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The Ergodicity Analysis of Two-Dimensional (1], [8]. The 2-D DWT includes one approximation image, which is
Discrete Wavelet-Based fBm Fields defined as
Bing-Fei Wu and Yu-Lin Su A1 Fll, By = Z Z

Abstract—The correspondence explores the ergodicity property of “hine = 2ke)hln, = 2k, ] A Flne, n,] (1)

the two-dimensional (2-D) discrete wavelet transform for a fractional
Brownian motion (fBm) field that consists of one approximation image and three detail images, i.e., horizontall), vertical (V), and

and three detail images. In this correspondence, the decorrelation and diagonal(D) detail images, which are defined as
ergodicity of the three detail images of fBm fields are shown to be '

achieved. - -
Index Terms—Ergodicity, fractional Brownian motion (fBm), wavelet. Dg+1 Flks, ky] = Z Z hns — 2kz)g
Ng=—00 71y:790
I. INTRODUCTION ) [72’) B Qk’iA’"F[n"” ol 2)
An important problem that has appeared in the applications of D},{HF[kI,ky] = Z Z glne — 2k;]h
stochastic processes is the estimation of various statistical parameters gy =—00 ny=—00
in terms of real data. Most parameters are expressed as the moment - [ny — 2ky] A, Fn.,ny), and (3)
values, which are obtained by the ensemble averages. Fortunately, D oo oo
for many stationary stochastic processes, we can substitute the time D Flks, ky] = Z Z glne — 2kz]g
averages for the unknown ensemble averages [10, p. 246], [15, Mg =—00 ny=—00
p. 316]. The time average will tend to the ensemble average as - [y — 2ky) AL 0, ny] 4)

the averaging interval goes to infinity when the stochastic process
is ergodic. Practically, it is very difficult to check the ergodicityyhere m > 0,m,ky,k, € Z,Flk,,k,] denotes a 2-D field, and
properties of nonstationary processes in most cases. Therefore,\Ng and g[k] satisfy the QMF constraint [1], [8].
usually assume that the ensemble averages of nonstationary processpge contribution of this work is that the three detail images of
may be approximated by their time averages. The fractional Brownigarp fBm fields are shown to have the property of decorrelation and
motion (fBm) processes are used in a wide range of research ségfodicity that will be certified in this work. Therefore, the ensemble
as 1/f-type noises, fractals, image textures, etc. [3], [4], [6], [laverage can be replaced by the time average for the moment values
[12], [16], where the calculation problems of the fBm processes agigat are presented by the numerical simulation.
not mentioned and solved. Actually, fBm processes do not have therhe main results of this work are shown in Section Il. Section IlI
ergodic properties checked by the ergodicity theorem describedgfesents the numerical results. The conclusions are given in Section
Papoulis [10, pp. 246-251] or Stark [15, pp. 316-322]. V.

The ergodicity properties of the one-dimensional discrete wavelet
transform (1-D DWT) of an fBm process will be stated as follows.
Suppose thatBy[n] is a sampled fBm process with parameter II. MAIN RESULTS
H,0<H<1. From [5] and [16], the 1-D DWT of the fBm
process is wide-sense stationary (WSS) and decorrelated, i.e.,
the autocorrelation function of the wavelet coefficient decays @s 2-D fBm Fields

) . . H—m _ 9—magy, |2(H-M) i i . . .
Rd(B@_(Z}llv ks m%af’jl)z ~ ?(|2 ikl 2 ZL’?| ) ) First, we summarize some properties of 2-D random fields derived
for [27"tky — 27"2ky| >Ry + Kaof, where M s the gom Rosenfeld [14, pp. 38-39]. Lgt(7, ;) be a random variable,
vanishing moment of the wavelet function, the wavelefhere the position vectof is given in thery plane, andw; is an
function ¢(f) has a finite support given by the intervaly icome in the sample space. Henceforth, we will denfdi@ w; )
[-K KoL Ky and - Ko >0, Rags ) (ma, ki ma, ko) = by f(7) (or f(x.,y)). It is understood that this represents a family
EXdmy (Bi)[k1]dy, (Br)[ka]}, and dim(By)[k] denotes the ot 5 b fynctions with each function corresponding to an outcame
wavelet coefficient ofBg[n] at the resolutionn. With these results [14, p. 39].
applied to the theorem of ergodicity in [10, pp. 247-251], We \ya wish to represent the functiof(7) by its samplesf(7;;) (or

conclude that the wavelgt co_effif:ien_t is mean ergodic. S?n_ce thenoted byfli, j]), where;; are the points on a sampling lattice
fBm process has Gaussian distribution, the wavelet coefficient é)é defined by

the fBm is also correlation ergodic.
In this work, the results above are extended to the case of two-
dimensional (2-D) fBm fields. The 2-D DWT herein are based on

h rfect reconstruction- rature mirror filter (PR-QMF) stri I . . .
the perfect reconstruction-quadrature mirror filter (PR-QMF) st uctuaen 71 and 7, are the given basis vectors in thg plane [14, pp.
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ll):fig. 2. Ensemble-average autocorrelation functions of the 2-D DWT images
of an fBm field with parameted = 0.5 and Haar basis for the case of
m = 1. (@) Ra[(10,10), (kx2, ky2)]. (b) RdR[(10,10), (kx2,ky2)]. (c)
Rdv[(10,10), (kx2, ky2)]. (d) Rdd[(10,10), (kx2, ky2)].

Fig. 1. Time-average autocorrelation functions of the 2-D DWT images
an fBm field with parametetrf = 0.5 and Haar basis for the case of
m = 1. (a) Ra[(10,10), (k22, ky2)]. (b) RdR[(10.10), (kx2, ky2)]. (c)
Rdv[(10,10), (ka2, ky2)]. (d) Rdd[(10,10), (kx2, ky2)].

15
= _ 0 = * /= _ S\ - /N
Ry(7i) = EUfTFij ) (Figje)bopy = EUf(T))} and 72 = AN
Figjn — Tinjositsjisiz, andjo = 0,1,2,---. If C5(0)<oc and & ."::g:‘::g“:“:‘:;s‘s{:
Ci(7i;) — 0as||7;|| — oo, thef(7;;) is mean ergodic. Assume that 2% ::‘:8:‘3‘333“
f(7:,) is Gaussian; thery,(7;,) is correlation ergodic iR ;(7;) — 0 10 S o
as |7 — oo | _
Consider a zero mean sampled 2-D fBm random field with pa- kydif. —10 ~10  jxdift. kydift. 10 -10  x diff,
rameter H (@) (b)
Bln.,n,] = Bu(n.Az,n,Ay), Vn,,n, € Z (6) 4
g2
where Az and Ay are the sampling periods of the y directions, 0K
respectively. From [p. 250], the autocorrelation function of the 2-D 10
fBm itself (B[n.,n,]) is written as
ky diff. =10 -10  kx diff. ky diff. =10 -10  kx diff.
Ri[(nz1,ny1), (Na2, ny2)] (© (d)
K, 9 \H 9 9 \H Fig. 3. Time-average autocorrelation functions of the 2-D DWT images of
= Sz +ny1)" + (nan +nyy) an fBm field with paramete” = 0.2 and Daubechies 2 basis for the case
2
( 5 ’ o H 7 of m = 1. (a) Ra[(10,10), (kx2, ky2)]. (b) Rdh[(10,10), (kx2, ky2)]. (c)
= (o1 = na2)” + (ny1 = ny2)") "} (") Rav[(10,10), (ka2, ky2)]. (d) RAd[(10,10), (ka2, ky2)].

where K is a constant.
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In our previous work [17], we have concluded that the three detalil
images of the 2-D fBm random field are all WSS. The following ky i, ~107 10
theorem will show further that the autocorrelation functions of the
three detail images are all decorrelated.

Theorem 1: Suppose that a wavelet function has the vanishing
momentM. Then, the autocorrelation functions of the horizontal and
vertical detail images relatgd to a 2-D fBm random fi@¢h.., n,]
denoted angB and D}QB, respectively, decay a€®((72 +
T;,Z‘)Hﬂ") with v > (M/2), wheret, = ny1 — na2 # 0 and
Ty = Ny1 —Ny2 7 0forall ngi, nae, ny1 andnys € Z. Furthermore, kydiff. =10 210 oy i, kydift. —10 10 o diff.
for the diagonal detail image denoted E:%?B, the autocorrelation © (d)

function decays with the order df — v,v > M. Fo 4 E b ation funcii e 2 DWT
. H Vv D . ig. 4. Ensemble-average autocorrelation functions of the 2- images
Proof: The proof of Dy, B, D,, B and D,/ B are similar. of an fBm field with parameteH/ = 0.2 and Daubechies 2 basis for the case

Herein, we only take one of them shown below in detail. Leff,, = 1. (@) Ra[(10.10). (kx2, ky2)]. (b) RdR[(10,10), (ka2, ky2)]. (c)
Te = ko1 — ko and’l_y = kyl - ]{yg for all ka1, kxz,kyl,kyg € Z. Rdv[(lO,lO)ﬁ(ka,k‘y2)]. (d) Rdd[(10710)7(k172,ky2)].

kx diff. kydiff. =10 -10  kx diff.

(@) (b)
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The autocorrelation ODE(B) is written as

— H iy - ——
RDE(B)[T”’%] =Dy, Blkar, kyl]DvgB[kﬂwkyz]}
—_1H “ee “ee
SLPID 33D %Y
i i 1 [N
XS Y
Jm t1 tm
e Blim]gll] -+ Bl
X hlji] - hljm] glta] - hltm]
K )
. <_5>P(a,ﬁ)} (8)
whereQ, = iv+2im—14---42" " iy =l =20, 1 —- - =277, kydift. 10 10 it kydift. 10710 gy i,
ande E‘jm+2j’”_l+. : '+2m_1jl_tm_th—l_' . '—2m_lt1. (C) (d)

Let T = 2™7)° + 2™71)% a = (Q./1),8 = (Q,/I),7 =

Q. Q,]" andP(a, 3) = [1+Da? 432427 ra+2™+ 7, 3]/7.  Fig. 5. Absolutely relative error between the time-average (Fig. 1) and the
fine = Y2 /g = (7|52 g ensemble-average (Fig. 2). (a) A.R.E. oRa[(10,10), (k22, ky2)].

Define 1(q) = {r|Sizy ri/a: < 11,0(9) = {r[Sicy ri/a <1} P 0 0'e "0 U RiR((10,10), (ka2, ky2)]. @  ARE.  of

and the differentiable closure 6% ({) ISTglven byQo(¢) = lr—l—t|(» e Rdv[(10,10), (k22, ky2)]. (d) AR.E. of RAd[(10,10), (kz2, ky2)].

Qo(q) and|t| < 1}, whered = [q1 ¢2]” ., q1,q2 € RT. Clearly, it is

found thatP € C>>) on R?. The Taylor formula for real-valued

P(a,3) at (o, 3) = (0,0) is expressed as 0.4 ’7%;,':,,/,"’
1, - - _ SLIEEL LR
C3) — = q . 1 0.2 O e
Pla:3) = 32 D" POON@ T + Ry o P ) S
reQ T 0 Il!""":’

=1+2H(2"7Q. + 2" 7,Q,) ™"
1 r T —-r
+ > —D"P(0.0)(@)'T
reQ,ry,79#0,1 (a) (b)
+RE]O,O)P(7:]' ) 9)
where RY, ;) P(iT~") = S, o (A, /|r[) D" P(6, 7T~ )(@T )",
D" denotes the partial derivativ™ /(97)", {r € Q,\Q2} represents

0
kydift. =10 -10  wxgifr. ky diff. 10 -10  x giff.

OS2
AL SR
AR
"‘e;'e A LD

(r e U Q) N (rgQ N QY andA, = S{(1/4): R 3;‘/ i
v € Q A v+ s =r for somes with |s| = 1}, satisfying#. : 0 0 ANE=S
= 0, whenevetlr| = ||, andlima,g)—(0,0) (1y oy P (v, 3) /]| + kydiff. —10 =10 kit kydiff. =10 -10  jygifr,
|3]72) = 0 [13, pp. 5-8]. Then, we have (c) (d)
(Qe+277)° + (Qy + 2771 Fig. 6. Absolutely relative error between the time-average (Fig. 3) and the
_ rﬂp(a g) = # ensemble-average (Fig. 4). (a) A.R.E. oRa[(10,10), (k22, ky2)].
= P = () ARE. of Rdh[(10,10),(kx2,ky2)]. (c) ARE. of

. Rdv[(10,10), (kx2, ky2)]. (d) A.R.E. of Rdd[(10,10), (k22, ky2)].
'{Z %DTP(O, 0)(6)’T"‘+R?O,O)Pwr‘W} qo) Faa010). (ka2 k2l @ [(10,10), (ka2, ky2)]
refd

Since ¢ has the vanishing moment, i.e., [=_t'¢(t) = 0, for decays aO((r; + )~ (/2 at least.

I = 0,1,2,---,M — 1 or, equivalently, S, g[k]k' = 0, for Particularly, for the diagonal detail image case, the terms of
1=0,1,2,---,M — 1[7, p. 142], therefore, we obtain 7. 7y 2, ni+ne = M inthe autocorrelation function will vanish by
after the filter operation along the indexesl, j1, andt,. Therefore,

RDE(B) (72 7] the Mth-order term inRDD(B) is bounded below by ~"'. Hence,
= (124 r2)H M <_%>22m(ﬂﬁw) Z RDD(B)[T_,», 7,] decays faster a®((2 + 72)H =), [
i1 The approximation image is close to the original 2-D fBm random
"'Zh[“] e hlimlgll] - h[lm]m- m _field. Ir_l addition, th_e _autocorrelation functiqn of the_ approximation
= image is near the original 2-D fBm random field and is different from
X g0l o] the three detail images, which decay fast.
" Remark 1: The decaying property of the approximation image of
1., 2 (r— M) a 2-D fBm random fieldB[n.., n,] denoted byA,, B is not included
> b P(0,0)(@)"2 in Theorem 1.
reQ,rzM The autocorrelation function of DX B  denoted by
2 (o) - o RDH[(kﬂ, ky1), (ko2 ky2)] is dependent only om, = ky1 — ka2
(e +1y) + Ry o) P(#) ) o (11) and7, = ky1 — ky2, and kg [Tey —Ty] = RDH[—TI. -7y =

R _glr=, 7], i.e., R_g is symmetric. Therefore, in addition to
M _M D D

Because thel/th-order partials fo’(«, ) depend or.”, 7" and  thegrem 1, the detail imag®H B could be approximated to a
~ni1.-n2 ; P — M P 1 - . . A S -

m 'y 2, wheren, +ny = M and n1s 12 >0, the Mth-order term \hite 2.p random field, which is similar to the other detail images
of {-} in (8) is bounded below by ~*4/2). Hence.R g [ 7] pVp angpDp
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Decorrelated property w.r.t. H
1 T I T T T T T T I

0:H=0.3

+:H=0.5

0.8

Normalized |Rdh[(n,n),(0,0)]|

1 2 3 4 5 6 7 8 9 10

Fig. 7. Profiles of normalized?,DH of an fBm field with H# = 0.3, H = 0.5,H = 0.8 and Haar basis forn = 1, where ‘0. H = 0.3, ‘+"
H = 05, X: H = 038.

Remark 2: From Theorem 1, the three detail images of a 2-D fBmespectively. The absolutely relative error (A.R.E.) in Figs. 5 and 6 is
random field behave much more like white noises as the paramedefined a$€T,A,{B}—SE‘A,{B}/ET_A_[kwr,,;ff_zoykyr,,;ff_:ol|, where

H is small. the E.A. is calculated by the Monte Carlo simulation of 1280 runs.
From these six figures, it is shown that the approximation image of
C. The Ergodicity of the 2-D DWT of fBm Fields the fBm field is not correlationergodic. Due to the rounding error, the

Since the means of the three detail images of the fBm field a"reA. values is very close to the E.A. values. Therefore, the three detail

equal to zero, the corresponding covariance functions are equal"ﬂj"‘ges_c’f the fBm field are concluded to be correlation ergodic as
the autocorrelation functions. shown in Theorem 3. _
Theorem 2: Let v'(#) be an orthogonal wavelet supported over the Meanwhile, two phenomena of the theoretical results to Theorem
interval [~ K1, K], K1 and K> > 0. The three detail images of an® &€ found as the following:
fBm field are defined as in (1)—(4). Then, these three detail imagesl) The autocorrelation functions oP# B, DY B and DD B
are mean ergodic. decay very fast with respect t@k.1, ky1), (ka2, ky2)]. See
Proof: Based on the results in the last subsection and Corollary ~ Figs. 1-4.
1, it is concluded that the three detail images are mean ergodic.  2) From Fig. 7, the correlation functions of the three detail images
Theorem 3: If an fBm field has Gaussian distribution, then the decay fast when the paramet#r decreases. i.e., the rate of
2-D DWT of the fBm field is also correlation ergodic. decaying is dependent on the paramédier
Proof: The reason is the same as the proof of Theorem &

IV. CONCLUSION

The ergodicity properties of random processes/fields are very
portant to calculate the moment values in experiments. Although
the ergodicity (time homogeneous) of fBm processes has been taken

. : T into practical application prevailing in a lot of research, it is not
numerically that the time average of the approximation image of an . T T

o . ecognized as ergodic if it is concluded by the ergodicity theorem. In
fBm field is not equal to the ensemble average of itself. However, tte

- - . this work, the ergodicity properties of the wavelet coefficients (1-D
three detail images of the fBm field have the property of ergodlcn%ase) of fBm progessesyapr)wd E)he three detail images (2-D case) (()f Bm
where the Haar and Daubechids= 2 functions are chosen as the

. - - fields are shown. Therefore, it will provide a mathematical base for
wavelet bases, i.e., the coefficients of the Haar function/gip = the time-average moment values of the three detail images of fBm
K[l = g[0] = —g[1] = (1/V2),k[n] = g[] = 0 for n # 0,1 g g

IIl. NUMERICAL EXAMPLES

In this simulation, the spectral synthesis method in [11, pp. 96—10%1
is used to generate the fBm field denoted Bin.,n,].n.,n, =
0,1,---,127 with parameterd = 0.5 and H = 0.2. It is shown

and for the Daubechied = 2 function, h[0] = 0.48296, h[1] = fields.

0.83652, h[2] = 0.22414, h[3] = —0.12941. The approximation

and three detail images of the fBm field, which are denoted as REFERENCES
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Gang Li

Abstract—In this correspondence, an expression is derived for the A. L, Sensitivity Measure

error variance of transfer function of a two-dimensional (2-D) system. Let {p:} be the set of the ideal parameters of a realization, and
The optimal realization problem is then formulated by minimizing this Di P !

variance with respect to all possible realizations of the system. This l€t {pi} be its FWL verAsion. Assume that this real_ization hls
problem is shown to be equivalent to the minimization of a pureL, parameters. DenoteAp; = p; —p; } as the corresponding parameter

norm based sensitivity measure. It is shown that the problem can be perturbations. With a first-order approximation, one has
solved using any standard minimization algorithm. ) A N
AH(zp,2z0) & H(zn,20) — H (21, 20)

. INTRODUCTION N
aH(Zh, ZU)

The finite word length (FWL) effects have been considered to be = Z dp; AP ®)

one of the most serious problems in the actual implementation of =1

a digital system. One of the methods to reduce these effects is tgVe adopt a statist.ical approach where the perturbations of the.
implement the system with an optimal realization that minimiz arameters are considered to be independent random variables uni-

s o 1o Be lo—B. .

the transfer function sensitivity measure. Traditionally, the transf ci)rirrrlltlﬁrg;g:::igti\(l)vrllth(;%thsit;a?sgei_ gei)g [é)jz)QWe ]ni)ov:/ zg;ixneedthe
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