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INTRODUCTION

Delaunay triangulation has been applied widely in a

number of ®elds. Its de®nitions and properties have

been fairly assembled and well described in Okabe,

Boots, and Sugihara (1992). By aiming for better

running e�ciency, a number of TIN construction

algorithms have been developed along with di�erent

approaches. Extensive reviews can be found in Lee

and Preparata (1984), Aurenhammer (1991), Okabe,

Boots and Sugihara (1992) and Tsai (1993). The

O(N log N) algorithms are asymptotically optimal

(Preparata and Shamos, 1985) in the worst situ-

ation. For engineering applications, the average per-

formance of a triangulation algorithm is generally

more important than its worst-case performance,

because the latter tends to occur rarely in practice

(Sloan, 1987).

Because Sloan's (1987) algorithm is e�cient and

the accompanying program is handy to use, it has

been widely adopted. Nevertheless, some improve-

ments could be made:

(1) Some calculations in the searching procedure

can be replaced by a simple comparison.

(2) Because some triangles related to the super-

triangle are deleted in the ®nal triangulation, the

empty-circle-criterion checks for these triangles are

unnecessary.

(3) The e�ciency may deteriorate if the super-

triangle's selected size is too large. Even so, after

removing the supertriangle-related data, the ®nal

triangulation generated with Sloan's (1987) algor-

ithm is not guaranteed to be a convex hull.

(4) Other types of enclosure polygons may pro-

vide better e�ciency than a supertriangle.

(5) To reduce the number of empty-circle-cri-

terion checks, the domain is subdivided into m by

m bins, where m is the nearest integer of N1/4. This

value can be modi®ed to speed up the triangulation

in terms of a strip-function.

The improvements are evaluated numerically in

terms of the number of primitive operations

invoked. The ®rst primitive is the computation of a

rank-three determinant, for determining whether

the speci®ed three points are in clockwise (CW) or

counterclockwise (CCW) order. This information is

provided to locate the triangle which encloses a

newly inserted point (Guibas and Stol®, 1985;

Preparata and Shamos, 1985). This primitive is

denoted herein as CCW.

The second primitive, denoted as InCircle, is the

computation of a rank-four determinant. This oper-

ation is based on the empty-circle criterion, to

check whether a point is located inside a triangle's

circumcircle. If this test fails, the diagonal of the

quadrilateral formed with three vertices of the tri-

angle and the point is then swapped. The corre-

sponding procedure is referred to as Swap. Guibas

and Stol® (1985) applied CCW and InCircle for the

e�ciency evaluation, while the InCircle and Swap

primitives are grouped as a single primitive.

Because the number of Swap invocations is di�erent

from that of InCircle, these two primitives should

be observed separately. Therefore, Swap is used as

the third primitive in this study.

Regarding the running time for these three primi-

tives, two million tests indicate that the average

cost of an InCircle is around 2.62 times that of a

CCW for computation with 4-byte real numbers;

meanwhile, the unit cost for Swap is about 0.85

times of a CCW. The overall quantity in expression

of (2.62*InCircle + 0.85*Swap + CCW) is nearly

identical to the running time complexity of Sloan's

(1987) algorithm, excluding sorting.

The coordinates of all sampling points in the

simulated datasets were generated by the linear con-

gruential random-number generator developed by

Wichmann and Hill (1987). The three initial seeds

were set as 11, 10001, 3001, respectively. The sizes

of tested datasets are of twelve di�erent values, ran-

ging from 20000 to 500000. A unit square domain

was de®ned for each dataset.
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PERFORMANCE MEASUREMENT OF SLOAN'S

(1987) ALGORITHM

The number of invocations and complexities of

Sloan's (1987) algorithm for triangulating the twelve
datasets are listed in Table 1. The invocations of
CCW contribute most to the complexity of Sloan's
algorithm.

IMPROVEMENTS IN SLOAN'S (1987) ALGORITHM

Corresponding to the observations made on
Sloan's algorithm described in the introduction, ®ve
revisions are devised.

The usage of previous CCW result in range searching

For each insertion, range searching is performed

with the TRILOC algorithm (Fig. 1). Because both
vertices and edges of a triangle are arranged in a
counterclockwise order, if a point is at the right

side of an edge in triangle Ti, this point is certainly
at the left side of this edge in the adjacent triangle
Ti + 1. A CCW calculation in Ti + 1 for the shared
edge could be saved. This common edge is de®ned

as DUMMY in the following TRILOC algorithm.

The saving of CCW operations in TRILOC could
account for each triangle searched. For Ti, where

k>i>0, the CCW operations required are at most
2, compared with 3 for the original algorithm. The
expected number of CCW is thus equal to (1 + 2)/

2 = 1.5, compared with (1 + 2 + 3)/3 = 2, assum-
ing equal probabilities. For Tk, only two, instead of
three, CCW operations are su�cient. For T0, the

expected number of CCW is still two.

Convexity and the size of supertriangle

Sloan (1987) stated that a supertriangle's size
could be arbitrarily chosen. However, even with a
large supertriangle, the convexity cannot be
ensured. To maintain the convexity of the ®nal tri-

angulation, a sub-algorithm based on Graham's
scan (Graham, 1972) is introduced. This process
involves both InCircle testing and Swap procedures

simultaneously on the boundary triangles.
Additional complexity is introduced, that is O(h)
for CCW and O(h2) for InCircle, where h is the

number of boundary points. Because h is usually
small in practice, this addition is insigni®cant in
most situations.
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Numerical experiments have demonstrated that
the computation is reduced when the corners of

supertriangle are approaching the enclosing bound-
ary of points. The coordinates corresponding to the
three vertices of the rede®ned supertriangle are set
as (ÿ1.25, ÿ0.025), (2.250, ÿ0.025) and (0.5, 1.5)

(Fig. 2) during testing.

Incircle reduction

According to Sloan's (1987) algorithm, the tri-
angles that contain one or more of the supertriangle
vertices will be deleted in the end. Therefore, the
Delaunay properties of these triangles do not need

to be checked. It can be done by simply adding a
statement ``IF V3 < N + 1 THEN'' before InCircle
test.

Table 1. Performance measures of Sloan's (1987) algorithm

N InCircle Swap CCW Overall

20000 279883 110164 341805 1168738
40000 571986 226298 769707 2460664
60000 874701 347728 1230169 3817454
100000 1481890 591432 2224529 6609798
150000 2269786 910495 3593755 10314515
200000 3062822 1232094 5127269 14199143
250000 3858760 1555160 6685379 18117216
300000 4658556 1880112 8293699 22097211
350000 5464612 2208221 9938671 26132942
400000 6269434 2535685 11568281 30149530
450000 7064454 2858209 13206254 34144601
500000 7881517 3191808 14873314 38235925

Complexity 10.5N1.0313 3.85N1.0385 3.78N1.1573 27.0N1.0794

Figure 1. Triangle search algorithm.

Figure 2. Rede®ned supertriangle.

Figure 3. Five super-k-gons and allocation of vertices.
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Supertriangle and super-k-gon

For a square-shaped domain, polygons with four

to eight vertices (Fig. 3) are compared with super-
triangle in terms of computational e�ciency. From
numerical experiments, the case of k = 8 performs

the best. However, the improvement decreases as N
increases.

Stripsort

Sloan's (1987) utilizes binsort to reduce the num-
ber of searches required. Instead of dividing the

domain into bins, stripsort could seemingly produce
the same situation. A strip is the bins in the same
row. Following Sloan's (1987), the number of strips
can be de®ned as the nearest integer of N1/4. In this

study, 0:5
����
N
p � ����

N4
p � 15 is found to be the most

e�cient de®nition for a uniformly distributed unit
square.

The performance measures of the ®nal version is
listed in Table 2. The overall complexity is reduced
from 27.0N1.0794 to 25.8N1.0435, which is due mainly

to the reduction of CCW invocations from
3.78N1.1573 to 3.96N1.0510. For the 500000-points
example, the overall invocations of the improved
version is around 40.3% reduced from the original.

This reduction seems to be scalable for N>500000.

CONCLUSIONS

Five modi®cations to Sloan's (1987) algorithm
have been described. Numerical experiments indi-

cate that the running time is reduced to about

59.7% of the original for up to 500000 points ran-
domly distributed in a unit square. Furthermore,

the ®nal triangulation resulting from the revised al-
gorithm will be convex. Code may be downloaded
by anonymous FTP from the server
FTP.IAMG.ORG.
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Table 2. Performance measures of the improved algorithm

N InCircle Swap CCW Overall invocations

improved original
reduction
rate %

20000 219780 82685 130688 776794 1168738 33.5
40000 458497 173721 271803 1620728 2460664 34.1
60000 700328 266334 415713 2476956 3817454 35.1
100000 1197964 457815 711884 4239692 6609798 35.9
150000 1832718 703030 1091718 6491015 10314515 37.1
200000 2479502 954502 1480004 8787626 14199143 38.1
250000 3126654 1205473 1866975 11083461 18117216 38.8
300000 3776679 1458097 2265838 13400119 22097211 39.4
350000 4433563 1714111 2659575 15732504 26132942 39.8
400000 5096932 1972967 3065706 18096690 30149530 40.0
450000 5753890 2228897 3462349 20432103 34144601 40.2
500000 6429787 2494069 3873410 22839411 38235925 40.3

Complexity 7.50N1.0410 2.59N1.0498 3.96N1.0510 25.8N1.0435 27.0N1.0794
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