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Abstract--On the base of the Finite State Machine (FSM) model, the fault diagnosis problem 
deals with the identification of a faulty implementation against its specification represented by an 
FSM. In particular, to efficiently identify potential faulty implementations caused by a transfer error 
in an FSM, cross-verification over the FSM is performed after all potential faulty FSMs have been 
minimized. Existing minimization algorithms become inefficient due to the lack of taking advantage 
of the homogeneity of these potential faulty FSMs. In this paper, we propose a two-phase algorithm 
for the efficient and simultaneous minimization of a set of homogeneous faulty FSMs. Disregard- 
ing the suspicious transition, the first phase of the algorithm performs minimization of these faulty 
FSMs via a common digraph of th FSMs. These faulty FSMs are considered minimized if the dis- 
tinguishing sequences of all state-pairs can be discovered from the common digraph. Otherwise, the 
algorithm in the second phase performs minimization for each faulty FSM by individually restor- 
ing its corresponding unexpected transition in the reduced common digraph. To demonstrate the 
efficiency of the two-phase algorithm, we carried out experiments on a number of realistic protocol 
specifications, including the Alternation Bit Protocol (ABP), Transport Protocol Class 4 (TP4), and 
ISDN Basic Rate Interface (BRI) protocol. Experimental results show that the algorithm renders the 
minimization complexity greatly reduced for most of the realistic protocol FSMs. 

Keywords--Minimization, Finite State Machine (FSM), Distinguishing sequences, Fault diagno- 
sis. 

i .  I N T R O D U C T I O N  

A formal specification model [1-3] provides an unambiguous means of modelling communication 
protocols defined as sets of rules governing the operations of communication networks. Among 
existing models, the Finite State Machine (FSM) model [4] has been widely and successfully used 
in areas such as protocol testing [5] and fault diagnosis [6,7]. Protocol testing ensures consistency 
between the implementation and the specification of the protocol. Substantially, fault diagnosis 
further identifies the location of faults against the specification of the protocol. 

In the case of a fault occurring due to a transfer error (transition to an unexpected state), 
all potential faulty FSMs then correspond to FSMs with the unexpected transition progressing 
to states other than the expected state. Consequently, these FSMs are homogeneous and only 
differ in that particular unexpected transition. To identify a faulty implementation caused by 
such transfer error efficiently, cross-verification [7] over the FSMs is performed after all potential 
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faulty FSMs have been minimized. The existing Hopcroft's algorithm [8], known as one of the 
most promising minimization algorithms, however, becomes inefficient for minimizing a group of 
homogeneous FSMs due to the lack of taking advantage of the homogeneity of these faulty FSMs. 

In this paper, we propose a two-phase algorithm for the efficient and simultaneous minimiza- 
tion of a set of homogeneous faulty FSMs. In the first phase of the algorithm, the original FSM 
excluding the suspicious transition is first transformed into a common digraph exhibiting the 
behavior of all state-pairs for all faulty FSMs. These faulty FSMs axe considered minimized if 
the distinguishing sequences of all state-pairs can be discovered from the common digraph. Oth- 
erwise, the second phase of the algorithm takes over the task. The algorithm first performs the 
reduction of the common digraph by means of four reduction rules. By restoring the correspond- 
ing unexpected transition in the reduced common digraph for each faulty FSM one at a time, 
the algorithm again performs minimization by means of finding distinguishing sequences. To 
demonstrate the efficiency of the two-phase algorithm, we accomplished experiments on a num- 
ber of realistic protocol specifications, including the Alternating Bit Protocol (ABP), Transport 
Protocol Class 4 (TP4), and ISDN Basic Rate Interface (BRI) protocol. Experimental results 
showed that, in most protocol FSMs, the algorithm entails lower complexity for the minimization 
of the homogeneous faulty FSMs. 

The paper is organized as follows. Section 2 defines the FSM model and the minimization prob- 
lem. Section 3 then presents the two-phase algorithm. The complexity analysis and experimental 
results axe also given in this section. Finally, Section 4 concludes the paper. 

2. P R E L I M I N A R I E S  F S M  M O D E L  
A N D  P R O B L E M  D E F I N I T I O N  

A protocol can be modelled as a six-tuple FSM: (S, S l , I ,O ,  df, A). S is a nonempty set of 
states, S1 is a designated state called the initial state, and I and O axe nonempty sets of input 
and output symbols, respectively. The next-state function (6) is defined as 6 : S x I --, S, and 
6(Si, a) = Sj denotes a transition from state Si to state Sj as a result of given an input, a. 
Similarly, the output function (/~) is defined as A : S x I --* O, and )~(Si,a) = b denotes the 
creation of output b being at state Si if input a is applied. These two functions axe combined 
and represented by the transition with a label: Si --* a/b --* Sj.  Graphically, an FSM can also 
be represented by a digraph G = (V, E), where V = S, and each edge in E corresponds to a 
transition with a label. In this paper, we assume FSMs are deterministic, strongly-connected, 
and completely-specified [4]. An example of an FSM is shown in Figure 1. The example will be 
used for the illustration of the algorithm throughout the rest of the paper. 

, Q  o,x 

Figure 1. An FSM (G). 

An FSM is minimized if and only if any two states in the FSM axe always distinguishable. 
States S~ and Sj axe said to be distinguishable if there exists an input sequence such that, upon 
applying the input sequence, states S~ and Sj produce different output sequences. For example, 
as shown in Figure 1, states $2 and Ss axe distinguishable since they produce different output 
sequences xx  and xy  after applying the input sequence, 00. Input sequence 00 is thus referred to 
as the distinguishing sequence of states $2 and Ss. 
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If a transfer error (i.e., faulty next-state) occurs in transition Si --* a/b --* Sj of a minimized 
n-state FSM, named as G, there are n - 1 possible faulty FSMs (G~, k ¢ j )  resulting from 
n - 1 possible faulty next-states (Sk, k ~ j) ,  respectively. This set of relevant faulty FSMs 
( G 1 , G 2 , - . . , G j - I , G j + I , . . - , G n )  are defined as homogeneous faulty FSMs. As a result, it is 
inefficient to minimize these homogeneous FSMs one at a time using traditional minimization 
approaches [8-10]. Thus, the main goal of this paper is to present a novel and efficient algorithm, 
named as the two-phase minimization algorithm, which performs simultaneous minimization of 
a set of homogeneous FSMs. 

3.  T W O - P H A S E  M I N I M I Z A T I O N  A L G O R I T H M  

In the following subsections, we first introduce a minimization method by means of a compound 
digraph. We then propose the two-phase algorithm in detail based on the constructed compound 
digraph. 

3.1. Minimization Using Compound Digraph 

A compound digraph (G x G) of an FSM (G) is defined and constructed as follows. The input 
and output  sets of G x G are the same as those of G. The node set in G x G consists of all possible 
state-pairs in G as well as a newly created node, called the Source. Considering node [Si, Sj] 
(Si ~ Sj) and input a in G x G, the outgoing edge of the node is determined as follows. 

1. If ~(S~, a) ~ ~(Sj, a) in G, i.e., Si and Sj are immediately distinguishable by input a, an 
edge from [S~, Sj] to the Source with label a / -  is created. 

2. If A(S~, a) = A(Sj, a) = b and 6(Si, a) = 6(Sj, a) = Sk in G, an edge from [S~, Sj] to [Sk, Sk] 
with label a/b is created. Node [Sk, Sk] is referred to as a trivial node. Notice that  it is 
not necessary to distinguish two identical states in a trivial node. Therefore, there is no 
outgoing edge from [Sk, Sk] in G x G. 

3. If A(S~, a) = A(Sj, a) = b, but ~(Si, a) ~ ~f(Sj, a) in G, an edge from [Si, Sj] to [~f(S~, a), 
6(Sj, a)] with label a/b is created. This implies the distinguishability of state-pair [Si, Sj] 
is dependent on the distinguishability of state-pair [~f(Si, a), 6(Sj, a)]. 

According to these three rules, the compound digraph (G x G) for G in Figure 1 is constructed 
and shown in Figure 2. There are (5 * 4)/2 = 10 main nodes (state-pairs), three trivial nodes, 
and the Source node in G x G. Since A(Sa,0) # A(Sh, 0), [$4, $5] is connected to the Source 
through an edge with label 0 / - .  Since A(S2, 1) = A ( S 3 , 1 )  = y and 6($2, 1) = ~(Ss, 1) = $2 in G, 
[$2, $3] is connected to trivial node [$2, $2] through an edge with label 1/y. In addition, since 
X(S2,0) = A(S3, 0) = x, ~f(S2, 0) = Sa, and (~($3, 0) = $5, an edge from [$2, Sa] to [$4, $5] with 
label O/x is then constructed. Notice that since the compound digraph (G x G) is employed for 
deriving the distinguishing sequences of all state-pairs, the order of states in any pair is irrelevant, 
i.e., [Si, Sj] = [Sj, Si]. 

Having constructed the compound digraph, G x G, we are now at the stage of deriving dis- 
tinguishing sequences of state-pairs. We here employ the approaches proposed by Huffman and 
Chen [9-11], which can be reworded in our case to say that  any two states Si and Sj are distin- 
guishable if and only if there exists a path from [Si, Sj] to the Source in G x G, and the input 
sequence of the path then becomes a legitimate distinguishing sequence of states S~ and Sj. To 
minimize the FSM (G), we perform an inverse Breadth-First Search (BFS) from the Source to 
all nodes in G x G. If all nontrivial nodes are reachable, the FSM is minimized. In this case, all 
state-pairs are distinguishable by the distinguishing sequences established from the correspond- 
ing reachability path. Otherwise, there exists a node ([S~, Sj]) which is not reachable (i.e., Si 
and Sj are not distinguishable), S~ and Sj are thus considered to be equivalent and should be 
merged into one state. This minimization algorithm requires O(pn 2) time complexity for G x G 
with O(n 2) nodes and O(pn 2) edges, where p and n are the numbers of input symbols and states 
of the FSM (G), respectively. Although this algorithm incurs higher complexity compared to 
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Figure 2. Compound digraph G x G. 

the Hopcroft's O(pn log n) algorithm [8], known as the most efficient minimization algorithm, 
the method of employing the compound digraph, as will be shown, is more effective for the 
minimization of homogeneous FSMs. 

3.2. T w o - P h a s e  A l g o r i t h m - - T h e  F i r s t  P h a s e  

Assume that  there exists an edge [Si, Sx] --* a/b --* [Sj, Sy], in G x G, i.e., Si --, a/b -* Sj and 
Sx ---, a/b --* S~ in G. If a transfer error occurs, which results in the changes from Si --, a / b  ~ Sj 
to Si ~ a/b --* Sk, where 1 < k _ n and k ~ j ,  corresponding to n - 1 faulty FSMs Gt~ 
(1 < k _< n, k ¢ j ) ,  edge [Si, Sx] --* a/b --, [Sj, S~] in G x G would be accordingly altered as 
[S~, Sx] --* a/b --* [Sk, Sy] in Gk x Gk. For any faulty FSM, say Gk, since there are n - 1 distinct 
nodes [Si, Sx] (1 < x < n, x ~ i) in Gk x Gk, a set of n -- 1 edges in Gk × GI¢, denoted as Ek and 
called modified edge set, is different from that  in G x G. Consequently, removing the modified 
edge set from each faulty FSM, the remaining digraphs, i.e., Gk x Gk -- Ek, for all k, where 
1 < k < n and k ¢ j ,  become identical. The identical digraph is referred to as the common 
digraph, denoted as Ge. 

From the common digraph, the distinguishing sequences of all state-pairs for any faulty FSM 
can be derived by applying the inverse BFS from the Source. If the distinguishing sequences 
of all state-pairs can be derived, all n - 1 faulty FSMs are minimized and the problem is thus 
solved. Otherwise, the second phase of the algorithm takes over the task. Notice that,  although 
the behavior of state-pairs related to the unexpected edge is temporarily ignored in the common 
digraph, any edge in modified edge set Ek progressing to the Source, say [S~, Sz] --* a / -  ---, Source, 
should stay in the common digraph, since states Si and Sz can still be distinguished immediately 
by input a in any faulty FSM regardless of the occurrence of any transfer error. 

The minimization of homogeneous FSMs derived from the FSM example given in Figure 1 
is illustrated as follows. Consider a transfer error occurs in edge $3 --' O/x ---, $5, i.e., $3 --* 
O/x --, Sk, where k ~ 5. Then, the transfer error results in the creation of four homogeneous 
faulty FSMs, denoted as G1, G2, G3, and G4. For example, Figure 3 depicts the compound 
digraph (G4 x G4) with modified edge set E4 shown in bold. In addition, the common digraph 
for all faulty FSMs can be constructed and shown in Figure 4. To minimize G1 through G4, 
an inverse BFS from the Source can be performed over the common digraph. In this example, 



Fault Diagnosis 

' Trivial ,, "Being-distinguished..-- 
n o o e s  • _ a _ - - " 

y- 
=ble nodes 

121 

Figure 3, Compound digraph G4 × G4. 
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Legend: 

Q : Nodes reachable 

( ~  : Nodes not reachable 

Figure 4. Common digraph Gc. 

nodes  IS2, Sa], [$4, Ss], [$1, $4], [,-93, S5], [Sl, S5], and [$2, $5] are reachable,  thei r  dis t inguishing 
sequences are thus  genera ted  and can be unanimous ly  applied to  all faul ty  FSMs.  Since there  
exist  nonreachable  s ta te-pai rs ,  the  minimizat ion  process is t aken  over by the  second phase  of the  
a lgor i thm.  

3.3. Two-Phase  A l g o r i t h m - - T h e  Second Phase  

To efficiently accomplish the task,  we first reduce the  c o m m o n  digraph (Go) by means  of four 
reduct ion  rules (R-rules) described as follows. 



122 R . S .  LIN et al. 

• R-rule  1: All reachable nodes and traversed edges in the common digraph are merged and 
replaced by a black node. All the state-pairs in the black node are from now on neglected 
due to their distinguishability determined in the first phase of the algorithm. 

• R-rule  2: All outgoing edges from the black node are removed. This is because we are 
only concerned about the reachability from other state-pairs to the black node, but not 
the opposite. 

• R-rule  3: All trivial nodes and their incoming edges are removed. This is because they 
produce no effect on reachability due to the lack of outgoing edges from them. 

• R-rule  4: The common digraph is further reduced to a condensed digraph [12] in which 
each strongly-connected component is replaced by a node, and all edges from a strongly- 
connected component to another are replaced by a single edge. 

For example, the common digraph (Go) in Figure 4 can be reduced to G~, as shown in Figure 5, 
based on these four R-rules. 

black  node 

F i g u r e  5. R e d u c e d  c o m m o n  d i g r a p h  GIc. 

After having reduced the common digraph, the second phase of the algorithm deals with the 
individual minimization of each faulty FSM with the unexpected edge restored. First, for each 
faulty FSM, the corresponding modified edge set of the unexpected edge is restored to the reduced 
common digraph. Second, for each restored reduced common digraph, an inverse BFS from the 
black node is performed. The faulty FSM is minimized if the distinguishing sequences of all 
remaining state-pairs can be discovered. Otherwise, the states in any nonreachable node are not 
distinguishable and can be merged. 

For the example given in Figure 1, after restoring modified edge set E4 to reduced common 
digraph G~c, its digraph G~ is constructed and depicted in Figure 6. Based on the second phase 
of the algorithm, we learn that the faulty FSM, G4, is not minimized. This is because state-pair 
[$2, $3] in G~ is not reachable and thus not distinguishable. 

Trivial  ' "Being-d is t inguished .  - - " 
nodes•, • .^,~o~ . . ,  - 

n m e d i a t e l y -  
i s t inguishable  nodes  

F i g u r e  6. D i g r a p h  G~ 1 a f t e r  r e s t o r i n g  E4 .  
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3.4. Formal Description of  the Two-Phase Algorithm 

ALGORITHM: The Two-Phase Algorithm 

INPUT: A deterministic, strongly-connected, completely-specified, and minimized FSM (G), and 
a suspicious edge, say S~ --* a/b --+ Sj. 

OUTPUT: n - -  1 minimized faulty FSMs, i.e., G1, G2,. . . ,  Gj-1, Gj+I , . . . ,  Gn, corresponding to 
n - 1 possible transferred states, respectively. 

First phase 

Step 1: Construct common digraph Go. 
Step 2: Execute an inverse BFS from the Source; 

If (all nontrivial nodes are reachable) 
then (all faulty FSMs are minimized and the algorithm terminates). 

Second phase 

Step 3: Construct reduced common digraph G' c by applying R-rules 1-4. 
Step 4: For (each possible next-state Sk (Sk ~ Sj) of the suspicious edge) do 

1. Restore modified edge set Ek to construct G~; 
2. Execute an inverse BFS over G~ from the black node; 
3. If (all nontrivial nodes are reachable) then (faulty FSM Gk is minimized) 

else {*Gk is not minimized*} 
the states in each nonreachable node are equivalent and can be merged. 
{*Gk is thus minimized*} 

The time complexity of the two-phase algorithm is analyzed as follows. Since there are O(n 2) 
nodes and O(pn 2) edges in Gk x Gk and n -  1 edges in Ek, Step I thus requires O(pn 2) time. Step 2 
also requires O(pn 2) time, owing to the fact that the execution time of the BFS is only dependent 
on the size of the target digraph. Therefore, if the algorithm can be successfully terminated in 
the first phase, the aggregate time complexity is only O(pn2). Step 3 performs four R-rules, 
where R-rule 1 can be executed implicitly in Step 2; R-rules 2 and 3 require O(pn 2) time since 
there are a maximum of O(pn 2) edges to be examined if they are outgoing from the black node 
or incoming to the O(n) trivial nodes; and R-rule 4 can be executed using any existing algorithm 
for the construction of strongly-connected components [12]. Consequently, Step 3 thus requires 
a total of O(pn 2) time. Step 4 consists of three substeps in the For-loop. There are n - 1 next- 
states in the outer For-loop, a maximum of n - 1 edges restored in Step 4.1, a maximum of the 
number of nodes and edges in G~ plus n - 1 restored edges traversed in Step 4.2, and a maximum 
of the number of nodes in G~ nonreachable. Step 4 thus requires O(n) * (O(n) + (IG~I + O(n)) 
+ IG'cl) = O(n 2 + nlG~l), where IG~I denotes the size of the reduced common digraph, G~. The 
aggregate time complexity for the second phase becomes O(pn 2 + n 2 + nlG'cl ) = O(pn 2 + nlG~l ). 
Consequently, IG~I determines the efficiency of the second phase of the algorithm. 

Compared to the Hopcroft's O(pn21ogn) algorithm (n - 1 faulty FSMs and O(pnlogn) for 
each one), the method is efficient if either the algorithm terminated in the first phase or IG~] is 
less than O(pn log n). In other words, if the second phase of the algorithm is required, it becomes 
significant should the reduction target be smaller than O(pn log n)/O(pn ~) = O(logn/n),  where 
O(pn 2) is the size of the common digraph, Go, To justify this, we carried out experiments on a 
number of existing protocol specifications, including Alternating Bit Protocol [5], NBS Transport 
Protocol Class 4 [13], and ISDN Basic Rate Interface Protocol [14]. The experimental results, 
listed in Table 1, show that, in most realistic protocol FSMs, the algorithm can be successfully 
terminated in the first phase with all homogeneous FSMs minimized. It thus requires only 
O(pn 2) time complexity. For other FSMs, such as the Alternating Bit Protocol as shown in 
Table 1, the reduction of common digraphs is significant entailing low complexity in the remaining 
minimization process. 



124 R.S.  LIN et al. 

Table 1. Minimization of realistic protocols. 

\ Example 
Property 

Node # 
Original 
Digraph Input # 

Edge # 

Common Node # 
Digraph 

Edge # 

Reduced Node # 
Common 
Digraph Edge # 

Reduction Node # 
Target 

Edge # 

Algorithm terminated in 
the first phase with time 

complexity O(pn 2) 

FSM 1 FSM 2 FSM 3 NBS TP4 ISDN BRI ABP 

[6] [71 [151 [131 [141 [51 

4 4 6 16 8 8 

3 3 2 26 14 5 

12 12 12 53 31 10 

10 10 22 137 37 37 

18 18 30 3120 392 140 

1 1 1 1 1 2 

0 0 0 0 0 1 

10% 10% 4.5% 0.7% 2.7% 5.4% 

0 0 0 0 0 0.7% 

Yes Yes Yes Yes Yes No 

4. C O N C L U S I O N S  

In  th is  pape r ,  we have p roposed  a two-phase  a lgo r i t hm for the  efficient and  s imul taneous  

min imiza t i on  of  a set  of homogeneous  faul ty  FSMs.  The  first phase  of the  a lgo r i t hm per fo rms  

m i n i m i z a t i o n  v i a  a c o m m o n  d ig raph  of these  faul ty  FSMs.  T h e  a lgo r i thm t e r m i n a t e s  if the  dis- 

t ingu i sh ing  sequences of  all  s t a t e -pa i r s  can be discovered from the  c o m m o n  d igraph .  Otherwise ,  

t he  second phase  pe r fo rms  min imiza t ion  for each faul ty  F S M  by ind iv idua l ly  res tor ing  i ts  corre- 

spond ing  unexpec t ed  t r ans i t i on  in the  reduced  common  d igraph .  To d e m o n s t r a t e  t he  efficiency 

of t he  a lgor i thm,  we pe r fo rmed  expe r imen t s  on a number  of  real is t ic  p ro toco l  specif icat ions.  Ex-  

pe r imen t a l  resul ts  showed t h a t ,  in most  p ro tocol  FSMs,  t he  a lgo r i thm enta i l s  lower complex i ty  

for t he  min imiza t ion  of  t he  homogeneous  faul ty  FSMs.  
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