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Abstract

In this paper we propose a modified morphological corner detection method which finds convex and concave significant
points using simple integer computation. We use the morphological peak extractor to detect convex corners and use a
modified valley extractor to detect concave corners. Moreover, information of the distances between pixels on the boundary
segment determined by two contiguous significant points and the chord connecting these two contiguous significant points
can be applied to remedy the loosing corner due to the shape of the chosen structuring element. q 1998 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Corners are very useful features in image match-
Žing, image representation and shape analysis Gupta

.and Malakapalli, 1990 . Traditionally, a point is
declared as a corner point if, at this point, the object
boundary makes discontinuous changes in direction
or the curvature of the boundary is above some

Žthreshold. Many approaches Rosenfeld and John-
ston, 1973; Rosenfeld and Weszka, 1974; Freeman
and Davis, 1977; Sankar and Sharma, 1978; Teh and
Chin, 1989; Liu et al., 1990; Pei and Horng, 1994,

.1996; Sarkar, 1993 have been developed for corner
detection. They are all based on the analysis of
chain-coded boundaries of objects. Most of them
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involve complex floating-point computation and se-
lection of region support. Especially, for tremendous
objects, the floating-point computation is time con-
suming and the selection of improper region support

Ž .will cause false corners. Sarkar 1993 proposes a
simple algorithm based on the difference of bound-
ary direction to detect significance vertices, however
his method is sensitive to boundary noise or bound-
ary distortions. In summary, the above boundary-
based corner detection methods suffer the depen-
dence either on the correctness of region segmenta-
tion or the susceptivity of noise.

With computational simplicity and effectiveness,
mathematical morphology has been applied success-

Žfully to image and signal processing Serra, 1982;
.Giardina and Dougherty, 1988 . The existent mor-

Žphological corner detectors Noble, 1992; Shapiro et
.al., 1987; Zhang and Zhao, 1997 are derived from

Ž .Meyer and Beucher, 1990 . It should be noted that
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the result of peak or valley extractor of an object
consists of areas around corner points. Zhang and

Ž .Zhao 1997 shrink corner portion to a single corner
according boundary information, recently. Therefore,
it is our goal in this paper to modify the existent
morphological corner detectors such that they can
find the actual corner points.

The paper is organized as follows. In Section 2,
we will introduce the elementary theorem of mathe-
matical morphology. In Section 3, we will describe
the method we proposed for corner detection. In
Section 4, we will discuss the effects of different
types and sizes of structuring elements and compare
with some pioneer works for minute and tremendous
objects. In our experiment, the results show that our
method is effective in detecting corners for tremen-
dous objects. On the other hand, it also has a little
error with the measurement of distance difference for
minute objects. Finally, the conclusions will be given
in Section 5.

2. Mathematical morphology

Mathematical morphology is a well-known tool in
Žimage processing Serra, 1982; Giardina and

.Dougherty, 1988 . The basic operations in the alge-
braic framework of mathematical morphology are
dilations and erosions, each associated with a struc-
turing element. These operations can be defined on
Euclidean space with arbitrary dimension. In this
paper, we confine ourselves to define them on the
discrete Euclidean plane Z2.

Definition 2.1. Let A and B be two subsets of Z2.
The dilation of A by B, written as A[B, is given
by A[BsD A . The erosion of A by B,bg B b

written as A]B, is given by A]BsF A .bg B yb

Then, the closing of A by B, written as A Ø B, is
Ž .given by A Ø Bs A]B [B. The opening of A

Ž .by B, written as A(B, is given by A(Bs A]B
[B.

The subset B used in the above definition is
called a structuring element. In most applications, a
structuring element is chosen to have small size and
simple shape. Many useful properties of dilations,
erosions, closings and openings can be found in the

Ž . Ž .pioneer works of Matheron 1975 and Serra 1982 .
To our application, we notice that, if B is a disk-
shaped structuring element, the effect of A(B is to
smooth away some convex portions of A. While the
effect of A Ø B is to fill in some concave portions of

Ž .A. Therefore, as in the works of Noble 1992 and
Ž .Shapiro et al. 1987 , it is intuitively to use the set

Ždifference AyA(B this is called the peak extrac-
Ž ..tor when A is a numerical function Serra, 1982 to

Žlocate convex corners and use A Ø ByA this is
called a valley extractor when A is a numerical

.function to locate concave corner points. However,
as we pointed out before, the results of AyA(B
and A Ø ByA consist of areas around corner points
not only corner points themselves. Furthermore, since

Ž .Al A Ø ByA sB, if we are required that all
corner points of A must lie in A, then A Ø ByA is
obviously not the desired corner detector. In a word,
the localization ability of the existent morphological
corner detection must be improved in order to find
the actual positions of corner points.

3. Proposed method

Let A be a binary image, i.e., a subset of Z2, and
B be a disk-shaped structuring element. In this sec-
tion, we will first modify the morphological operator
AyA(B to find convex corner points. Then, we
will modify the operator A Ø ByA to find concave
corner points.

3.1. ConÕex corner detection

Before describing the proposed convex corner
detection, we give the following definition first.

Definition 3.1. Let A be a binary image, N a
neighborhood of the origin. For each point p in A,

Ž .the N-hit number of p, written as H p , isN ≠ A

defined by

< <H p s N lA .Ž .N ≠ A p

Definition 3.2. A pixel p is said to have locali

maximum N-hit number around its neighbor piy1
Ž . Ž .and p , if H p ( H p )iq 1 N ≠ A iy 1 N ≠ A i

Ž . Ž . Ž .H p or H p - H p 0N ≠ A iq 1 N ≠ A iy 1 N ≠ A i
Ž .H p .N ≠ A iq1
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Definition 3.3. A pixel p is said to have locali

minimum N-hit number around its neighbor piy1
Ž . Ž .and p , if H p 0 H p -iq 1 N ≠ A iy 1 N ≠ A i

Ž . Ž . Ž .H p or H p ) H p (N ≠ A iq 1 N ≠ A iy 1 N ≠ A i
Ž .H p .N ≠ A iq1

Keeping this definition in mind, we observe that a
boundary point p in a binary image A is a convex

Ž .corner point then the number H p should be aN ≠ A

local minimum around its neighbor for a suitable
neighborhood N. But, it is not true that a boundary
point with a local minimal hit number is a convex
corner point. To overcome this cumbersome, in the
first step of our algorithm, we will use the morpho-
logical operator AyA(B to locate the approximate
positions of convex corner points. In the second step
of our algorithm, we will search the boundary of
each connected component of AyA(B points with
local minimal hit numbers then choose one of these
points as the convex corner point.

Algorithm 1
1. Input:

Ø Binary image A;
Ø Neighborhood of the origin N;
Ø Disk-shaped structuring element B;

2. Output:
Ø Convex corner points of A;

3. Step 1. Form the set difference AyA(B.
4. Step 2. For each connected component R of

AyA(B do
Ø Find the boundary curve C which is the inter-

section of the boundary of A and that of R;
Ø Chain-coded the curve C by p , p , . . . , p , for1 2 n

some n;
Ž .Ø Compute the N-hit number H p for eachN ≠ A i

i;
Ø Search for points with local minimal hit num-

bers;
Ø Choose the point whose index is as close as to

nr2 as the convex corner point.

Fig. 1 shows an acute part detected by AyA(B
with a large disk-shaped structuring element with
size 99 and Table 1 shows the corresponding N-hit
numbers of points on curve C using a neighborhood

Fig. 1. A connected region of Ay A( B.

of 33 square centered at origin. Positions with local
minimal of N-hit numbers are in the indices of 1, 3,
and 6 that are labeled with circle, determined by
algorithm Step 2. In our experiment, the index 6 is as

Ž .close as to 5 nr2 . Thus, we choose p as the6

convex corner point.
This corner detector uses simple integer opera-

tions instead of complex floating point computations
to find convex significant corner points, it is simple
and fast.

3.2. ConcaÕe corner detection

Similar to the observation in Section 3.1, a
boundary point p in a binary image A is a concave

Ž .corner point then the number H p should be aN ≠ A

local maximum around its neighbor for a suitable
neighborhood N. But, the converse is not true.

ŽMoreover, as we pointed out in Section 2, Al A Ø
.ByA sB. That is, the boundary of A does not

belong to the set A Ø ByA. This situation is illus-
trated in Fig. 2. Thus, we modify the operator A Ø B

Ž .yA to be A Ø ByA [E, where E is the rhombus
structuring element. Then the true concave corner
can be enforced to locate on the chain code of the
boundary curve C that is the intersection of the
boundary of A and that of a connected region R

Ž .obtained from A Ø ByA [E. In the second step
of our algorithm, we will search the boundary of
each connected component of A Ø ByA to find

Table 1
N-hit number string of Fig. 1

Index of p 1 2 3 4 5 6 7 8 9 10i
Ž .H p 6 7 4 6 6 4 6 6 6 6N ≠ A i



( )R.-S. Lin et al.rPattern Recognition Letters 19 1998 279–286282

Fig. 2. An example of concave corner detection phase.

points with local maximal hit numbers then choose
one of these points as the concave corner point.

Algorithm 2
1. Input:

Ø Binary image A;
Ø Neighborhood of the origin N;
Ø Disk-shaped structuring element B;
Ø Rhombus structuring element E;

2. Output:
Ø Concave corner points of A;

Ž .3. Step 1. Form the image A Ø ByA [E.
4. Step 2. For each connected component R of

Ž .A Ø ByA [E do
Ø Find the boundary curve C which is the inter-

section of the boundary of A and that of R;
Ø Chain-coded the curve C by p , p , . . . , p , for1 2 n

some n;
Ž .Ø Compute the N-hit number H p for eachN ≠ A i

i;
Ø Search for points with local maximal hit num-

bers;
Ø Choose the point whose index is as close as to

nr2 as the concave corner point.

Table 2
The concave number string of a local concave region in Fig. 3

Index of p 1 2 3 4 5i
Ž .H p 6 6 8 6 6N ≠ A i

Table 2 shows the corresponding N-hit number
string of the chain code of boundary curve in Fig. 2.
Position with the maximal hit number and as close as
to nr2 is in the index of 3 which is labeled with
circle. By our algorithm, the detected concave corner
point is p .3

Moreover, the detection phase of concave corners
can be parallel computed with the detection phase of
convex corners. The complete architecture of our
corner detection method is shown in Fig. 3. In our
algorithm, the procession only involved the morpho-
logical operators and the simple integer computation.
As we know, morphological operator can be im-
planted to parallel machine. Then the computation
time will decrease respectively.

4. Experimental results and discussion

In the using of morphological operators as a tool
for digital image processing, it is a difficult skill to
choose a suitable structuring element to fit working

Fig. 3. The architecture of our proposed method.
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Ž . Ž .Fig. 4. a A binary artificial tree image. b The corner image of
Ž .a .

purpose. By our observation, we choose different
structuring elements such as square and rhomboid
for preserving convex and concave portions of an
object. Square can preserve rhombus convex angles
and rhombus concave angles with morphological
operators AyA(B and A Ø ByA, but it will lose
right angles. On the other hand, rhomboid can main-
tain right convex angles and right concave angles,
but lose rhombus angles. The first test of our experi-
ments took above two types structuring elements and
applied to the architecture of Fig. 3 for detection.
Then, the result is the union of each corner map. Fig.
Ž . Ž .4 a is the original object image, Fig. 4 b shows the

result of taking the union of each corners map using
the square and the rhombus structuring elements
with the size of 7=7. Secondarily, our algorithm is
applied to two digital binary images chromosome
and eight images. The corresponding corner images

Ž . Ž .shown in Fig. 5 a and Fig. 5 b resulted from the
union of two corner images in which one using

Ž . Ž .Fig. 5. a The corner map of chromosome image. b The corner
map of eight image.

square and another using rhombus structuring ele-
ment. Obviously, our experimental results show that
our method can detect significant corner points of

Ž .the stereoscope image, such as Fig. 5 a and Fig.
Ž .5 b .

Unfortunately, morphological operators AyA(B
and A Ø ByA miss connected convex or concave
component when the corner point has the angle of
1358. For the purpose of resolving the weakness of
square or rhomboid structuring element, we choose
circular structuring element to preserve local convex

Ž .or concave parts. Fig. 6 a is the result detected by
applying a circular structuring element to a civil
aircraft image with size of 56=57.

We also observe that as the size of structuring
element increases, our method will increase the pre-
cision of corners detected, but will increase computa-
tion as well. It is because that the corner parts
detected from morphological operators with larger
structuring element contain more information about
corners.

Fig. 6. The comparisons of our method with other methods for a
Ž .minute object. a The result of the Rosenfeld–Johnston method.

Ž . Ž .b The result of the Rosenfeld–Weszka method. c The result of
our proposed method.
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Finally, we will compare our method with previ-
ous works when being applied in different situations.
As reminded before, boundary based algorithms such

Žas the Rosenfeld–Johnston algorithm Rosenfeld and
.Johnston, 1973 and the Rosenfeld–Weszka method

Ž .Rosenfeld and Weszka, 1974 suffer from the de-
pendence of the correctness of region support. It is
inappropriate that they determine the smoothing pa-
rameter fixedly. In 1989, Teh and Chin determined
the region support automatically. But it is time con-
suming for tremendous objects since it needs to
compute the curvature for each pixel firstly. Here,
we consider two kinds of maps, the minute and
tremendous object maps. For a minute object, Fig.
Ž .6 b shows the result of the Rosenfeld–Johnston

Ž .method, Fig. 6 c shows the result of the
Rosenfeld–Weszka method, where each smoothing
parameter of theirs is ten. On the other hand, Fig.
Ž . Ž . Ž .7 a , Fig. 7 b and Fig. 7 c show the results of

Rosenfeld–Johnston, Rosenfeld–Weszka, and our
method on a tremendous object image segmented
from another real image with size of 253=208,
respectively. Moreover, we also apply our method on

Ž .multiple objects image, Fig. 7 d show the result. All
of above our experiments, the size of structuring
element is 7=7.

It is not so fortunate that circular structuring
element perform well on both type of objects. There
still exist defects as the structuring element can not
fit the shape of object, especially, for minute objects.

Ž . Ž .Fig. 7. The comparisons of our method with other methods for a tremendous object. a The result of the Rosenfeld–Johnston method. b
Ž .The result of the Rosenfeld–Weszka method. c,d The result of our proposed method for single and multiple tremendous objects.
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Ž .Fig. 8. The results of our method with distance measurement. a
Ž .The corner map of leaf image with threshold ts2.0. b The

corner map of civil aircraft image with threshold ts1.0.

Hence, we join a secondary representative point
between two contiguous significant corners with
shape representation for minute objects. We use the
maximum Euclidean distance as the measurement of
secondary representative points. The intuitive con-
cept is, for each pixel belong to a boundary segment,
we compute the perpendicular Euclidean distance
between the pixel and the chord connecting two
contiguous significant corner points of the boundary
segment. Let c and c be two contiguous significant1 2

corners detected from the above method, and
p , p , . . . , p , p be the boundary points from c to1 2 ly1 l 1

c , where p sc and p sc , then the Euclidean2 1 1 1 2

distance from p to the chord connecting c and ci 1 2
Ž . Ž .is denoted as d p ,c c . If d p ,c c -i 1 2 iy1 1 2

Ž . Ž . Ž .d p ,c c )d p ,c c and d p ,c c ) t, wherei 1 2 iq1 1 2 i 1 2

t is a threshold reflecting the degree of the impor-
tance of the secondary representative corner. In other
words, for polygonal approximation in shape analy-
sis, the threshold t can be selected with smaller
number to minimize the integral square E sÝ e2,2 i i

Table 3
The distance error of some algorithms with chromosome image

2Algorithms Total error E sÝ e2 i 1

Rosenfeld–Johnston, ms6 14.131202
Rosenfeld–Weszka, ms6 15.473706
Freeman–Davis, ss3, ms2 17.329360
Sankar–Sharma 24.873161

Ž .Teh–Chin k-cosine 10.081549
Ž .Teh–Chin k-curvature 7.481549
Ž .Teh–Chin 1-curvature 7.481549

M. M. corner detector ts1 7.286041

where e denotes the error between a boundaryi

segment and a line approximation. It is reasonable to
select a lower threshold as the object is small. But,
how could we select proper threshold t. Initially, a
larger threshold is a default value. Then decrease the
threshold step by step until E sÝ e2 did not de-2 i i

crease and then add the secondary representative
points to actual corner point set. Fig. 8 shows the
result for shape representation. In our experiment,
we measure the merit E of some algorithms on2

chromosome image in Table 3. The result shows that
our method has a smaller error than other methods.

5. Conclusions

In this paper, we have presented a corner detec-
tion method with simple integer computation by
mathematical morphological operators. As we know,
corners are usually divided into convex and concave
corners. First, we use morphological operators to
extract connected regions containing convex and
concave corners. Then we locate convex and con-
cave corners as those points on the boundaries of the
extracted regions with maximal N-hit numbers. In
our experiment, we exhibit satisfied experiment re-
sults in detecting significant points and providing
good approximation on shape description.
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