] extended directly by the 1-D case, we have the
following corollary such that the random fieldfff(~rij) is mean ergodic
or correlation ergodic with probability 1.

Corollary 1: Suppose thatfff(~rij);8i and j 2 ZZZ is a WSS
random field with autocovarianceCf (~�ij) = Rf(~�ij) � �2f , where
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(a) (b)

(c) (d)

Fig. 1. Time-average autocorrelation functions of the 2-D DWT images of
an fBm field with parameterH = 0:5 and Haar basis for the case of
m = 1. (a) Ra[(10; 10); (kx2; ky2)]: (b) Rdh[(10; 10); (kx2; ky2)]: (c)
Rdv[(10;10); (kx2; ky2)]. (d) Rdd[(10;10); (kx2; ky2)]:

Rf(~�ij) � Effff(~ri j )fff�(~ri j )g; �f � Effff(~rij)g and ~�ij �

~ri j � ~ri j ; i1; j1; i2, and j2 = 0; 1; 2; � � � : If Cf(~0)<1 and
Cf(~�ij)! 0 ask~�ijk ! 1, thefff(~rij) is mean ergodic. Assume that
fff(~rij) is Gaussian; then,fff(~rij) is correlation ergodic ifRf(~�ij)! 0

as k~�ijk ! 1:

Consider a zero mean sampled 2-D fBm random field with pa-
rameterH

B[nx; ny] = BH(nx�x; ny�y); 8nx; ny 2 ZZZ (6)

where�x and�y are the sampling periods of thex; y directions,
respectively. From [p. 250], the autocorrelation function of the 2-D
fBm itself (B[nx; ny]) is written as

RB [(nx1; ny1); (nx2; ny2)]

=
K

2
f(n

2

x1 + n
2

y1)
H
+ (n

2

x2 + n
2

y2)
H

� ((nx1 � nx2)
2
+ (ny1 � ny2)

2
)
H
g (7)

whereK is a constant.

B. Decorrelation Properties of The Three Detail Images of fBm Fields

In our previous work [17], we have concluded that the three detail
images of the 2-D fBm random field are all WSS. The following
theorem will show further that the autocorrelation functions of the
three detail images are all decorrelated.

Theorem 1: Suppose that a wavelet function has the vanishing
momentM: Then, the autocorrelation functions of the horizontal and
vertical detail images related to a 2-D fBm random fieldB[nx; ny]

denoted asDHHHm B and DVVVmB, respectively, decay asO((�2x +

�2y )
H��

) with � � (M=2), where �x � nx1 � nx2 6= 0 and
�y � ny1�ny2 6= 0 for all nx1; nx2; ny1 andny2 2 ZZZ: Furthermore,
for the diagonal detail image denoted asDDDDmB, the autocorrelation
function decays with the order ofH � �; � � M:

Proof: The proof of DHHHm B;DVVVmB and DDDDmB are similar.
Herein, we only take one of them shown below in detail. Let
�x � kx1 � kx2 and�y � ky1 � ky2 for all kx1; kx2; ky1; ky2 2 ZZZ:

(a) (b)

(c) (d)

Fig. 2. Ensemble-average autocorrelation functions of the 2-D DWT images
of an fBm field with parameterH = 0:5 and Haar basis for the case of
m = 1: (a) Ra[(10;10); (kx2; ky2)]: (b) Rdh[(10; 10); (kx2; ky2)]: (c)
Rdv[(10;10); (kx2; ky2)]. (d) Rdd[(10;10); (kx2; ky2)]:

(a) (b)

(c) (d)

Fig. 3. Time-average autocorrelation functions of the 2-D DWT images of
an fBm field with parameterH = 0:2 and Daubechies 2 basis for the case
of m = 1: (a)Ra[(10;10); (kx2; ky2)]: (b) Rdh[(10; 10); (kx2; ky2)]: (c)
Rdv[(10;10); (kx2; ky2)]. (d) Rdd[(10;10); (kx2; ky2)]:

(a) (b)

(c) (d)

Fig. 4. Ensemble-average autocorrelation functions of the 2-D DWT images
of an fBm field with parameterH = 0:2 and Daubechies 2 basis for the case
of m = 1: (a)Ra[(10;10); (kx2; ky2)]: (b) Rdh[(10; 10); (kx2; ky2)]: (c)
Rdv[(10;10); (kx2; ky2)]. (d) Rdd[(10;10); (kx2; ky2)]:



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 3, MARCH 1998 807

The autocorrelation ofDHHHm (B) is written as

R
DHHH (B)

[�x; �y] �EfD
HHH
m B[kx1; ky1]DHHHm B[kx2; ky2]g

=�
H

i

� � �
i l

� � �
l j

� � �
j t

� � �
t

h[i1]

� � �h[im]g[l1] � � �h[lm]

� h[j1] � � �h[jm] g[t1] � � �h[tm]

� �
K

2
P (�; �) (8)

whereQx � im+2im�1+� � �+2
m�1i1�lm�2lm�1�� � ��2

m�1l1,
andQy � jm+2jm�1+� � �+2

m�1j1�tm�2tm�1�� � ��2
m�1t1:

Let � � (2
m�x)

2
+ (2

m�y)
2; � � (Qx=�); � � (Qy=�);~v �

[Qx Qy]
T andP (�; �) � [1+��2+��2+2

m+1�x�+2
m+1�y�]

H :

Define
(~q) � frj�2
i=1 ri=qi � 1g;
0(~q) � frj�2

i=1 ri=qi< 1g,
and the differentiable closure of
0(~q) is given by
0(~q) � fr+tjr 2


0(~q) and jtj � 1g, where~q � [q1 q2]
T ; q1; q2 2 RRR

+: Clearly, it is
found thatP 2 C(1;1) onRRR2: The Taylor formula for real-valued
P (�; �) at (�; �) = (0; 0) is expressed as

P (�; �) =

r2


1

r!
D
r
P (0; 0)(~v)

r
�
�r

+R
~q
(0;0)P (~v�

�1
)

= 1 + 2H(2
m
�xQx + 2

m
�yQy)�

�1

+

r2
;r ;r 6=0;1

1

r!
D
r
P (0; 0)(~v)

r
�
�r

+R
~q
(0;0)P (~v�

�1
) (9)

whereR~q
(0;0)P (~v�

�1
) � �r2
 n
(Ar=jrj)D

rP (�r~v�
�1

)(~v��1)r;

Dr denotes the partial derivative@jrj=(@~v)r; fr 2 
0n
g represents
f(r 2 
0 [ 
) \ (r 62 
0 \ 
)g and Ar = �f(1=
!):


 2 
0 ^ 
 + s = r for somes with jsj = 1g; satisfying �r
= �
 wheneverjrj = j
j, andlim(�;�)!(0;0)(R

~q
(0;0)P (�; �)=j�j

q
+

j�jq ) = 0 [13, pp. 5–8]. Then, we have

[(Qx + 2
m
�x)

2
+ (Qy + 2

m
�y)

2
]
H

= �
H
P (�; �) = �

H

�
r2


1

r!
D
r
P (0; 0)(~v)

r
�
�r

+R
~q
(0;0)P (~v�

�1
) : (10)

Since has the vanishing momentM , i.e., s1�1 tl (t) = 0, for
l = 0; 1; 2; � � � ;M � 1 or, equivalently,�k g[k]kl = 0, for
l = 0; 1; 2; � � � ;M � 1 [7, p. 142], therefore, we obtain

R
DHHH (B)

[�x; �y]

= (�
2
x + �

2
y )

H�M
�
K

2
2
2m(H�M)

i

� � �
t

h[i1] � � � h[im]g[l1] � � � h[lm]h[j1] � � � h[jm]

� g[t1] � � �h[tm]

�
r2
;r�M

1

r!
D
r
P (0; 0)(~v)

r
2
�2m(r�M)

� (�
2
x + �

2
y )
�(r�M)

+R
~q
(0;0)P (~v(�)

�1
) : (11)

Because theM th-order partials forP (�; �) depend on�Mx ; �My and
�nx �ny , wheren1 + n2 = M andn1; n2> 0, theM th-order term
of f�g in (8) is bounded below by��(M=2): Hence,R

DHHH (B)
[�x; �y]

(a) (b)

(c) (d)

Fig. 5. Absolutely relative error between the time-average (Fig. 1) and the
ensemble-average (Fig. 2). (a) A.R.E. ofRa[(10; 10); (kx2; ky2)]:
(b) A.R.E. of Rdh[(10;10); (kx2; ky2)]: (c) A.R.E. of
Rdv[(10;10); (kx2; ky2)]. (d) A.R.E. ofRdd[(10; 10); (kx2; ky2)]:

(a) (b)

(c) (d)

Fig. 6. Absolutely relative error between the time-average (Fig. 3) and the
ensemble-average (Fig. 4). (a) A.R.E. ofRa[(10;10); (kx2; ky2)]:
(b) A.R.E. of Rdh[(10; 10); (kx2; ky2)]: (c) A.R.E. of
Rdv[(10;10); (kx2; ky2)]. (d) A.R.E. ofRdd[(10; 10); (kx2; ky2)]:

decays asO((�2x + �2y )
(H�(M=2)

) at least.
Particularly, for the diagonal detail image case, the terms of

�nx �ny ; n1+n2 =M in the autocorrelation function will vanish byg
after the filter operation along the indexesi1; l1; j1; andt1: Therefore,
theM th-order term inR

DDDD(B)
is bounded below by��M : Hence,

R
DDDD(B)

[�x; �y] decays faster asO((�2x + �2y )
(H�M)

):

The approximation image is close to the original 2-D fBm random
field. In addition, the autocorrelation function of the approximation
image is near the original 2-D fBm random field and is different from
the three detail images, which decay fast.

Remark 1: The decaying property of the approximation image of
a 2-D fBm random fieldB[nx; ny] denoted byAmB is not included
in Theorem 1.

The autocorrelation function of DHHHm B denoted by
R
DHHH

[(kx1; ky1); (kx2; ky2)] is dependent only on�x � kx1 � kx2

and �y � ky1 � ky2, andR
DHHH

[�x;��y] = R
DHHH

[��x;��y] =

R
DHHH

[�x; �y], i.e., R
DHHH

is symmetric. Therefore, in addition to

Theorem 1, the detail imageDHHHm B could be approximated to a
white 2-D random field, which is similar to the other detail images
DVVVmB andDDDDmB:
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Fig. 7. Profiles of normalizedR
DHHH

of an fBm field with H = 0:3; H = 0:5;H = 0:8 and Haar basis form = 1; where ‘o’: H = 0:3; ‘+’:
H = 0:5; ‘x’: H = 0:8:

Remark 2: From Theorem 1, the three detail images of a 2-D fBm
random field behave much more like white noises as the parameter
H is small.

C. The Ergodicity of the 2-D DWT of fBm Fields

Since the means of the three detail images of the fBm field are
equal to zero, the corresponding covariance functions are equal to
the autocorrelation functions.

Theorem 2: Let  (t) be an orthogonal wavelet supported over the
interval [�K1; K2]; K1 andK2> 0: The three detail images of an
fBm field are defined as in (1)–(4). Then, these three detail images
are mean ergodic.

Proof: Based on the results in the last subsection and Corollary
1, it is concluded that the three detail images are mean ergodic.

Theorem 3: If an fBm field has Gaussian distribution, then the
2-D DWT of the fBm field is also correlation ergodic.

Proof: The reason is the same as the proof of Theorem 2.

III. N UMERICAL EXAMPLES

In this simulation, the spectral synthesis method in [11, pp. 96–105]
is used to generate the fBm field denoted byB[nx; ny]; nx; ny =
0; 1; � � � ; 127 with parameterH = 0:5 andH = 0:2: It is shown
numerically that the time average of the approximation image of an
fBm field is not equal to the ensemble average of itself. However, the
three detail images of the fBm field have the property of ergodicity,
where the Haar and DaubechiesN = 2 functions are chosen as the
wavelet bases, i.e., the coefficients of the Haar function areh[0] =
h[1] = g[0] = �g[1] = (1=

p
2); h[n] = g[n] = 0 for n 6= 0; 1

and for the DaubechiesN = 2 function, h[0] = 0:48296; h[1] =
0:83652; h[2] = 0:22414; h[3] = �0:12941: The approximation
and three detail images of the fBm field, which are denoted as
Am[kx; ky] andD���m[kx; ky]; ��� � HHH;VVV orDDD;m; kx andky 2 ZZZ, are
mean zero. The corresponding autocorrelation functions form = 1
are calculated by the time-average (T.A.) and the ensemble-average
(E.A.) methods, and the experimental results are shown in Figs. 1–4,

respectively. The absolutely relative error (A.R.E.) in Figs. 5 and 6 is
defined asjET:A:fBg�EE:A:fBg=ET:A:[k diff:=0;k diff:=0]j, where
the E.A. is calculated by the Monte Carlo simulation of 1280 runs.
From these six figures, it is shown that the approximation image of
the fBm field is not correlationergodic. Due to the rounding error, the
T.A. values is very close to the E.A. values. Therefore, the three detail
images of the fBm field are concluded to be correlation ergodic as
shown in Theorem 3.

Meanwhile, two phenomena of the theoretical results to Theorem
1 are found as the following:

1) The autocorrelation functions ofDHHHm B;DVVVmB and DDDDm B

decay very fast with respect to[(kx1; ky1); (kx2; ky2)]: See
Figs. 1–4.

2) From Fig. 7, the correlation functions of the three detail images
decay fast when the parameterH decreases. i.e., the rate of
decaying is dependent on the parameterH:

IV. CONCLUSION

The ergodicity properties of random processes/fields are very
important to calculate the moment values in experiments. Although
the ergodicity (time homogeneous) of fBm processes has been taken
into practical application prevailing in a lot of research, it is not
recognized as ergodic if it is concluded by the ergodicity theorem. In
this work, the ergodicity properties of the wavelet coefficients (1-D
case) of fBm processes and the three detail images (2-D case) of fBm
fields are shown. Therefore, it will provide a mathematical base for
the time-average moment values of the three detail images of fBm
fields.
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Two-Dimensional System Optimal
Realizations with -Sensitivity Minimization

Gang Li

Abstract—In this correspondence, an expression is derived for the
error variance of transfer function of a two-dimensional (2-D) system.
The optimal realization problem is then formulated by minimizing this
variance with respect to all possible realizations of the system. This
problem is shown to be equivalent to the minimization of a pureL2
norm based sensitivity measure. It is shown that the problem can be
solved using any standard minimization algorithm.

I. INTRODUCTION

The finite word length (FWL) effects have been considered to be
one of the most serious problems in the actual implementation of
a digital system. One of the methods to reduce these effects is to
implement the system with an optimal realization that minimizes
the transfer function sensitivity measure. Traditionally, the transfer

Manuscript received June 26, 1995; revised March 31, 1997. The associate
editor coordinating the review of this paper and approving it for publication
was Dr. Yun Q. Shi.

The author is with the School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore (e-mail: egli@ntu.edu.sg).

Publisher Item Identifier S 1053-587X(98)02162-X.

function sensitivity measure was defined with a mixture ofL1=L2
norm for one-dimensional (1-D) systems (see, e.g., [1] and [2]). The
corresponding results were extended to the two-dimensional (2-D)
case by many researchers (see, e.g., [3]–[5]). This mixedL1=L2
based measure is mainly for an easy mathematical treatment and
seems to lack mathematical justification. Recently, a pureL2 based
transfer function sensitivity measure was studied, and some properties
of this measure were revealed in [6] and [7]. The main objective
of this correspondence is to extend theL2 sensitivity minimization
problem from 1-D to 2-D.

It is true that the solution to the pureL2 minimization problem
does not have a closed form and requires more computation. This is
the main drawback of using this pureL2 sensitivity measure. The
computational complexity is, however, not of concern here since this
is in the design stage.

II. PROBLEM FORMULATION

Consider a 2-D discrete linear time-invariant single input single
output system (SISO)H(zh; zv) of order(nh; nv). This system can
be represented with the Roesser state-space equations [8]

xh(i+ 1; j)

xv(i; j + 1)
=

Ah Ahv

Avh Av

xh(i; j)

xv(i; j)
+

Bh

Bv

u(i; j)

Ax(i; j) +Bu(i; j)

y(i; j) = (Ch Cv)
xh(i; j)

xv(i; j)
+ du(i; j) (1)

Cx(i; j) + du(i; j)

wherexh 2 Rn �1 and xv 2 Rn �1 are called horizontally and
vertically propagating local state vectors, respectively, andAx 2

Rn �n ; Axy 2 Rn �n ; Bx 2 Rn �1; Cx 2 R1�n for x; y =

h; v, and d 2 R.
(A;B;C; d) is called a realization of the 2-D systemH(zh; zv),

satisfyingH(zh; zv) = d + C(zhIn � zvIn � A)�1B, where�
denotes the direct sum of matrices. DenoteSH as the set of all the
realizations ofH(zh; zv). It is well known thatSH is an infinite set
and that if(A0; B0; C0; d) 2 SH ; SH can be characterized by

A = T
�1

A0T B = T
�1

B0 C = C0T (2)

with T = Th �Tv, whereTh 2 Rn �n andTv 2 Rn �n are any
nonsingular (transformation) matrix.

A. L2 Sensitivity Measure

Let fpig be the set of the ideal parameters of a realization, and
let fp�i g be its FWL version. Assume that this realization hasN

parameters. Denotef�pi pi�p�i g as the corresponding parameter
perturbations. With a first-order approximation, one has

�H(zh; zv) H(zh; zv)�H
�

(zh; zv)

=

N

i=1

@H(zh; zv)

@pi
�pi: (3)

We adopt a statistical approach where the perturbations of the
parameters are considered to be independent random variables uni-
formly distributed within the range[� 1

2
2�B ; 1

2
2�B ] for a fixed-

point implementation ofBc bits (see, e.g., [9]). We now define the
transfer function error measure as

�
2

H

1

(2�)2

�

��

�

��

E j�H(e
j!

; e
j!

)j
2

d!h d!v (4)

whereE(�) denotes the ensemble average operation.
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