
Ž .Computers in Industry 35 1998 121–147

Reliable automated manufacturing system design
based on SMT framework

W.-H. Jeng a,b,), G.R. Liang b

a Department of Industrial Engineering and Management, Ming Hsin Institute of Technology 1, Hsin-Hsing Road, Hsin-Fong,
Hsin-Chu, Taiwan

b Institute of Industrial Engineering National Chiao Tung UniÕersity 1001, Ta-Hsueh Road, Hsin-Chu, Taiwan

Accepted 18 July 1997

Abstract

Ž .In this paper, we propose a design methodology based on SMT Supervisor–Monitor–Troubleshooter framework to
build a reliable AMS. In SMT framework, supervisors dictate the control logic of AMS; monitors detect faults if they occur,
and troubleshooters conduct fault diagnosis and recovery. The methodology includes four stages for building an AMS:
supervisor design, monitor design, troubleshooter design, and implementation. Moreover, an AMS called Mold Filling
System is employed to demonstrate the effectiveness of the methodology’s design and implementation. The methodology
proposed here allows a computer system to supervise, monitor, and troubleshoot a remote physical system with significantly
enhanced reliability. q 1998 Elsevier Science B.V.

Keywords: Automated manufacturing system; Supervisor; Monitor; Troubleshooter

1. Introduction

Ž .An automated manufacturing system AMS usually consists of a number of devices controlled by computers
to manufacture products. AMS plays a critical role in chemical processing, parts manufacturing, and product
assembly. As the global competitiveness increases, a more reliable AMS becomes desirable. To build such a
system, designers typically perform the following: functional analysis, process control design, system verifica-
tion, fault-proof planning, error recovery, and final implementation. AMS specifications are obtained though
functional analysis. Process control design gives system control logic according to the specifications. In
addition, system verification justifies the control logic. Moreover, fault-proof planning maintains the system
availability, and error recovery solves faults.

w xPrevious literature distinguishes four relevant AMS design issues, i.e., supervisory control 1,2 , monitoring
w x w x w x3,4 , fault diagnosis 5–7 , and error recovery 8–11 . To our best knowledge, no work has been presented with
an integrated design method for supervisory control, monitoring, and troubleshooting.

) Corresponding author. Fax: q886-3-5595142; e-mail: whjeng@mhit.edu.tw

0166-3615r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved.
Ž .PII S0166-3615 97 00075-4

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147122

Ž .In this study, we propose a design methodology based on SMT Supervisor–Monitor–Troubleshooter
w xframework 12 to build a reliable AMS. The methodology integrates the design work in functional analysis,

process control, system verification, monitoring, fault diagnosis, and error recovery. Through the methodology,
an AMS can be systematically implemented with real time capability in control, monitoring, and troubleshooting
via computer network.

The rest of this paper is organized as follows. Section 2 describes SMT framework and introduces the
proposed methodology. Sections 3–5 present the design of supervising, monitoring, and troubleshooting,
respectively. Section 6 describes how to implement an AMS according to the design methodology. Concluding
remarks are finally made in Section 7.

2. An integrated design methodology

2.1. SMT framework

Ž . Ž .In SMT framework Fig. 1 , an AMS consists of a physical manufacturing system PMS and a computer
Ž .system. The PMS contains controllers and physical devices PDs to perform physical production. The computer

Ž .system includes a decision system and a virtual manufacturing system VMS . Supervisors, monitors, and
troubleshooters constitute the decision system. The VMS is an image of the PMS and contains virtual devices
Ž .VDs . Each VD may have its own output, input, and state. The output maps to a port of the controller which
drives actuators; the input receives the PMS responses from sensors; and the state stores inferred information
regarding the PMS.

An operator or high-level management system gives instructions through system interface to the supervisors.
The supervisors then execute the instructions and govern the PMS by updating the outputs of VDs. The situation
of PMS is fed back to the inputs and further shown by performance indicators.

Monitors observe the behavior of VMS by referring to the inputs, states, and outputs of VDs. When the
behavior is normal, monitors pass the control to supervisors. Any monitor detecting abnormal behavior switches
the control immediately to a troubleshooter which conducts fault diagnosis and recovery right away. Thus, the
fault does not propagate and cause further damage to the system. Diagnosis locates the probable fault sources
and then informs the operators with an alarm message. Without the assists from the operator, the troubleshooter
can automatically recover some faults which are called recoverable faults. The other faults are the unrecoverable

Fig. 1. SMT framework.

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147 123

Fig. 2. A design methodology for building a reliable AMS.

ones. To recover an unrecoverable fault, the operator is informed to eliminate the fault source, such as to repair
or replace a device. Once the fault source is eliminated, he may instruct the troubleshooter to continue the
recovery. Such a continuation can save human recovery efforts and avert manual recovery errors.

2.2. Design methodology

In the methodology, an AMS is built in four stages: supervisor design, monitor design, troubleshooter design,
and implementation stage, as shown in Fig. 2. Currently, the methodology concentrates on batch process and
discrete manufacturing; details regarding continuous control such as PID dynamics are not involved. The
supervisor design stage attempts to obtain the control logic of an AMS. Four models are constructed: a
functional model to represent the material flows and specify a manufacturing process, a controllable model to
control the manufacturing process, a dynamic model to verify VMS’s dynamic behavior, and a commanding
model to execute the control logic. Each model has a hierarchical structure. The model construction process

Ž . w xutilizes Hierarchy Transformation Method HTM 13 which has been presented for AMS specification and
verification.

The monitor design stage aims to detect abnormal behavior or symptoms in an AMS. VMS’s verified
dynamic behavior is used as normal system dynamics. All possible states of the VMS are regarded as worlds.
According to the system dynamics, only some worlds are legal. Symptom detecting rules are designed to detect
wrong world transitions and abnormal behavior of PMS.

The troubleshooter design stage considers diagnosis and recovery. Faults are located through diagnosis. Each
fault is then solved by a recovery plan. Auto-recovery plans are designed to automatically solve recoverable
faults without human intervention. Aid-recovery plans are designed to continue the recovery, after unrecover-
able fault sources have been eliminated.

The implementation stage aims to realize the AMS. A PMS is installed as specified by the VMS and is
connected to the VMS via a handshaking protocol. Thus, the PMS can be remotely controlled and troubleshot
by a computer system.

3. Supervisor design

Supervisors are constructed by a four-step procedure from functional model to commanding model as shown
w xin Fig. 2. To illustrate supervisor construction, an AMS called Mold Filling System 13,14 is employed as

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147124

Fig. 3. Mold Filling System.

shown in Fig. 3. The system produces batches of material X, fills X into molds according to the volume
message from a barcode reader, and ships out the filled molds. Material X is prepared by mixing Y and H.
Material Y is prepared by mixing A and B. This AMS contains typical batch process and discrete manufactur-

w xing. Joannis and Krieger 14 first modeled this AMS via an object-oriented approach. Also, Liang and Hong
w x13 specified and verified the same AMS through HTM. Herein, we illustrate how to utilize HTM for
supervisor construction.

3.1. Functional model construction

A functional model gives the specifications of an AMS including material flows and manufacturing
w xfunctions. The model is represented by a functional hierarchy 13 as

<ÝFMs FM F,M,In,Out i is an index� 4Ž .i

where F is a set of manufacturing functions or functional blocks; M is a set of material flows; both input
function In:F™M and output function Out:F™M specify the graphic relations between F and M.

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147 125

For instance, two main functions are included in Mold Filling System. FM is to prepare X, and FM is to1 2

fill mold and ship out the mold. Figs. 4 and 5 show these two functions, respectively. For FM , the1

representation is as follows:

Ž .Model: FM F,M,In,Out1
� 4F: F11,F12,F13
� 4M: A, B, H, Y, X , XŽF12,F13. ŽF13,F2.
Ž . � 4In: In F11 s A, B
Ž . � 4In F12 s Y,H
Ž . � 4In F13 s X ŽF12,F13.
Ž . � 4Out: Out F11 s Y
Ž . � 4Out F12 s X ŽF12,F13.
Ž . � 4Out F13 s X ŽF13,F2.

In a functional model, functions and their relations are specified by manufacturing activities and material
flows. Each function is drawn as a box and the material flows are drawn as thick arrows. The details of each

Ž .Fig. 4. Manufacturing function prepare _X FM in functional hierarchy.1

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147126

Ž .Fig. 5. Manufacturing function fill_mold_and_ship FM in functional hierarchy.2

function can be further captured through a top-down refinement. A context box located at top right corner shows
the function where it belongs in the hierarchy. The PMS components may be added as supporting mechanisms
of a function with gray arrows.

3.2. Controllable model construction

To control the manufacturing functions, the functional blocks are added with information flows; thereby, the
w xfunctional hierarchy is transformed into a controllable hierarchy 13 termed as controllable model:

<ÝCMs CM C,I,In,Out i is an index� 4Ž .i

where C is a set of controllable blocks; I is a set of information flows; both input function In: C™ I and output
function Out: C™ I specify the graphic relations between C and I.

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147 127

Ž .Fig. 6. Controllable function prepare_X CM in controllable hierarchy.1

Ž .For instance, CM Fig. 6 is constructed by adding information flows drawn as thin arrows for coordinating1
Ž .three functions in FM Fig. 4 . A constraint I : Õolume_of_Holding_Tank-safety_Õol is added to F13 for1 1C13

testing the safety limit of the volume in Holding Tank. The representation of CM is as follows:1

Ž .Model: CM C,I,In,Out1
� 4C: C11,C12,C13
�I: tank_1_ready, tank_1_free, tank_2_ready,

4tank_2_free, I1C13
Ž . � 4In: In C11 s tank_1_free
Ž . � 4In C12 s tank_1_ready, tank_2_free
Ž . � 4In C13 s tank_2_ready, I1C13
Ž . � 4Out: Out C11 s tank_1_ready
Ž . � 4Out C12 s tank_1_free, tank_2_ready
Ž . � 4Out C13 s tank_2_free

In a controllable model, information flows are designed to control the material flows and manufacturing
functions. Two kinds of information flows are constraint flows and control flows. A constraint flow is used to
test a specified condition of a functional block, and a control flow is used to either inform the readiness of a

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147128

Ž .Fig. 7. Controllable function fill_mold_and ship CM in controllable hierarchy.2

material flow or reactivate a manufacturing function. The former is located at the top of a block, and the later is
Ž .located between two blocks. In CM Fig. 6 , I is a constraint flow, and the others are control flows. The1 1C13

details of each controllable block may be further refined. The terminal blocks in the controllable hierarchy are
controllable events which can be fired by information flows.

Ž . Ž .Similarly, CM Fig. 7 in the controllable hierarchy corresponds to FM Fig. 5 . When Sensor is on, an2 2

empty arriving mold on ConÕeyor is detected. C21 turns ConÕeyor off and Reader on to scan the barcode on
the mold. Once the barcode is read, C22 receives an off signal from Reader. Next, the barcode message:
Õolume_needed is stored into memory. An added event C25 starts the filling process. After the completion of
mold filling C23, another added event C26 turns ConÕeyor on to ship out the mold by C24. When the filled
mold has not been detected by Sensor, the entire process is repeated.

3.3. Dynamic model construction

A dynamic model is constructed to observe and then verify the controllable model’s dynamic behavior. The
w xmodel is represented by a hierarchy of Petri nets 15,16 which is transformed from the controllable hierarchy by

adding places and tokens. Tokens may occur concurrently to indicate the dynamics of information flows. A

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147 129

Ž .Fig. 8. Petri net fill_mold_and_ship DM in dynamic hierarchy.2

block with only control flows is operationally equivalent to a transition in Petri net, and a block involving
w xconstraint flows is equivalent to an externally constrained transition 17 . The model is represented as

<ÝDMs DM T,P,In,Out,m i is an index� 4Ž .i

where T is a set of transitions; P is a set of places; functions In:T™P and Out:T™P specify the graphic
relations between T and P; and m represents its initial marking.

Ž . Ž .A Petri net DM Fig. 8 is transformed from CM fill_mold_and_ship Fig. 7 , and its representation is:2 2

Ž .Model: DM T, P, In, Out, m2
� 4T: C21, C22, C25, C23, C26, C24
� 4P: p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD
Ž . � 4In: I C21 s p1, p5, p7, p9
Ž . � 4I C22 s p6, pA
Ž . � 4I C25 s pB, pC
Ž . � 4I C23 s p2, pD
Ž . � 4I C26 s p3, p8
Ž . � 4I C24 s p4

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147130

Ž .Fig. 9. The refined Petri net of prepare_X DM .1

Ž . � 4Out: O C21 s p2, p6, p8, pA
Ž . � 4O C22 s p5, pB
Ž . � 4O C25 s p9, pD
Ž . � 4O C23 s p3, pC
Ž . � 4O C26 s p4, p7
Ž . � 4 w xm: O C24 s p1 m: 1 0 0 0 1 0 1 0 1 0 0 1 0

Ž .Similarly, the details of dynamics in DM are synthesized into a large Petri net Fig. 9 . After the1

construction of DM and DM , simulation is performed to verify the dynamic behavior.1 2

Next, the Petri nets are used to define VDs’ attributes. Each VD may possess control-related andror
w xconstraint-related attributes. In a given net, control-related attributes can be found from attribute equations 12 .

Ž . Ž .An attribute equation satisfies Ýb N p s1, b s1 or 0, where N p is the number of tokens in place p . In ai i i i i

Petri net, only one place is active in an attribute equation. Thus, each attribute equation may represent one
attribute of a VD. Those attribute equations minimally covering all places of a net, called minimal cover, can be

w xobtained through computation 12 . Table 1 lists the attribute equations of an obtained minimal cover of DM .2

Constraint-related attributes are specified from constraint flows by their physical meanings. For instance, the

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147 131

Table 1
A minimal cover of DM2

Attribute equation Places Control-related attribute of VD

Ž . Ž . Ž . Ž .N p1 q N p2 q N p3 q N p4 s1 p1, p2, p3, p4 Status of Mold
Ž . Ž .N p5 q N p6 s1 p5, p6 Status of Reader
Ž . Ž .N p7 q N p8 s1 p7, p8 Status of Conveyor
Ž . Ž . Ž .N p9 q N pA q N pB s1 p9, pA, pB Message of Reader
Ž . Ž .N pC q N pD s1 pC, pD Status of Valve 3

constraint-related attribute Õolume_control of ValÕe 3 is specified from the constraint of C23 in Fig. 8:
Õolume_control)sÕolume_needed.

Ž .After obtaining the attributes of DM , a bill of virtual devices BOD is formed and their attributes are listed2
Ž .in Table 2. The column labeled ‘type’ tells how to obtain each attribute: from attribute equation AE or from

Ž .constraint CS and the column labeled ‘role’ tells the characteristic of each attribute: output, input, or state.
w xOur computed VDs are different from those objects specified in an object-oriented approach such as in 14 .

Objects in that approach are subjectively specified by experienced designers. In our approach, objects are
computed through the attribute equations and minimal cover.

3.4. Commanding model construction

A commanding model can be constructed by treating each transition as a rule. Input places of a transition and
constraints are antecedents of a rule, and output places are consequences of the rule. Thus the model is
represented by a commanding hierarchy as

<ÝKMs KM R i is an index� 4Ž .i

where R is a set of rules.
After the commanding model is constructed, sets of rules are designed. Each set represents a supervisor’s

control logic. For instance, the commanding model of Mold Filling System possesses two sets of rules: KM for1
Ž . Ž .DM prepare_X Fig. 9 and KM for DM fill_and_ship_mold Fig. 8. Thus, two supervisors are designed.1 2 2

Table 2
Bill of virtual devices in DM2

Virtual device Attribute Range Type Role

Holding_Tank volume 0–400 L CS Input
Valve_3 status Open, closed AE Output

volume_control 0–5 L CS Input
Reader act_port On, off CS IrO

status Done, reading AE State
message In, out AE State
volume_needed 1–5 L CS Input

Mold status Approaching, waiting, filled, leaving AE State
Sensor arrival_signal On, off CS Input
Conveyor status On, off AE Output

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147132

Fig. 10. Rules of Supervisor KM .2

Fig. 10 presents the rules of supervisor KM , and those rules are transformed from Fig. 8. The rule syntax2
w xfollows the grammar of G2 18 which is a real time expert system.

4. Monitor design

A monitor may utilize the system dynamics determined from Petri nets to detect symptoms. The design
includes the following steps:

1. list all worlds and legal worlds;
w x2. specify first principles 19 to justify PMS behavior; and

3. specify symptom detecting rules for each legal world.

Fig. 11. Worlds of DM .2

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147 133

Fig. 12. System dynamics of DM .2

4.1. Worlds

All worlds are generated from the possible combination of tokens in control-related attributes of VDs. For
instance, Fig. 11 shows the worlds of DM , where control-related attributes can be found in Table 1. All worlds2

Ž .are represented as w mrcgÕ , where m is the status of mold: ms1, 2, 3, or 4; r is the status of Reader: rs5
or 6; c is the status of ConÕeyor: cs7 or 8; g is the message of Reader: gs9, A, or B; and Õ is the status of
ValÕe 3: ÕsC or D. Here the hexadecimal number represents place code in DM . All legal worlds are obtained2

Ž .from the reachable marking of DM as illustrated in Fig. 12, and they are w 1579C : mold approaching,2 0
Ž . Ž . Ž . Ž .w 268AC : reading barcode, w 258BC : waiting to fill, w 2589D : filling mold, w 3589C : mold filled, and1 2 3 4
Ž .w 4579C mold leaving, where the subscript denotes world code. Accordingly, a world-based monitor is5

designed as shown in Fig. 13, where all legal worlds and transitions are defined. The current world transits into
Ž .either its next legal world or a bad world WB .

Fig. 13. A world-based monitor for DM .2

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147134

4.2. First principles

w xIn each legal world, PDs or controllers should follow the world’s first principles 19 . The principles may be
Ž .specified in qualitative, in quantitative, or in temporal forms. For instance, in world w filling mold , a3

qualitative principle states that the filled volume should be increased. At this moment, if no flow is indicated,
then the behavior of ValÕe 3 is against the principle. Also in world w , a quantitative principle states that the3

filled volume should be near the expected value having been computed from a mathematical model. In world w2
Ž .reading barcode , a temporal principle states that the reading should be completed in 10 s according to the
reader’s specification. The first two types of first principles generally require sensory feedback information,
while the last only needs a watchdog timer.

4.3. Symptom detection

w x w xIn previous literature, symptoms have been detected from qualitative physics 20 , process equation 5,6 ,
w x w xmaximum token holding time 21 , and token conservation 22 . To equip a monitor with at least the capability

to detect those symptoms, four types of rules are designed: qualitative rules, quantitative rules, time-out rules,
and next legal world rules. The first three types of rules utilize qualitative, quantitative, and temporal principles,
respectively, to detect symptoms in PMS, while the last type utilizes system dynamics to detect wrong world
transitions. Fig. 14 presents the symptom detecting rules for DM .2

For instance, a qualitative rule named DETECTING_V3_NO_FLOW detects no flow of ValÕe 3 in world w3

and informs the operator an alarm message. A quantitative rule named DETECTING_V3_INACCURACY
detects abnormal flow volume from ValÕe 3. A mathematical model implemented as a simulator provides the

Ž . Ž .expected value Õol-simulated . The observed value Õol-now is compared with the expected one. When a
discrepancy over a specified threshold arises, ValÕe 3 incurs an accuracy problem.

A generic time-out rule named CHECKING_TIME-OUT detects time-out in the current world. When a
Ž .time-out error occurs, the monitor deactivates fill_mold_rules supervisor KM and activates a troubleshooter2

for DM .2

A rule named CHECKING_W detects transition occurrences and deactivates KM for checking the new2

world. If the new world passes through rule CHECKED_NEXT_W_OK, the transition is legal and KM is2

reactivated. Otherwise, the wrong transition will be detected by rule CHECKED_BAD_W and troubleshooter
rules will be invoked. Normal world transition should follow the system dynamics shown in Fig. 12.

Symptoms detected by qualitative or quantitative rules, e.g., the leakage from a valve stuck at open or a
w xdiscrepancy over threshold, may provide trivial diagnosis 23 which implies that the fault source is immediately

located. The other symptom requires a troubleshooter to locate the faults.

5. Troubleshooter design

Ž .A troubleshooter is designed to locate faults diagnosis and recover the faults. For such a troubleshooter,
five steps are involved:

1. establish a fault-symptom table;
2. analyze the possible next worlds;
3. locate the most probable fault;
4. design auto-recovery plans; and
5. design aid-recovery plans.

Ž . w xFor diagnosis steps 1–3 , we use both deep knowledge and shallow knowledge 7 to locate faults. By using
deep knowledge, faults can be located through matching detected symptoms with physically fault-caused

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147 135

symptoms at step 1 andror through the possible next worlds at step 2. By using shallow knowledge, the most
probable fault can be determined from maintenance history.

Ž .For recovery steps 4 and 5 , auto-recovery plans solve the recoverable faults caused from supervisors as well
Ž .as related to work-in-process WIP ; aid-recovery plans solve the faults in PMS.

Fig. 14. Symptom detecting rules for DM .2

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147136

Table 3
The fault-symptom table of DM2

Ž . Ž . Ž . Ž . Ž . Ž .Fault source Code w 1579C w 268AC w 258BC w 2589D w 3589C w 4579C0 1 2 3 4 5

PMS:
Conveyor stuck f Time-out Time-out1

Sensor bad always on f Error to w Time-out Time-out2 1

Sensor bad always off f Time-out Error to w3 0

Reader bad f Time-out4

Valve stuck at closed f 1. Against laws of physics5

2. Time-out
Valve stuck at open f X leakage X leakage X leakage X leakage X leakage6

WIP:
No mold f Time-out7

Bar code problem f Time-out8

Insufficient X in f Time-out9

Holding Tank

Table 4
The possible next worlds of DM2

Current legal world Next world Classified Operational Auto-recovery plan
Ž . Ž .mrcgÕ mrcgÕ zone status and

message to operator

Ž . Ž .w 1579C w 268AC Legal Normal 168AC™268AC0 1

Mold approaching
Ž .w 168AC One-token-error Abnormal mold status
Ž .w 2589C One-token-error Abnormal reader status 2589C™268AC

and message
Ž .w 267AC one-token-error Abnormal conveyor status 267AC™268AC
Ž .w 1579C time-out Possible faults f , f , f Warning0 1 3 7

Ž . Ž .w 268AC w 258BC Legal Normal1 2

Reading barcode
Ž .w 268AC Time-out Possible faults f , f , f Reset and re-read warning1 2 4 8

Ž . Ž .w 258BC w 2589D Legal Normal2 3

Waiting to fill
Ž .w 258BD One-token-error Abnormal reader message 258BD™2589D
Ž .w 2589C One-token-error Abnormal valve status System suspending
Ž .w 258BC Time-out Possible fault f Warning2 9

Ž . Ž .w 2589D w 3589C Legal Normal3 4

Filling mold
Ž .w 2589C One-token-error Abnormal mold status 2589™3589C
Ž .w 3589D One-token-error Abnormal valve status Force valve closed:

3589D™3589C warning
Ž .w 2589D Time-out Possible fault f Force valve closed:3 5

2589D™2589C system halt
Ž . Ž .w 3589C w 4579C Legal Normal4 5

Mold filled
Ž .W 3579C One-token-error Abnormal mold status 3579C™4579C
Ž .w 4589C One-token-error Abnormal conveyor status 4589C™4579C
Ž .w 3589C Time-out Abnormal Force conveyor on:4

3589C™4579C warning
Ž . Ž .w 4579C w 1579C Legal Normal5 0

Mold leaÕing
Ž .w 4579C Time-out Possible faults f , f System suspending5 1 2

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147 137

5.1. Fault-symptom table

A fault-symptom table lists all physical faults and their caused symptoms in every world. In the table, all
probable faults related to PMS and WIP are considered, and the symptoms caused by these faults are analyzed
for every legal world. For instance, Table 3 is a fault-symptom table for DM . The analyzed symptoms caused2

by two faults are described here. By assuming that the sensor is bad with on signal, two worlds w and w may0 5

be affected. If the current world is w , then w erroneously transits to w and a time-out error will occur for no0 0 1

mold being read. If the current world is w , a time-out error will occur for no shipping-out signal being5

provided by the sensor. By assuming that ValÕe 3 is stuck at open, the obvious symptom in worlds w , w , w ,0 1 2

w , or w is the leakage of material X.4 5

When a symptom is detected in a world, the probable faults are determined. For instance, if a time-out error
Ž .is detected in w , then the probable faults are sensor bad always on , reader bad, or barcode problem.0

5.2. Possible next worlds

Possible next worlds are worlds which may transit from a legal world. These worlds can be analyzed through
system dynamics. For instance, Table 4 lists the possible next worlds of DM . Following the system dynamics2

Ž . Ž .in Fig. 12, the next legal world after w 1579C is w 268AC . In a normal situation, four tokens must be0 1
Ž .updated by the supervisor. However, if one of them is not updated, a one-token error occurs such as w 168AC ,

Ž . Ž .w 2589C , and w 267AC . This occurrence implies that the supervisor has failed to update the attribute of a VD
in real time. If w has been sustained over a pre-specified time, a time-out error occurs. The error may be0

Ž .caused by f , f , and f see Table 3 for reasons . Except for the next legal, one-token error, and time-out1 3 7

worlds, the other worlds are treated as untraceable worlds including those worlds where two or more tokens
have not been updated. Correspondingly, the other legal worlds in Table 4 are analyzed.

Fig. 15. Worlds in classified zones.

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147138

All worlds of DM can be classified into four zones as shown in Fig. 15 including legal, one-token error,2

time-out, and untraceable zones. Worlds in legal zone follow system dynamics, and they are filtered out by
monitors. Worlds in one-token error zone are caused by ‘loss-updating’ problems. Worlds in time-out zone are
worlds whose dwelling time exceeds a specified value. Worlds in untraceable zone are losing their tracks.

5.3. The most probable fault

A symptom in a world may be caused from one fault source in Table 3, such as time-out in w caused by an2

insufficient amount of X in Holding Tank, or time-out in w caused by ValÕe 3 stuck at closed, or the3

one-token errors in Table 4. Thus the only fault source is immediately located. For multiple fault sources, e.g.,
time-out in w , w , or w of Table 3, the most probable one should be located.0 1 5

w xIn a troubleshooter, the most probable fault is found by applying Bayes’ theorem 24 which lies in the
Ž .inversion Eq. 1 .

P H PP eHŽ . Ž .
<P H e s 1Ž . Ž .

P eŽ .
The formula states that the belief we accord a hypothesis H upon obtaining evidence e can be computed by

Ž . Ž < . Ž .multiplying our previous belief P H by likelihood P e H that e will materialize if H is true, where P e is
a normalizing constant.

In most diagnosis processes, sources of evidence are incrementally collected. Bayes’ theorem facilitates the
updating of a belief from new evidence. Let e se ,e , . . . ,e denote a sequence of data observed in the past,n 1 2 n

Ž .and e denote a new fact. The incremental belief updating can be reformulated as Eq. 2 .

< <P H e PP e e , HŽ . Ž .n n
<P H e ,e s 2Ž .Ž .n <P e eŽ .n

Ž . Ž < . Ž < .In Eq. 2 , P H e is a summarized belief from previous observations, and P e e , H is the likelihoodn n

which measures the probability of new evidence e, given the hypothesis and the previous observations. For
those cases in which likelihood is independent of previous observations and involves only e and H, then

< <P e e , H sP e H 3Ž . Ž .Ž .n

Ž .Eq. 2 can be rewritten as

< < <P H e ,e saP H e PP e H 4Ž . Ž .Ž . Ž .n n

where a is a normalizing constant. An example is given below.
Ž .In world w of DM , let hypothesis Hs H , H , H denote time-out faults, where H , H , and H1 2 1 2 3 1 2 3

Ž .represent faults caused by the sensor, reader, and barcode, respectively see Table 3 for reasons . The original
Ž . Ž . w xbelief or prior probability P H regarding faults is given by system designers, and P H s 0.15, 0.10, 0.75 .

Ž < .Based on the shallow knowledge from maintenance history, the likelihood P e H with respect to bodies ofj i

evidence has been collected from e : observation of mold existence, e : examination the onroff light of1 2

Reader, and e : observation of laser scanning beam, when a time-out error occurs in w . Assume that the3 1
Ž .collected likelihood ; means negation are listed as Table 5. If evidence e , e , e are incrementally collected1 2 3

Ž .after time-out, according to Eq. 4

< w x w x w xP H e sa P 0.15, 0.10, 0.75 P 0.10, 0.95, 1.00 s 0.017, 0.110, 0.872Ž .1 1

< w x w x w xP H e ,e sa 0.017, 0.110, 0.872 P 0.98, 0.10, 0.95 s 0.019, 0.013, 0.968Ž .1 2 2

< w x w x w xP H e ,e ,e sa P 0.019, 0.013, 0.968 P 0.95, 0.05, 0.99 s 0.019, 0.001, 0.980Ž .1 2 3 3

Thus the most probable fault is barcode problem.

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147 139

Table 5
The collected likelihood for the time-out of barcode reading

X X XTime-out in e Mold e ;Mold e Read e Read e Laser e ;Laser1 1 2 2 3 3
Ž < .w P e H existing existing light on light off beam OK beam OK1 j i

H : sensor 0.10 0.90 0.98 0.02 0.95 0.051

H : reader 0.95 0.05 0.10 0.90 0.05 0.952

H : barcode 1.00 0.00 0.95 0.05 0.99 0.013

5.4. Auto-recoÕery plans

Ž .Auto-recovery plans are designed to automatically solve the supervisory faults one-token errors and WIP
problems. For a one-token error, an auto-recovery plan updates the error token by a token-updating rule. For
instance, one-token errors in DM are listed in Table 4, and the corresponding token-updating rules are shown2

Ž .in the last column. By applying a token-updating rule listed in Table 4, the bad world w 168AC transiting from
Ž .w is rewritten as legal world w 268AC . A designed rule named R-W0-168AC in Fig. 16 updates the status of0 1

Fig. 16. Some mentioned auto-recovery plans for DM .2

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147140

Ž . Ž .Fig. 17. Maintenance rules to reset Reader MR1 and re-read MR2 .

Fig. 18. A summary of auto-recovery plans.

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147 141

mold from mold_approaching to mold_waiting. Applying token-updating rules is an efficient way to solve
supervisor’s token problems. However, those rules should be carefully designed to avoid side-effects, particu-

Ž .larly those activating VDs. For instance, in Table 4, world w 2589C after a transition from w is conservatively2

considered as a bad world and, thus, no updating rule is applied to avoid erroneously opening ValÕe 3. A rule
Ž .named R-W2-2589C in Fig. 16 only sends a message ‘w transits to zone 1 one-token error : System2

Ž .suspending abnormal valve status .’
Ž .For time-out errors, a troubleshooter reacts with different maintenance rules: warning, retrial rework ,

w x w xskipping, and shutdown, which covers all the exception handling in 9 and error recovery in 8,10 . If time-out
related to WIP does not damage the system after the fault, a warning message is sufficient. For instance, in
Table 4, time-out in worlds w and w can be neglected for a period of time, which may be caused from no0 2

arrival mold or an insufficient amount of material X in Holding Tank, respectively. Even if time-out in w is0

caused by either a conveyor or a sensor fault, the system will not be damaged any further since no activating
command is generated. Two rules, R-W0-TIME-OUT and R-W2-TIME-OUT in Fig. 16, are designed for
warning. However, for time-out in w , the troubleshooter forces ValÕe 3 closed, informs the operator ‘checking3

Valve 3,’ and commands the system to be halted for ensuring the quality of filling process. If a time-out error is
caused by an information problem related to WIP such as reading a ‘vague’ barcode in w , a retrial action is2

executed. Maintenance rules MR1 and MR2 are applied to allow Reader to be reset and then to re-read as
shown in Fig. 17. Tokens in places p6 and pA fire MR1 when a time-out error occurs; the act_port of Reader
is then reset; and tokens are moved to p5 and p9. Tokens in p5 and p9 subsequently fire MR2 which reactivates
Reader by setting act_port on. These two rules are implemented as R-READER-RESET-MR1 and R-
READER-RESET-MR1 in Fig. 16. If the second read trial also fails, the troubleshooter skips the mold with the
message ‘Unfilled mold.’ If unfilled molds successively occur, it informs the operator ‘Check Reader and

Ž .Sensor’ see Table 3 for reasons .
Fig. 18 summarizes auto-recovery plans for worlds in one-token error zone and time-out zones. Token-updat-

ing rules fix one-token errors. Maintenance rules reset the world clocks of worlds w , w , and w by retrial, and0 1 2
Ž .change time-out world w into w . For untraceable worlds since they are far from being recovered ,4 5

troubleshooter commands system to be halted by applying shutdown rules.

Table 6
Ž .Aid-recovery plans for faulty devices symptoms are shaded

Ž . Ž . Ž . Ž . Ž . Ž .Fault w 1579C w 268AC w 258BC w 2589D w 3589C w 4579C0 1 2 3 4 5

f : Conveyor Time-out Time-out1

stuck Repair Conveyor Repair Conveyor
f : Sensor bad Error to w time-out Time-out2 1

always on Replace Sensor Replace Sensor
change into w change into w0 0

f : Sensor bad Time-out Error to w3 0

always off Replace Sensor
f : Reader bad Time-out4

Repair Reader reset
Reader re-read

f : Valve stuck 1. Against laws5

at closed of physics
2. Time out replace
V3 change into w4

f : Valve stuck X leakage X leakage X leakage X leakage X leakage6

at open Replace V3 Replace V3 Replace V3 Replace V3 Replace V3

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147142

5.5. Aid-recoÕery plans

An aid-recovery plan is only activated after the troubleshooter acknowledges from the operator that a faulty
source has been eliminated. Once it acknowledges, an aid-recovery plan also continues the error recovery
without human intervention. The design involves changing the current world into an appropriate legal world and
adding some control actions.

Table 6 lists the aid-recovery plans for DM . Each plan is designed for a fault in Table 3. For instance, no2

recovery plan after repairing the conveyor is available since the system’s state is normal. For a bad sensor
Ž . Ž .always on , after replacement, the world is changed into w . For a bad sensor always off , sensor replacement0

is sufficient. For a bad reader, after repairing it, maintenance rules MR1 and MR2 are successively applied to

Fig. 19. Aid-recovery plans for DM .2

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147 143

resetting Reader and making Reader re-read the barcode. For stuck ValÕe 3 in world w , after replacement, the3

unsuccessfully-filled mold will be moved out by changing the world into w . For valve leakage in world except4

w , after replacement, the filling process continues. Fig. 19 presents these rules. Rule R-SENSOR_REPLACED3

updates the current world to w , when the bad sensor is replaced. Rule R-V3_REPLACED changes w into w0 3 4

Fig. 20. Configuration of automated Mold Filling System.

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147144

for shipping out the unfinished mold. Rule R-V3_LEAKAGE_REPLACED recovers the process to normal state.
Rule R-READER_REPAIRED invokes R-TIME-OUT-W1, MR1, and MR2 when Reader has been repaired.

6. Implementation

The final stage for building the AMS involves installing PMS and connecting PMS to VMS. According to
the design, an automated mold milling system was already installed at Shop Floor Control Lab., NCTU. Fig. 20

Fig. 21. Indicators of Mold Filling System.

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147 145

depicts the system’s configuration. The PMS at lower right is specified by the VMS in 1r8 Scale, and its
components are shown in Fig. 3. Materials A, B, and H are pumped up from the raw material tanks. Each
onroff valve is incorporated with a turbine flow meter for Õolume_control. The volume in Holding Tank is
calculated from LeÕel Indicator. Molds are shipped by ConÕeyor. As Fig. 20 indicates, the onroff valves,
mixers, motor, and reader onroff port are connected to the Allen–Bradley PLC-5r11 output module; the flow
meters, level indicator, sensor, and barcode read-in port are connected to the PLC’s input module. A Control
Coprocessor 1771 of the PLC is connected via Ethernet to workstation Sun Sparc 10 where a decision system

w xand VMS are designed as workspaces of real-time expert system G2 18 .
The one-to-one mapping between the VMS and PMS is developed through a TCP socket pair based on the

w x Ž .client and server model 25 . The server process is in OS-9 Coprocessor , and the client process is in UNIX
Ž .Sun Sparc 10 . Through the socket pair, a communication channel is first established. Information packages are
then exchanged. From one direction, the VDs pass their output attributes to the server process which
subsequently updates the PLC data table. The valves, mixers, motor, and barcode reader in PMS reflect the
corresponding VDs’ behavior. From the other direction, input module not only scans factors such as each
valve’s flow volume, the volume in Holding Tank, the input signal from Sensor, but also refreshes the PLC
data table. These values are then fed back to workstation for updating VDs’ inputs.

Ž .According to the supervisor design steps, from Figs. 4 and 6–9, two rule-based supervisors KM and KM1 2
w xare designed. The control rules 13 follow DM in Fig. 9 and DM in Fig. 8. In those rules, the virtual devices1 2

listed in Table 2 are used. Twelve rules of KM issue commands to control the valves and the mixers for1

preparing X; six rules of KM displayed in Fig. 10 issue commands to ConÕeyer, Reader and ValÕe 3 for mold2

filling process.
Fig. 21 summarizes the operational results of supervised Mold Filling System as illustrated by indicators

including cost, control information, and material. Fig. 21a depicts dynamic operational cost vs. time; Fig. 21b
displays the information flows which indicate the dynamics of six valves vs. time; Fig. 21c shows the material
Y in Tank 1, X in Tank 2, and X in Holding Tank vs. time.

According to the monitor design steps, the worlds illustrated in Fig. 11 are specified with system dynamics
shown in Fig. 12. A world-based monitor for DM is defined in Fig. 13. Those symptom detecting rules are2

shown in Fig. 14. Once a symptom is detected by those rules, the monitor invokes a troubleshooter.
The troubleshooter locates the fault source and recovers the system when it is invoked. According to the

troubleshooter design steps, fault diagnosis and recovery plans are designed. If the source causing a symptom is
unique, it is immediately determined from Table 3 and 4. For multiple probable sources, the probability of each
possible source is computed through Bayes’ technique as presented in Section 5.3. Auto-recovery plans follow
the summary in Fig. 18, and some of them are displayed in Fig. 16. Aid-recovery plans based on Table 6 are
designed and displayed in Fig. 19.

With the aid of the monitor and troubleshooter, the reliability of mold filling process is significantly
enhanced when compared with only applying supervisor. Fault propagation is prevented by symptom detecting

Ž .rules. Auto-recovery plans prolong the mean time to failure MTTF by approximately five folds in experimen-
tation, because the recoverable faults are automatically solved. Also, fault diagnosis and aid-recovery plans

Ž .shorten the mean time to repair MTTR .

7. Conclusions

In this study, we have proposed a new methodology to build a reliable AMS. The methodology can be
applied to functionally decomposable, discrete-event systems such as Mold Filling System for supervisory
control, monitoring, fault diagnosis, and error recovery.

At the supervisor design stage, rules representing control logic are systematically obtained from transforma-

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147146

tion. The attributes of VDs composing a VMS are either computed from Petri nets or analyzed from constraints.
Moreover, the computed attributes can be used to represent worlds. At the monitor design stage, the system
dynamics of a Petri net and first principles in worlds are used to detect symptoms. At the troubleshooter design
stage, faults are located by applying deep and shallow knowledge. In addition, recovery plans enhance the
reliability in MTTF and MTTR. At the implementation stage, a PMS is installed according to the VMS
specifications. Connecting VMS with PMS via a communication network allows a decision system to supervise,
monitor, and troubleshoot a remote PMS.

The implemented Mold Filling System at Hsin-Chu can be operated and troubleshot under digital images in
Ž . Ž . w xTaipei via Ethernet 10 Mbps and FDDI 100 Mbps 26 . The distance is about 80 km. Results in this study

demonstrate the proposed methodology’s effectiveness in the design and implementation of a reliable AMS for
batch process and discrete manufacturing.

References

w x1 T.O. Boucher, M.A. Jafari, Design of a factory floor sequence controller from a high level system specification, J. Manuf. Syst. 11
Ž .1992 401–417.

w x Ž .2 K.-P. Brand, J. Kopainsky, Principles and engineering process control with Petri nets, IEEE Trans. Automatic Control 33 1988
138–149.

w x Ž .3 E. Pierard, Reference architecture for car assembly monitoring, Comput. Industry 27 1995 203–213.
w x Ž .4 P. Higgins, J. Browne, The monitor in production activity control system, Production Planning and Control 1 1989 17–26.
w x5 L. Lia, R. Govind, Development of a process diagnosis scheme using AI techniques, AICHE Symp. Series Processing, Sensing and

Ž .Diagnostics 85 1989 30–35.
w x6 D.N. Batanov, Z. Cheng, An object-oriented expert system for fault diagnosis in the ethylene distillation process, Comput. Industry 27

Ž .1995 237–249.
w x Ž .7 S.M. Alexander, W.Y. Lee, J.H. Graham, Design-based diagnosis, Int. J. Production Res. 31 1993 2087–2096.
w x8 M.C. Zhou, F. Dicesare, Adaptive design of Petri net controllers for error recovery in automated manufacturing systems, IEEE Trans.

Ž .Syst., Man, Cybernetics 19 1989 963–973.
w x Ž .9 A. Visser, An exception-handling framework, Int. J. Comput. Integr. Manuf. 8 1995 197–203.

w x10 D. Gracanin, P. Srinivasan, K. Valavanis, Time and error recovery with parameterized Petri nets, Proceedings of the 1993 Int. Sympos.
on Intelligent Control, Chicago, IL, USA, Aug. 1993, pp. 291–297.

w x Ž .11 Y.B. Moon, C.L. Moodie, A framework for failure recovery in a manufacturing cell, Int. J. Adv. Manuf. Technol. 4 1989 144–156.
w x12 G.R. Liang, T.Y. Tseng, Rule-base troubleshooter design for the maintenance of manufacturing devices, Int. IEEErIAS Conf. on

Industrial Automation and Control: Emerging Technology, R.O.C., May 1995, pp. 293–300.
w x13 G.R. Liang, H.M. Hong, Hierarchy transformation method for repetitive manufacturing system: specification, design, verification, and

Ž .implementation, Comput. Integr. Manuf. Syst. 7 1994 191–205.
w x Ž .14 R. Joannis, M. Krieger, Object-oriented approach to the specification of manufacturing systems, Comput. Integr. Manuf. Syst. 5 1992

133–145.
w x15 J.L. Peterson, Petri Net Theory and the Modelling of Systems, Prentice-Hall, NJ, 1981.
w x Ž .16 T. Murata, Petri nets: properties, analysis, and applications, Proc. IEEE 77 1989 541–580.
w x17 R. David, H. Alla, Petri Nets and GRAFCET, Prentice-Hall, UK, 1992.
w x18 Gensym, G2 Reference Manual, Version 3.0, USA, 1992.
w x Ž .19 R. Reiter, A theory of diagnosis from first principles, Artif. Intelligence 32 1987 57–95.
w x Ž .20 J. de Kleer, J.S. Brown, Qualitative physics based on confluences, Artif. Intelligence 24 1984 7–83.
w x Ž .21 V.S. Srinivasan, M.A. Jafari, Fault detectionrmonitoring using time Petri nets, IEEE Trans. Syst., Man, Cybernetics 23 1993

1155–1162.
w x Ž .22 J. Prock, A new technique for fault detection using Petri nets, Automatica 27 1991 239–245.
w x23 J. Mendigutxia, P. Zubizarreta, J.M. Goenaga, L. Berasategui, L. Manero, Fault tolerance in automated manufacturing systems, Expert

Ž .Syst. Appl. 8 1995 275–285.
w x24 J. Pearl, Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference, Morgan Kaufmann Publishers, San Mateo,

CA, 1988.
w x25 W.R. Stevens, UNIX Network Programming, Prentice-Hall, 1990.
w x26 G.R. Liang, Advent of network-integrated manufacturing age in Taiwan, The 5th Int. Conf. on Automation Technology, Taiwan,

R.O.C., July 1996, pp. 29–36.

()W.-H. Jeng, G.R. LiangrComputers in Industry 35 1998 121–147 147

Woei-Horng Jeng is currently Associate Professor in Department of Industrial Engineering and Management at
Ming Hsin Institute of Technology, Taiwan, R.O.C. He received the Doctor of Philosophy degree in Industrial
Engineering from National Chiao Tung University, R.O.C, in May 1997, his Master of Science degree in
Industrial Engineering from National Tsing Hua University, R.O.C, in 1987, and his bachelor degree from
National Taiwan University in 1980. He was also a senior engineer in the design of manufacturing system and
material handling system at MIRL, ITRI, R.O.C. His research interests are automated manufacturing system
design, computer-integrated manufacturing, intelligent manufacturing systems, and shop floor control.

Gau Rong Liang is Associate Professor in Institute of Industrial Engineering at National Chiao Tung University,
Taiwan, R.O.C. Also he had worked as researcher in Bell Labs., Columbus, Ohio, USA. in 1984 and in
INRIA-Lorraine, Metz, France in 1990. His current research interests are computer-integrated manufacturing, shop
floor control system design, and intelligent manufacturing execution systems. He received the Doctor of
Philosophy degree in School of Industrial Engineering at Purdue University, IN, USA in 1987, his Master of
Science degree in Institute of Electrical Engineering from National Taiwan University in 1981, and his Bachelor
of Science degree in Department of Control Engineering from National Chiao Tung University in 1979. He won
Outstanding Young Industrial Engineer Award from CIIE and national Outstanding Information Technology
Application Award in 1995.

